## Andrew G Bowie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/151252/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Myeloid cell nuclear differentiation antigen controls the pathogen-stimulated type I interferon<br>cascade in human monocytes by transcriptional regulation of IRF7. Nature Communications, 2022, 13,<br>14.     | 12.8 | 18        |
| 2  | SARM1 Ablation Is Protective and Preserves Spatial Vision in an In Vivo Mouse Model of Retinal Ganglion Cell Degeneration. International Journal of Molecular Sciences, 2022, 23, 1606.                          | 4.1  | 12        |
| 3  | SARM1 Promotes Photoreceptor Degeneration in an Oxidative Stress Model of Retinal Degeneration.<br>Frontiers in Neuroscience, 2022, 16, 852114.                                                                  | 2.8  | 2         |
| 4  | Detection of Viral Infections by Innate Immunity. Biochemical Pharmacology, 2021, 183, 114316.                                                                                                                   | 4.4  | 216       |
| 5  | Malaria parasites both repress host CXCL10 and use it as a cue for growth acceleration. Nature Communications, 2021, 12, 4851.                                                                                   | 12.8 | 22        |
| 6  | Dual NADPH oxidases DUOX1 and DUOX2 synthesize NAADP and are necessary for Ca <sup>2+</sup> signaling during T cell activation. Science Signaling, 2021, 14, eabe3800.                                           | 3.6  | 28        |
| 7  | CRISPR/Cas9-mediated SARM1 knockout and epitope-tagged mice reveal that SARM1 does not regulate nuclear transcription, but is expressed in macrophages. Journal of Biological Chemistry, 2021, 297, 101417.      | 3.4  | 8         |
| 8  | Immunometabolism pathways as the basis for innovative anti-viral strategies (INITIATE): A Marie<br>Sklodowska-Curie innovative training network. Virus Research, 2020, 287, 198094.                              | 2.2  | 2         |
| 9  | PYHIN1 regulates pro-inflammatory cytokine induction rather than innate immune DNA sensing in airway epithelial cells. Journal of Biological Chemistry, 2020, 295, 4438-4450.                                    | 3.4  | 15        |
| 10 | SARM1 deficiency promotes rod and cone photoreceptor cell survival in a model of retinal degeneration. Life Science Alliance, 2020, 3, e201900618.                                                               | 2.8  | 42        |
| 11 | Toll-like receptor 2–dependent endosomal signaling by Staphylococcus aureus in monocytes induces type I interferon and promotes intracellular survival. Journal of Biological Chemistry, 2019, 294, 17031-17042. | 3.4  | 36        |
| 12 | Cell Survival and Cytokine Release after Inflammasome Activation Is Regulated by the Toll-IL-1R Protein SARM. Immunity, 2019, 50, 1412-1424.e6.                                                                  | 14.3 | 97        |
| 13 | Harnessing poxviral know-how for anti-cytokine therapies. Journal of Biological Chemistry, 2019, 294, 5228-5229.                                                                                                 | 3.4  | 0         |
| 14 | SARM: From immune regulator to cell executioner. Biochemical Pharmacology, 2019, 161, 52-62.                                                                                                                     | 4.4  | 33        |
| 15 | Self-RNA sentinels signal viral invasion. Nature Immunology, 2018, 19, 4-5.                                                                                                                                      | 14.5 | 4         |
| 16 | Non-canonical Activation of the DNA Sensing Adaptor STING by ATM and IF116 Mediates NF-κB Signaling<br>after Nuclear DNA Damage. Molecular Cell, 2018, 71, 745-760.e5.                                           | 9.7  | 417       |
| 17 | Poxviral protein E3–altered cytokine production reveals that DExD/H-box helicase 9 controls Toll-like receptor–stimulated immune responses. Journal of Biological Chemistry, 2018, 293, 14989-15001.             | 3.4  | 18        |
| 18 | IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes. Nature Communications, 2017, 8, 14392.                                                                            | 12.8 | 251       |

| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Molluscum Contagiosum Virus Protein MC005 Inhibits NF-κB Activation by Targeting NEMO-Regulated IκB<br>Kinase Activation. Journal of Virology, 2017, 91, .                                          | 3.4  | 31        |
| 20 | A novel anti-viral role for STAT3 in IFN-α signalling responses. Cellular and Molecular Life Sciences, 2017, 74, 1755-1764.                                                                         | 5.4  | 36        |
| 21 | Malaria parasite DNA-harbouring vesicles activate cytosolic immune sensors. Nature Communications, 2017, 8, 1985.                                                                                   | 12.8 | 160       |
