Lars Chittka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1510719/publications.pdf

Version: 2024-02-01

266	23,316	77 h-index	139
papers	citations		g-index
371 all docs	371 does citations	371 times ranked	12983 citing authors

#	Article	IF	CITATIONS
1	Generalization in Pollination Systems, and Why it Matters. Ecology, 1996, 77, 1043-1060.	1.5	1,553
2	THEEVOLUTION OFCOLORVISION ININSECTS. Annual Review of Entomology, 2001, 46, 471-510.	5.7	1,230
3	Flower Constancy, Insect Psychology, and Plant Evolution. Die Naturwissenschaften, 1999, 86, 361-377.	0.6	543
4	Are Bigger Brains Better?. Current Biology, 2009, 19, R995-R1008.	1.8	542
5	The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1992, 170, 533.	0.7	476
6	Speed–accuracy tradeoffs in animal decision making. Trends in Ecology and Evolution, 2009, 24, 400-407.	4.2	473
7	Sensor Capability and Atmospheric Correction in Ocean Colour Remote Sensing. Remote Sensing, 2016, 8, 1.	1.8	463
8	Visual constraints in foraging bumblebees: Flower size and color affect search time and flight behavior. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 3898-3903.	3.3	443
9	Ultraviolet as a component of flower reflections, and the colour perception of hymenoptera. Vision Research, 1994, 34, 1489-1508.	0.7	408
10	Successful invasion of a floral market. Nature, 2001, 411, 653-653.	13.7	403
10	Successful invasion of a floral market. Nature, 2001, 411, 653-653. Recognition of flowers by pollinators. Current Opinion in Plant Biology, 2006, 9, 428-435.	13.7 3.5	403 368
11	Recognition of flowers by pollinators. Current Opinion in Plant Biology, 2006, 9, 428-435. Floral Iridescence, Produced by Diffractive Optics, Acts As a Cue for Animal Pollinators. Science, 2009,	3.5	368
11 12	Recognition of flowers by pollinators. Current Opinion in Plant Biology, 2006, 9, 428-435. Floral Iridescence, Produced by Diffractive Optics, Acts As a Cue for Animal Pollinators. Science, 2009, 323, 130-133.	3.5 6.0	368 345
11 12 13	Recognition of flowers by pollinators. Current Opinion in Plant Biology, 2006, 9, 428-435. Floral Iridescence, Produced by Diffractive Optics, Acts As a Cue for Animal Pollinators. Science, 2009, 323, 130-133. Bees trade off foraging speed for accuracy. Nature, 2003, 424, 388-388. The genomes of two key bumblebee species with primitive eusocial organization. Genome Biology, 2015,	3.5 6.0 13.7	368 345 341
11 12 13	Recognition of flowers by pollinators. Current Opinion in Plant Biology, 2006, 9, 428-435. Floral Iridescence, Produced by Diffractive Optics, Acts As a Cue for Animal Pollinators. Science, 2009, 323, 130-133. Bees trade off foraging speed for accuracy. Nature, 2003, 424, 388-388. The genomes of two key bumblebee species with primitive eusocial organization. Genome Biology, 2015, 16, 76. Social Learning in Insects â€" From Miniature Brains to Consensus Building, Current Biology, 2007, 17,	3.5 6.0 13.7 3.8	368 345 341 330
11 12 13 14	Recognition of flowers by pollinators. Current Opinion in Plant Biology, 2006, 9, 428-435. Floral Iridescence, Produced by Diffractive Optics, Acts As a Cue for Animal Pollinators. Science, 2009, 323, 130-133. Bees trade off foraging speed for accuracy. Nature, 2003, 424, 388-388. The genomes of two key bumblebee species with primitive eusocial organization. Genome Biology, 2015, 16, 76. Social Learning in Insects â€" From Miniature Brains to Consensus Building. Current Biology, 2007, 17, R703-R713. The evolutionary adaptation of flower colours and the insect pollinators' colour vision. Journal of	3.5 6.0 13.7 3.8	368 345 341 330

