Steven Claypool

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/151130/publications.pdf

Version: 2024-02-01

73 papers

4,343 citations

35 h-index 63 g-index

83 all docs 83 docs citations

83 times ranked 5033 citing authors

#	Article	IF	CITATIONS
1	Secretory pathway Ca2+-ATPase SPCA2 regulates mitochondrial respiration and DNA damage response through store-independent calcium entry. Redox Biology, 2022, 50, 102240.	9.0	9
2	Investigating Mitochondrial Dysfunction in Barth Syndrome. FASEB Journal, 2022, 36, .	0.5	0
3	Adenine nucleotide translocase regulates airway epithelial metabolism, surface hydration and ciliary function. Journal of Cell Science, 2021, 134, .	2.0	18
4	The mitochondrial carrier SFXN1 is critical for complex III integrity and cellular metabolism. Cell Reports, 2021, 34, 108869.	6.4	30
5	Impaired phosphatidylethanolamine metabolism activates a reversible stress response that detects and resolves mutant mitochondrial precursors. IScience, 2021, 24, 102196.	4.1	15
6	Tafazzin Modulates Allergen-Induced Mast Cell Inflammatory Mediator Secretion. ImmunoHorizons, 2021, 5, 182-192.	1.8	5
7	Cardiolipin, Mitochondria, and Neurological Disease. Trends in Endocrinology and Metabolism, 2021, 32, 224-237.	7.1	113
8	Cardiolipinâ€dependent Carriers. FASEB Journal, 2021, 35, .	0.5	0
9	Mitochondrial compartmentalization: emerging themes in structure and function. Trends in Biochemical Sciences, 2021, 46, 902-917.	7. 5	32
10	The Influence of Supplemental Dietary Linoleic Acid on Skeletal Muscle Contractile Function in a Rodent Model of Barth Syndrome. Frontiers in Physiology, 2021, 12, 731961.	2.8	6
11	Diverse mitochondrial abnormalities in a new cellular model of TAFFAZZIN deficiency are remediated by cardiolipin-interacting small molecules. Journal of Biological Chemistry, 2021, 297, 101005.	3.4	7
12	Tafazzin deficiency impairs CoA-dependent oxidative metabolism in cardiac mitochondria. Journal of Biological Chemistry, 2020, 295, 12485-12497.	3.4	24
13	Cardiolipin, conformation, and respiratory complex-dependent oligomerization of the major mitochondrial ADP/ATP carrier in yeast. Science Advances, 2020, 6, eabb0780.	10.3	28
14	Cardiolipin's Remodeling Rules Revealed: The Role of the Cellular Lipidome. Cell Reports, 2020, 30, 3949-3950.	6.4	3
15	Phospholipid ebb and flow makes mitochondria go. Journal of Cell Biology, 2020, 219, .	5.2	63
16	Regulation of mitochondrial fragmentation in microvascular endothelial cells isolated from the SU5416/hypoxia model of pulmonary arterial hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L639-L652.	2.9	23
17	Proteolytic Control of Lipid Metabolism. ACS Chemical Biology, 2019, 14, 2406-2423.	3.4	6
18	Systems Analysis of the 22q11.2 Microdeletion Syndrome Converges on a Mitochondrial Interactome Necessary for Synapse Function and Behavior. Journal of Neuroscience, 2019, 39, 1983-18.	3.6	38