| 22 | Alum Activates the Bovine NLRP3 Inflammasome. Frontiers in Immunology, 2017, 8, 1494.                                                                                                               | 4.8  | 27        |
| 23 | The Vaccine Adjuvant Chitosan Promotes Cellular Immunity via DNA Sensor cGAS-STING-Dependent<br>Induction of Type I Interferons. Immunity, 2016, 44, 597-608.                                       | 14.3 | 429       |
| 24 | A frequent hypofunctional IRAK2 variant is associated with reduced spontaneous hepatitis C virus clearance. Hepatology, 2015, 62, 1375-1387.                                                        | 7.3  | 25        |
| 25 | <scp>DNA</scp> sensors are expressed in astrocytes and microglia <i>in vitro</i> and are upregulated during gliosis in neurodegenerative disease. Glia, 2015, 63, 812-825.                          | 4.9  | 62        |
| 26 | Poxvirus Protein MC132 from Molluscum Contagiosum Virus Inhibits NF-ήB Activation by Targeting p65 for Degradation. Journal of Virology, 2015, 89, 8406-8415.                                       | 3.4  | 31        |
| 27 | Innate immune recognition of DNA: A recent history. Virology, 2015, 479-480, 146-152.                                                                                                               | 2.4  | 197       |
| 28 | Rad50 and CARD9, missing links in cytosolic DNA–stimulated inflammation. Nature Immunology, 2014,<br>15, 534-536.                                                                                   | 14.5 | 8         |
| 29 | A Coding IRAK2 Protein Variant Compromises Toll-like receptor (TLR) Signaling and Is Associated with Colorectal Cancer Survival. Journal of Biological Chemistry, 2014, 289, 23123-23131.           | 3.4  | 18        |
| 30 | SARM Regulates CCL5 Production in Macrophages by Promoting the Recruitment of Transcription Factors and RNA Polymerase II to the <i>Ccl5</i> Promoter. Journal of Immunology, 2014, 192, 4821-4832. | 0.8  | 23        |
| 31 | Innate antiviral signalling in the central nervous system. Trends in Immunology, 2014, 35, 79-87.                                                                                                   | 6.8  | 59        |
| 32 | TRAM Is Required for TLR2 Endosomal Signaling to Type I IFN Induction. Journal of Immunology, 2014, 193, 6090-6102.                                                                                 | 0.8  | 92        |
| 33 | Innate immune activation of NFκB and its antagonism by poxviruses. Cytokine and Growth Factor Reviews, 2014, 25, 611-620.                                                                           | 7.2  | 40        |
| 34 | Viral Infections and the DNA Sensing Pathway: Lessons from Herpesviruses and Beyond. , 2014, , 171-203.                                                                                             |      | 0         |
| 35 | The emerging role of human PYHIN proteins in innate immunity: Implications for health and disease.<br>Biochemical Pharmacology, 2014, 92, 405-414.                                                  | 4.4  | 71        |
| 36 | The TLR signaling adaptor TRAM interacts with TRAF6 to mediate activation of the inflammatory response by TLR4. Journal of Leukocyte Biology, 2014, 96, 427-436.                                    | 3.3  | 38        |

| #  | Article                                                                                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Removing the TREX1 Safety Net: Oxidized DNA Overcomes Immune Silencing by Exonuclease TREX1.<br>Immunity, 2013, 39, 423-425.                                                                                                                                                                                                                | 14.3 | 1         |
| 38 | Proteasomal Degradation of Herpes Simplex Virus Capsids in Macrophages Releases DNA to the Cytosol for Recognition by DNA Sensors. Journal of Immunology, 2013, 190, 2311-2319.                                                                                                                                                             | 0.8  | 171       |
| 39 | The history of Toll-like receptors — redefining innate immunity. Nature Reviews Immunology, 2013, 13,<br>453-460.                                                                                                                                                                                                                           | 22.7 | 1,338     |
| 40 | Immune Sensing of DNA. Immunity, 2013, 38, 870-880.                                                                                                                                                                                                                                                                                         | 14.3 | 672       |