#	Article	IF	Citations
19	The correlation of learning speed and natural foraging success in bumble-bees. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 803-808.	1.2	272
20	Foraging dynamics of bumble bees: correlates of movements within and between plant species. Behavioral Ecology, 1997, 8, 239-249.	1.0	224
21	Fine colour discrimination requires differential conditioning in bumblebees. Die Naturwissenschaften, 2004, 91, 224-227.	0.6	215
22	WHY RED FLOWERS ARE NOT INVISIBLE TO BEES. Israel Journal of Plant Sciences, 1997, 45, 169-183.	0.3	199
23	Biological significance of distinguishing between similar colours in spectrally variable illumination: bumblebees (Bombus terrestris) as a case study. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2004, 190, 105-114.	0.7	195
24	Interindividual variation of eye optics and single object resolution in bumblebees. Journal of Experimental Biology, 2003, 206, 3447-3453.	0.8	194
25	Can honey bees count landmarks?. Animal Behaviour, 1995, 49, 159-164.	0.8	193
26	The Adaptive Significance of Sensory Bias in a Foraging Context: Floral Colour Preferences in the Bumblebee Bombus terrestris. PLoS ONE, 2007, 2, e556.	1.1	186
27	Visual ecology of aphids—a critical review on the role of colours in host finding. Arthropod-Plant Interactions, 2007, 1, 3-16.	0.5	184
28	Crab-spiders manipulate flower signals. Nature, 2003, 421, 334-334.	13.7	180
29	Colour choices of naive bumble bees and their implications for colour perception. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1996, 178, 477.	0.7	174
30	Bees associate warmth with floral colour. Nature, 2006, 442, 525-525.	13.7	170
31	Honeybee (Apis mellifera) vision can discriminate between and recognise images of human faces. Journal of Experimental Biology, 2005, 208, 4709-4714.	0.8	169
32	Conical Epidermal Cells Allow Bees to Grip Flowers and Increase Foraging Efficiency. Current Biology, 2009, 19, 948-953.	1.8	169
33	Associative Mechanisms Allow for Social Learning and Cultural Transmission of String Pulling in an Insect. PLoS Biology, 2016, 14, e1002564.	2.6	166
34	Why do honey bees dance?. Behavioral Ecology and Sociobiology, 2004, 55, 395-401.	0.6	163
35	Learning by Observation Emerges from Simple Associations in an Insect Model. Current Biology, 2013, 23, 727-730.	1.8	163
36	Evolutionary origins of bee dances. Nature, 1999, 401, 38-38.	13.7	158