#	Article	lF	Citations
19	The Mitochondrial Transacylase, Tafazzin, Regulates AML Stemness by Modulating Intracellular Levels of Phospholipids. Cell Stem Cell, 2019, 24, 621-636.e16.	11.1	32
20	Phosphatidylethanolamine made in the inner mitochondrial membrane is essential for yeast cytochrome bc1 complex function. Nature Communications, 2019, 10, 1432.	12.8	72
21	Emerging Roles in the Biogenesis of Cytochrome c Oxidase for Members of the Mitochondrial Carrier Family. Frontiers in Cell and Developmental Biology, 2019, 7, 3.	3.7	21
22	<i>PISD</i> is a mitochondrial disease gene causing skeletal dysplasia, cataracts, and white matter changes. Life Science Alliance, 2019, 2, e201900353.	2.8	41
23	Krýppel-like factor 4 (KLF4) induces mitochondrial fusion and increases spare respiratory capacity of human glioblastoma cells. Journal of Biological Chemistry, 2018, 293, 6544-6555.	3.4	31
24	Cardiomyopathy-associated mutation in the ADP/ATP carrier reveals translation-dependent regulation of cytochrome <i>c</i> oxidase activity. Molecular Biology of the Cell, 2018, 29, 1449-1464.	2.1	16
25	Rapid degradation of mutant SLC25A46 by the ubiquitin-proteasome system results in MFN1/2-mediated hyperfusion of mitochondria. Molecular Biology of the Cell, 2017, 28, 600-612.	2.1	61
26	Human adenine nucleotide translocases physically and functionally interact with respirasomes. Molecular Biology of the Cell, 2017, 28, 1489-1506.	2.1	37
27	The Mammalian Malonyl-CoA Synthetase ACSF3 Is Required for Mitochondrial Protein Malonylation and Metabolic Efficiency. Cell Chemical Biology, 2017, 24, 673-684.e4.	5.2	65
28	Multitiered and Cooperative Surveillance of Mitochondrial Phosphatidylserine Decarboxylase 1. Molecular and Cellular Biology, 2017, 37, .	2.3	29
29	Tafazzin (TAZ) Regulates the Differentiation of AML Cells By Reducing Levels of the Phospholipid Phosphatidylethanolamine. Blood, 2017, 130, 788-788.	1.4	0
30	Specific degradation of phosphatidylglycerol is necessary for proper mitochondrial morphology and function. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 34-45.	1.0	29
31	Impaired Cardiolipin Biosynthesis Prevents Hepatic Steatosis and Diet-Induced Obesity. Diabetes, 2016, 65, 3289-3300.	0.6	50
32	Phosphatidylethanolamine Metabolism in Health and Disease. International Review of Cell and Molecular Biology, 2016, 321, 29-88.	3.2	269
33	Natural and Induced Mitochondrial Phosphate Carrier Loss. Journal of Biological Chemistry, 2016, 291, 26126-26137.	3.4	18
34	Defining functional classes of Barth syndrome mutation in humans. Human Molecular Genetics, 2016, 25, 1754-1770.	2.9	53
35	Metalloprotease OMA1 Fine-tunes Mitochondrial Bioenergetic Function and Respiratory Supercomplex Stability. Scientific Reports, 2015, 5, 13989.	3.3	52
36	Phosphatidylserine Decarboxylase 1 Autocatalysis and Function Does Not Require a Mitochondrial-specific Factor. Journal of Biological Chemistry, 2015, 290, 12744-12752.	3.4	22

3

#	Article	IF	CITATIONS
37	Tafazzins from Drosophila and mammalian cells assemble in large protein complexes with a short half-life. Mitochondrion, 2015, 21, 27-32.	3.4	11
38	Disorders of phospholipid metabolism: an emerging class of mitochondrial disease due to defects in nuclear genes. Frontiers in Genetics, 2015, 6, 3.	2.3	116
39	Topological Difference but Dysfunctional Conservation of Cardiolipin Remodeling in Yeast and Mammals. FASEB Journal, 2015, 29, 885.12.	0.5	0
40	Unremodeled and Remodeled Cardiolipin Are Functionally Indistinguishable in Yeast. Journal of Biological Chemistry, 2014, 289, 1768-1778.	3.4	100
41	Acyl-CoA thioesterase-2 facilitates mitochondrial fatty acid oxidation in the liver. Journal of Lipid Research, 2014, 55, 2458-2470.	4.2	64
42	The topology and regulation of cardiolipin biosynthesis and remodeling in yeast. Chemistry and Physics of Lipids, 2014, 179, 25-31.	3.2	52
43	The Taz1p Transacylase Is Imported and Sorted into the Outer Mitochondrial Membrane via a Membrane Anchor Domain. Eukaryotic Cell, 2013, 12, 1600-1608.	3.4	11
44	Mitochondria Influence <i>CDR1</i> Efflux Pump Activity, Hog1-Mediated Oxidative Stress Pathway, Iron Homeostasis, and Ergosterol Levels in Candida albicans. Antimicrobial Agents and Chemotherapy, 2013, 57, 5580-5599.	3.2	79
45	Deacylation on the matrix side of the mitochondrial inner membrane regulates cardiolipin remodeling. Molecular Biology of the Cell, 2013, 24, 2008-2020.	2.1	55
46	Seven functional classes of Barth syndrome mutation. Human Molecular Genetics, 2013, 22, 483-492.	2.9	67
47	The power of yeast to model diseases of the powerhouse of the cell. Frontiers in Bioscience - Landmark, 2013, 18, 241.	3.0	34
48	Defining Trafficking Steps Required for Cardiolipin Remodeling. FASEB Journal, 2013, 27, 585.14.	0.5	0
49	Characterizing Mitochondrial Phostidylserine Decarboxylase 1. FASEB Journal, 2013, 27, 585.17.	0.5	0
50	Role for Two Conserved Intermembrane Space Proteins, Ups1p and Up2p, in Intra-mitochondrial Phospholipid Trafficking. Journal of Biological Chemistry, 2012, 287, 15205-15218.	3.4	101
51	Phosphatidylethanolamine Biosynthesis in Mitochondria. Journal of Biological Chemistry, 2012, 287, 43961-43971.	3.4	42
52	Role for two conserved intermembrane space proteins, Ups1p and Ups2p, in intra-mitochondrial phospholipid trafficking Journal of Biological Chemistry, 2012, 287, 27450.	3.4	0
53	The complexity of cardiolipin in health and disease. Trends in Biochemical Sciences, 2012, 37, 32-41.	7. 5	289
54	Barth syndrome mutations that cause tafazzin complex lability. Journal of Cell Biology, 2011, 192, 447-462.	5.2	58