| 41 | Innate immune detection of microbial nucleic acids. Trends in Microbiology, 2013, 21, 413-420.                                                                                                                                                                                                                                              | 7.7  | 230       |
| 42 | Poxvirus Targeting of E3 Ligase β-TrCP by Molecular Mimicry: A Mechanism to Inhibit NF-κB Activation and<br>Promote Immune Evasion and Virulence. PLoS Pathogens, 2013, 9, e1003183.                                                                                                                                                        | 4.7  | 95        |
| 43 | Poxviral Protein A52 Stimulates p38 Mitogen-activated Protein Kinase (MAPK) Activation by Causing<br>Tumor Necrosis Factor Receptor-associated Factor 6 (TRAF6) Self-association Leading to Transforming<br>Growth Factor Î <sup>2</sup> -activated Kinase 1 (TAK1) Recruitment. Journal of Biological Chemistry, 2013, 288,<br>33642-33653 | 3.4  | 14        |
| 44 | Poxviral Protein A46 Antagonizes Toll-like Receptor 4 Signaling by Targeting BB Loop Motifs in Toll-IL-1<br>Receptor Adaptor Proteins to Disrupt Receptor:Adaptor Interactions. Journal of Biological Chemistry,<br>2012, 287, 22672-22682.                                                                                                 | 3.4  | 33        |
| 45 | The Endocannabinoid, Anandamide, Augments Notch-1 Signaling in Cultured Cortical Neurons Exposed to Amyloid-β and in the Cortex of Aged Rats. Journal of Biological Chemistry, 2012, 287, 34709-34721.                                                                                                                                      | 3.4  | 46        |
| 46 | Structures of the HIN Domain:DNA Complexes Reveal Ligand Binding and Activation Mechanisms of the AIM2 Inflammasome and IFI16 Receptor. Immunity, 2012, 36, 561-571.                                                                                                                                                                        | 14.3 | 456       |
| 47 | Neuronal toll-like receptor 4 signaling induces brain endothelial activation and neutrophil transmigration in vitro. Journal of Neuroinflammation, 2012, 9, 230.                                                                                                                                                                            | 7.2  | 113       |
| 48 | The STING in the Tail for Cytosolic DNA–Dependent Activation of IRF3. Science Signaling, 2012, 5, pe9.                                                                                                                                                                                                                                      | 3.6  | 35        |
| 49 | Innate sensing of bacterial cyclic dinucleotides: more than just STING. Nature Immunology, 2012, 13, 1137-1139.                                                                                                                                                                                                                             | 14.5 | 30        |
| 50 | Viral immune modulators perturb the human molecular network by common and unique strategies.<br>Nature, 2012, 487, 486-490.                                                                                                                                                                                                                 | 27.8 | 249       |
| 51 | Innate DNA Sensing Moves to the Nucleus. Cell Host and Microbe, 2011, 9, 351-353.                                                                                                                                                                                                                                                           | 11.0 | 22        |
| 52 | Cytosolic DNA sensors regulating type I interferon induction. Trends in Immunology, 2011, 32, 574-581.                                                                                                                                                                                                                                      | 6.8  | 182       |
| 53 | Recognition of herpesviruses by the innate immune system. Nature Reviews Immunology, 2011, 11, 143-154.                                                                                                                                                                                                                                     | 22.7 | 293       |
| 54 | Evaluating the role of Toll-like receptors in diseases of the central nervous system. Biochemical Pharmacology, 2011, 81, 825-837.                                                                                                                                                                                                          | 4.4  | 135       |