#	Article	IF	CITATIONS
37	Speed-Accuracy Tradeoffs and False Alarms in Bee Responses to Cryptic Predators. Current Biology, 2008, 18, 1520-1524.	1.8	153
38	Why are there so many and so few white flowers?. Trends in Plant Science, 1996, 1, 252.	4.3	147
39	Why do so many petals have conical epidermal cells?. Annals of Botany, 2011, 108, 609-616.	1.4	147
40	Does bee color vision predate the evolution of flower color?. Die Naturwissenschaften, 1996, 83, 136-138.	0.6	146
41	Bumblebees show cognitive flexibility by improving on an observed complex behavior. Science, 2017, 355, 833-836.	6.0	145
42	Bees travel novel homeward routes by integrating separately acquired vector memories. Animal Behaviour, 1998, 55, 139-152.	0.8	136
43	Sensori-motor learning and its relevance for task specialization in bumble bees. Behavioral Ecology and Sociobiology, 1997, 41, 385-398.	0.6	131
44	Benefits of recruitment in honey bees: effects of ecology and colony size in an individual-based model. Behavioral Ecology, 2006, 17, 336-344.	1.0	128
45	Radar Tracking and Motion-Sensitive Cameras on Flowers Reveal the Development of Pollinator Multi-Destination Routes over Large Spatial Scales. PLoS Biology, 2012, 10, e1001392.	2.6	127
46	Opponent colour coding is a universal strategy to evaluate the photoreceptor inputs in Hymenoptera. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1992, 170, 545-63.	0.7	124
47	Limits to the salience of ultraviolet: lessons from colour vision in bees and birds. Journal of Experimental Biology, 2001, 204, 2571-2580.	0.8	124
48	Optimal Sets of Color Receptors and Color Opponent Systems for Coding of Natural Objects in Insect Vision. Journal of Theoretical Biology, 1996, 181, 179-196.	0.8	122
49	Adaptation, constraint, and chance in the evolution of flower color and pollinator color vision. , $2001, 106-126$.		119
50	Food alert in bumblebees (Bombus terrestris): possible mechanisms and evolutionary implications. Behavioral Ecology and Sociobiology, 2001, 50, 570-576.	0.6	118
51	Mutations perturbing petal cell shape and anthocyanin synthesis influence bumblebee perception of Antirrhinum majus flower colour. Arthropod-Plant Interactions, 2007, 1, 45-55.	0.5	116
52	Adaptation, Genetic Drift, Pleiotropy, and History in the Evolution of Bee Foraging Behavior. Advances in the Study of Behavior, 2006, , 305-354.	1.0	114
53	Floral colour diversity in plant communities, bee colour space and a null model. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 1711-1716.	1.2	113
54	Bumblebees (Bombus terrestris) sacrifice foraging speed to solve difficult colour discrimination tasks. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2004, 190, 759-63.	0.7	113

#	Article	IF	Citations
55	Unexpected rewards induce dopamine-dependent positive emotion–like state changes in bumblebees. Science, 2016, 353, 1529-1531.	6.0	109
56	The dynamics of social learning in an insect model, the bumblebee (Bombus terrestris). Behavioral Ecology and Sociobiology, 2007, 61, 1789-1796.	0.6	108
57	Travel Optimization by Foraging Bumblebees through Readjustments of Traplines after Discovery of New Feeding Locations. American Naturalist, 2010, 176, 744-757.	1.0	108
58	Life-Long Radar Tracking of Bumblebees. PLoS ONE, 2016, 11, e0160333.	1.1	106
59	Can commercially imported bumble bees out-compete their native conspecifics?. Journal of Applied Ecology, 2006, 43, 940-948.	1.9	104
60	Photoreceptor spectral sensitivity in island and mainland populations of the bumblebee, Bombus terrestris. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2007, 193, 485-494.	0.7	100
61	Flower colours along an alpine altitude gradient, seen through the eyes of fly and bee pollinators. Arthropod-Plant Interactions, 2009, 3, 27-43.	0.5	100
62	The influences of landmarks on distance estimation of honey bees. Animal Behaviour, 1995, 50, 23-31.	0.8	98
63	Winter Active Bumblebees (Bombus terrestris) Achieve High Foraging Rates in Urban Britain. PLoS ONE, 2010, 5, e9559.	1.1	97
64	A receiver bias in the origin of three–spined stickleback mate choice. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 949-955.	1,2	96
65	Pollen foraging: learning a complex motor skill by bumblebees (Bombus terrestris). Die Naturwissenschaften, 2007, 94, 459-464.	0.6	96
66	Cognitive Dimensions of Predator Responses to Imperfect Mimicry. PLoS Biology, 2007, 5, e339.	2.6	95
67	An Exploration of the Social Brain Hypothesis in Insects. Frontiers in Physiology, 2012, 3, 442.	1.3	95
68	Colouration in crab spiders: substrate choice and prey attraction. Journal of Experimental Biology, 2005, 208, 1785-1792.	0.8	94
69	A new mode of information transfer in foraging bumblebees?. Current Biology, 2005, 15, R447-R448.	1.8	93
70	A population comparison of the strength and persistence of innate colour preference and learning speed in the bumblebee Bombus terrestris. Behavioral Ecology and Sociobiology, 2009, 63, 1207-1218.	0.6	91
71	BEE COLOR VISION IS OPTIMAL FOR CODING FLOWER COLOR, BUT FLOWER COLORS ARE NOT OPTIMAL FOR BEING CODED—WHY?. Israel Journal of Plant Sciences, 1997, 45, 115-127.	0.3	87
72	Information flow and regulation of foraging activity in bumble bees (Bombus spp.). Apidologie, 2004, 35, 183-192.	0.9	87