#	Article	IF	CITATIONS
55	N-Glycan Moieties in Neonatal Fc Receptor Determine Steady-state Membrane Distribution and Directional Transport of IgG. Journal of Biological Chemistry, 2009, 284, 8292-8300.	3.4	49
56	Cardiolipin, a critical determinant of mitochondrial carrier protein assembly and function. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2059-2068.	2.6	170
57	Cardiolipin defines the interactome of the major ADP/ATP carrier protein of the mitochondrial inner membrane. Journal of Cell Biology, 2008, 182, 937-950.	5.2	273
58	Ca ²⁺ -dependent Calmodulin Binding to FcRn Affects Immunoglobulin G Transport in the Transcytotic Pathway. Molecular Biology of the Cell, 2008, 19, 414-423.	2.1	47
59	The Cardiolipin Transacylase, Tafazzin, Associates with Two Distinct Respiratory Components Providing Insight into Barth Syndrome. Molecular Biology of the Cell, 2008, 19, 5143-5155.	2.1	97
60	Tim54p connects inner membrane assembly and proteolytic pathways in the mitochondrion. Journal of Cell Biology, 2007, 178, 1161-1175.	5.2	45
61	lgG transport across mucosal barriers by neonatal Fc receptor for lgG and mucosal immunity. Seminars in Immunopathology, 2006, 28, 397-403.	4.0	63
62	Mitochondrial mislocalization and altered assembly of a cluster of Barth syndrome mutant tafazzins. Journal of Cell Biology, 2006, 174, 379-390.	5.2	129
63	Neonatal Fc receptor for IgG regulates mucosal immune responses to luminal bacteria. Journal of Clinical Investigation, 2006, 116, 2142-2151.	8.2	199
64	Altered Membrane Association and Complex Formation of Tafazzin in the Absence of Cardiolipin. FASEB Journal, 2006, 20, A59.	0.5	0
65	Characterization of the porcine neonatal Fc receptor-potential use for trans-epithelial protein delivery. Immunology, 2005, 114, 542-553.	4.4	70
66	Hereditary Spastic Paraplegia: Respiratory Choke or Unactivated Substrate?. Cell, 2005, 123, 183-185.	28.9	5
67	Bidirectional Transepithelial IgG Transport by a Strongly Polarized Basolateral Membrane Fcl̂³-Receptor. Molecular Biology of the Cell, 2004, 15, 1746-1759.	2.1	142
68	Human Neonatal Fc Receptor Mediates Transport of IgG into Luminal Secretions for Delivery of Antigens to Mucosal Dendritic Cells. Immunity, 2004, 20, 769-783.	14.3	429
69	Functional Reconstitution of Human FcRn in Madin-Darby Canine Kidney Cells Requires Co-expressed Human Î ² 2-Microglobulin. Journal of Biological Chemistry, 2002, 277, 28038-28050.	3.4	98
70	The multiple roles of major histocompatibility complex class-I-like molecules in mucosal immune function. Acta Odontologica Scandinavica, 2001, 59, 139-144.	1.6	15
71	Antigen presentation by intestinal epithelial cells. Immunology Letters, 1999, 69, 7-11.	2.5	44
72	Developmental Regulation of TCRδ Locus Accessibility and Expression by the TCRδ Enhancer. Immunity, 1999, 10, 503-513.	14.3	60

#	Article	IF	CITATIONS
73	Impaired Phosphatidylethanolamine Metabolism Activates a Reversible Stress Response that Detects and Resolves Mutant Mitochondrial Precursors. SSRN Electronic Journal, 0, , .	0.4	0