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The Powerstroke and Camshaft of the RIG-I Antiviral RNA Detection Machine. Cell, 2011, 147, 259-261.                                                                                                                                         | 28.9 | 22        |
| 56 | Human Interleukin-1 Receptor-associated Kinase-2 Is Essential for Toll-like Receptor-mediated<br>Transcriptional and Post-transcriptional Regulation of Tumor Necrosis Factor α. Journal of Biological<br>Chemistry, 2011, 286, 23688-23697. | 3.4  | 31        |
| 57 | Vaccinia Virus Protein C6 Is a Virulence Factor that Binds TBK-1 Adaptor Proteins and Inhibits Activation of IRF3 and IRF7. PLoS Pathogens, 2011, 7, e1002247.                                                                               | 4.7  | 146       |
| 58 | Toll-like receptor 3. Progress in Respiratory Research, 2010, , 73-79.                                                                                                                                                                       | 0.1  | 2         |
| 59 | Sensing and Signaling in Antiviral Innate Immunity. Current Biology, 2010, 20, R328-R333.                                                                                                                                                    | 3.9  | 168       |
| 60 | The interleukin-1 receptor-associated kinases: Critical regulators of innate immune signalling.<br>Biochemical Pharmacology, 2010, 80, 1981-1991.                                                                                            | 4.4  | 251       |
| 61 | Unexpected roles for DEADâ€box protein 3 in viral RNA sensing pathways. European Journal of<br>Immunology, 2010, 40, 933-935.                                                                                                                | 2.9  | 24        |
| 62 | TRAF3: Uncovering the Real but Restricted Role in Human. Immunity, 2010, 33, 293-295.                                                                                                                                                        | 14.3 | 6         |
| 63 | IFI16 is an innate immune sensor for intracellular DNA. Nature Immunology, 2010, 11, 997-1004.                                                                                                                                               | 14.5 | 1,369     |
| 64 | Viral Inhibitory Peptide of TLR4, a Peptide Derived from Vaccinia Protein A46, Specifically Inhibits TLR4<br>by Directly Targeting MyD88 Adaptor-Like and TRIF-Related Adaptor Molecule. Journal of Immunology,<br>2010, 185, 4261-4271.     | 0.8  | 125       |
| 65 | Activation of host pattern recognition receptors by viruses. Current Opinion in Microbiology, 2010, 13, 503-507.                                                                                                                             | 5.1  | 148       |
| 66 | Role of Non-degradative Ubiquitination in Interleukin-1 and Toll-like Receptor Signaling. Journal of<br>Biological Chemistry, 2009, 284, 8211-8215.                                                                                          | 3.4  | 16        |
| 67 | Poxvirus K7 Protein Adopts a Bcl-2 Fold: Biochemical Mapping of Its Interactions with Human DEAD Box<br>RNA Helicase DDX3. Journal of Molecular Biology, 2009, 385, 843-853.                                                                 | 4.2  | 92        |
| 68 | Modulation of Innate Immune Signalling Pathways by Viral Proteins. Advances in Experimental<br>Medicine and Biology, 2009, 666, 49-63.                                                                                                       | 1.6  | 17        |
| 69 | Characterisation of Viral Proteins that Inhibit Toll-Like Receptor Signal Transduction. Methods in<br>Molecular Biology, 2009, 517, 217-235.                                                                                                 | 0.9  | 1         |
| 70 | Uncovering Novel Gene Function in Toll-Like Receptor Signalling Using siRNA. Methods in Molecular<br>Biology, 2009, 517, 277-295.                                                                                                            | 0.9  | 0         |
| 71 | Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKÉ›-mediated IRF activation. EMBO<br>Journal, 2008, 27, 2147-2157.                                                                                                          | 7.8  | 339       |
| 72 | TRIM-ing down Tolls. Nature Immunology, 2008, 9, 348-350.                                                                                                                                                                                    | 14.5 | 17        |

| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Viral evasion and subversion of pattern-recognition receptor signalling. Nature Reviews Immunology, 2008, 8, 911-922.                                                                                       | 22.7 | 616       |