#	Article	IF	CITATIONS
73	Limits to the salience of ultraviolet: lessons from colour vision in bees and birds. Journal of Experimental Biology, 2001, 204, 2571-80.	0.8	87
74	Chance and adaptation in the evolution of island bumblebee behaviour. Population Ecology, 2004, 46, 243-251.	0.7	86
75	The interaction of temperature and sucrose concentration on foraging preferences in bumblebees. Die Naturwissenschaften, 2008, 95, 845-850.	0.6	86
76	The knowledge base of bee navigation. Journal of Experimental Biology, 1996, 199, 141-146.	0.8	86
77	FReD: The Floral Reflectance Database â€" A Web Portal for Analyses of Flower Colour. PLoS ONE, 2010, 5, e14287.	1.1	86
78	Blütenstetigkeit und Gedähtnisdynamik bei Hummeln (Hymenoptera: Apidae: Bombus). Entomologia Generalis, 2007, 29, 179-199.	1.1	82
79	Navigation without vision: bumblebee orientation in complete darkness. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 45-50.	1.2	80
80	Do honeybees detect colour targets using serial or parallel visual search?. Journal of Experimental Biology, 2006, 209, 987-993.	0.8	80
81	Variability in Sensory Ecology: Expanding the Bridge Between Physiology and Evolutionary Biology. Quarterly Review of Biology, 2009, 84, 51-74.	0.0	80
82	Camouflage of Predatory Crab Spiders on Flowers and the Colour Perception of Bees (Aranida:) Tj ETQq0 0 0 rgE	BT /Oyerloo	:k 10 Tf 50 38
83	Bumble bees (Bombus terrestris) store both food and information in honeypots. Behavioral Ecology, 2005, 16, 661-666.	1.0	78
84	Social transmission of nectar-robbing behaviour in bumble-bees. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1669-1674.	1.2	78
85	No Trade-Off between Learning Speed and Associative Flexibility in Bumblebees: A Reversal Learning Test with Multiple Colonies. PLoS ONE, 2012, 7, e45096.	1.1	77
86	What is comparable in comparative cognition?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2677-2685.	1.8	75
87	Traplining in bumblebees (Bombus impatiens): a foraging strategy's ontogeny and the importance of spatial reference memory in short-range foraging. Oecologia, 2007, 151, 719-730.	0.9	74
88	Tradeâ€off between travel distance and prioritization of highâ€reward sites in traplining bumblebees. Functional Ecology, 2011, 25, 1284-1292.	1.7	74
89	A Simple Computational Model of the Bee Mushroom Body Can Explain Seemingly Complex Forms of Olfactory Learning and Memory. Current Biology, 2017, 27, 224-230.	1.8	74
90	Underwater image and video dehazing with pure haze region segmentation. Computer Vision and Image Understanding, 2018, 168, 145-156.	3.0	74