| 74 | The interplay between viruses and innate immune signaling: Recent insights and therapeutic opportunities. Biochemical Pharmacology, 2008, 75, 589-602.                                                      | 4.4  | 109       |
| 75 | Insights from vaccinia virus into Toll-like receptor signalling proteins and their regulation by ubiquitin: role of IRAK-2. Biochemical Society Transactions, 2008, 36, 449-452.                            | 3.4  | 9         |
| 76 | Innate immune signaling pathways: lessons from vaccinia virus. Future Virology, 2008, 3, 147-156.                                                                                                           | 1.8  | 1         |
| 77 | IRAK-2 Participates in Multiple Toll-like Receptor Signaling Pathways to NFκB via Activation of TRAF6<br>Ubiquitination. Journal of Biological Chemistry, 2007, 282, 33435-33443.                           | 3.4  | 181       |
| 78 | Polyinosinic Acid Is a Ligand for Toll-like Receptor 3. Journal of Biological Chemistry, 2007, 282, 24759-24766.                                                                                            | 3.4  | 94        |
| 79 | RIG-I: tri-ing to discriminate between self and non-self RNA. Trends in Immunology, 2007, 28, 147-150.                                                                                                      | 6.8  | 53        |
| 80 | Translational Mini-Review Series on Toll-like Receptors:†Recent advances in understanding the role of Toll-like receptors in anti-viral immunity. Clinical and Experimental Immunology, 2007, 147, 217-226. | 2.6  | 38        |
| 81 | The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature Reviews<br>Immunology, 2007, 7, 353-364.                                                                        | 22.7 | 2,285     |
| 82 | Toll-like receptors as key sensors of viral infection. , 2006, , 143-171.                                                                                                                                   |      | 1         |
| 83 | The human adaptor SARM negatively regulates adaptor protein TRIF–dependent Toll-like receptor<br>signaling. Nature Immunology, 2006, 7, 1074-1081.                                                          | 14.5 | 453       |
| 84 | Nucleotide-binding Oligomerization Domain-1 and Epidermal Growth Factor Receptor. Journal of<br>Biological Chemistry, 2006, 281, 11637-11648.                                                               | 3.4  | 158       |
| 85 | Low pH andHelicobacter pylori increase nuclear factor kappa B binding in gastric epithelial cells: A<br>common pathway for epithelial cell injury?. Journal of Cellular Biochemistry, 2005, 96, 589-598.    | 2.6  | 15        |
| 86 | Vaccinia virus protein A46R targets multiple Toll-like–interleukin-1 receptor adaptors and contributes<br>to virulence. Journal of Experimental Medicine, 2005, 201, 1007-1018.                             | 8.5  | 335       |
| 87 | Activation of Innate Defense against a Paramyxovirus Is Mediated by RIG-I and TLR7 and TLR8 in a<br>Cell-Type-Specific Manner. Journal of Virology, 2005, 79, 12944-12951.                                  | 3.4  | 162       |
| 88 | Viral Inhibition of IL-1- and Neutrophil Elastase-Induced Inflammatory Responses in Bronchial Epithelial<br>Cells. Journal of Immunology, 2005, 175, 7594-7601.                                             | 0.8  | 29        |
| 89 | Schlafen-1 Causes a Cell Cycle Arrest by Inhibiting Induction of Cyclin D1. Journal of Biological Chemistry, 2005, 280, 30723-30734.                                                                        | 3.4  | 69        |
| 90 | Vaccinia Virus Protein A52R Activates p38 Mitogen-activated Protein Kinase and Potentiates<br>Lipopolysaccharide-induced Interleukin-10. Journal of Biological Chemistry, 2005, 280, 30838-30844.           | 3.4  | 67        |

| #   | Article                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | The role of Toll-like receptors in the host response to viruses. Molecular Immunology, 2005, 42,<br>859-867.                                                                                                                                                          | 2.2  | 221       |
| 92  | TLR3 in antiviral immunity: key player or bystander?. Trends in Immunology, 2005, 26, 462-468.                                                                                                                                                                        | 6.8  | 199       |
| 93  | Poxvirus Protein N1L Targets the I-κB Kinase Complex, Inhibits Signaling to NF-κB by the Tumor Necrosis<br>Factor Superfamily of Receptors, and Inhibits NF-κB and IRF3 Signaling by Toll-like Receptors. Journal of<br>Biological Chemistry, 2004, 279, 36570-36578. | 3.4  | 205       |
| 94  | Viral Activation of Macrophages through TLR-Dependent and -Independent Pathways. Journal of<br>Immunology, 2004, 173, 6890-6898.                                                                                                                                      | 0.8  | 109       |
| 95  | Viral appropriation of apoptotic and NF-?B signaling pathways. Journal of Cellular Biochemistry, 2004, 91, 1099-1108.                                                                                                                                                 | 2.6  | 40        |
| 96  | The Toll–IL-1 receptor adaptor family grows to five members. Trends in Immunology, 2003, 24, 286-289.                                                                                                                                                                 | 6.8  | 457       |
| 97  | The Poxvirus Protein A52R Targets Toll-like Receptor Signaling Complexes to Suppress Host Defense.<br>Journal of Experimental Medicine, 2003, 197, 343-351.                                                                                                           | 8.5  | 334       |
| 98  | Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature, 2001, 413, 78-83.                                                                                                                                                          | 27.8 | 1,122     |
| 99  | Transactivation by the p65 Subunit of NF-ήB in Response to Interleukin-1 (IL-1) Involves MyD88, IL-1<br>Receptor-Associated Kinase 1, TRAF-6, and Rac1. Molecular and Cellular Biology, 2001, 21, 4544-4552.                                                          | 2.3  | 81        |
| 100 | The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. Journal of Leukocyte Biology, 2000, 67, 508-514.                                                                               | 3.3  | 408       |
| 101 | Oxidative stress and nuclear factor-l <sup>®</sup> B activation. Biochemical Pharmacology, 2000, 59, 13-23.                                                                                                                                                           | 4.4  | 850       |
| 102 | Vitamin C Inhibits NF-κB Activation by TNF Via the Activation of p38 Mitogen-Activated Protein Kinase.<br>Journal of Immunology, 2000, 165, 7180-7188.                                                                                                                | 0.8  | 284       |
| 103 | A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling.<br>Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 10162-10167.                                                           | 7.1  | 422       |
| 104 | Ras, Protein Kinase Cζ, and IκB Kinases 1 and 2 Are Downstream Effectors of CD44 During the Activation<br>of NF-κB by Hyaluronic Acid Fragments in T-24 Carcinoma Cells. Journal of Immunology, 2000, 164,<br>2053-2063.                                              | 0.8  | 135       |
| 105 | Lipid Peroxidation Is Involved in the Activation of NF-κB by Tumor Necrosis Factor but Not Interleukin-1<br>in the Human Endothelial Cell Line ECV304. Journal of Biological Chemistry, 1997, 272, 25941-25950.                                                       | 3.4  | 175       |
| 106 | STUDIES INTO THE MECHANISM OF NFήB ACTIVATION BY IL1, TNF AND H2O2 IN PRIMARY AND TRANSFORMED ENDOTHELIAL CELLS. Biochemical Society Transactions, 1997, 25, 125S-125S.                                                                                               | 3.4  | 3         |
| 107 | VITAMIN C INHIBITS NFκB ACTIVATION IN ENDOTHELIAL CELLS. Biochemical Society Transactions, 1997, 25, 131S-131S.                                                                                                                                                       | 3.4  | 11        |
| 108 | Mechanism of NFI®B activation by interleukin-1 and tumour necrosis factor in endothelial cells.<br>Biochemical Society Transactions, 1996, 24, 2S-2S.                                                                                                                 | 3.4  | 8         |

| #   | Article                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | The human endothelial cell line ECV304 as a model of endothelial cell activation by interleukin-1.<br>Biochemical Society Transactions, 1995, 23, 109S-109S. | 3.4 | 2         |
| 110 | Clycosylated low density lipoprotein is more sensitive to oxidation: implications for the diabetic patient?. Atherosclerosis, 1993, 102, 63-67.              | 0.8 | 171       |
| 111 | The effects of thiol modifiers on the activation of NFκB by interleukin-1. Biochemical Society Transactions, 1993, 21, 390S-390S.                            | 3.4 | 3         |
| 112 | Role of Toll-Like Receptors in the Innate Immune Response to RNA Viruses. , 0, , 7-27.                                                                       |     | 0         |