#	Article	IF	Citations
91	Bumble-bees learn the value of social cues through experience. Biology Letters, 2009, 5, 310-312.	1.0	71
92	Unterschiede im Lernverhalten zwischen Kolonien einer freilebenden Britischen Hummelpopulation (Hymenoptera: Apidae: Bombus terrestris audax). Entomologia Generalis, 2006, 28, 241-256.	1.1	71
93	Floral scent, olfaction, and scent-driven foraging behavior., 2001,, 83-105.		70
94	Differences in Photoreceptor Processing Speed for Chromatic and Achromatic Vision in the Bumblebee, <i>Bombus terrestris </i> Journal of Neuroscience, 2010, 30, 3896-3903.	1.7	70
95	The frontiers of insect cognition. Current Opinion in Behavioral Sciences, 2017, 16, 111-118.	2.0	70
96	Bumblebees, humble pollinators or assiduous invaders? A population comparison of foraging performance in Bombus terrestris. Oecologia, 2005, 144, 508-516.	0.9	69
97	Distinguishing signals and cues: bumblebees use general footprints to generate adaptive behaviour at flowers and nest. Arthropod-Plant Interactions, 2007, 1, 119-127.	0.5	68
98	How floral odours are learned inside the bumblebee (Bombus terrestris) nest. Die Naturwissenschaften, 2009, 96, 213-219.	0.6	68
99	The significance of landmarks for path integration in homing honeybee foragers. Die Naturwissenschaften, 1995, 82, 341-343.	0.6	67
100	Chemical compounds of the foraging recruitment pheromone in bumblebees. Die Naturwissenschaften, 2005, 92, 371-374.	0.6	67
101	The importance of experience in the interpretation of conspecific chemical signals. Behavioral Ecology and Sociobiology, 2006, 61, 215-220.	0.6	67
102	Learning, specialization, efficiency and task allocation in social insects. Communicative and Integrative Biology, 2009, 2, 151-154.	0.6	66
103	Photoreceptor Spectral Sensitivity in the Bumblebee, Bombus impatiens (Hymenoptera: Apidae). PLoS ONE, 2010, 5, e12049.	1.1	66
104	Perception Spaceâ€"The Final Frontier. PLoS Biology, 2005, 3, e137.	2.6	65
105	Honeybee vision and floral displays:from detection to close-up recognition., 2001,, 61-82.		64
106	Bee cognition. Current Biology, 2017, 27, R1049-R1053.	1.8	63
107	Colony nutritional status modulates worker responses to foraging recruitment pheromone in the bumblebee Bombus terrestris. Behavioral Ecology and Sociobiology, 2008, 62, 1919-1926.	0.6	62
108	Behavioural evidence for self-medication in bumblebees?. F1000Research, 2015, 4, 73.	0.8	62

#	Article	IF	CITATIONS
109	The role of UV in crab spider signals: effects on perception by prey and predators. Journal of Experimental Biology, 2005, 208, 3925-3931.	0.8	60
110	Facultative use of the repellent scent mark in foraging bumblebees: complex versus simple flowers. Animal Behaviour, 2006, 71, 847-854.	0.8	60
111	Mechanisms of social learning across species boundaries. Journal of Zoology, 2013, 290, 1-11.	0.8	60
112	Conspecific and Heterospecific Information Use in Bumblebees. PLoS ONE, 2012, 7, e31444.	1.1	60
113	Are Autumn Foliage Colors Red Signals to Aphids?. PLoS Biology, 2007, 5, e187.	2.6	59
114	Animal Behaviour: Emotion inÂlnvertebrates?. Current Biology, 2011, 21, R463-R465.	1.8	59
115	What is cognition?. Current Biology, 2019, 29, R608-R615.	1.8	58
116	Bumblebee foraging rhythms under the midnight sun measured with radiofrequency identification. BMC Biology, 2010, 8, 93.	1.7	57
117	Caste―and pesticideâ€specific effects of neonicotinoid pesticide exposure on gene expression in bumblebees. Molecular Ecology, 2019, 28, 1964-1974.	2.0	55
118	Bees do not use nearest-neighbour rules for optimization of multi-location routes. Biology Letters, 2012, 8, 13-16.	1.0	54
119	Convergent evolution of floral signals underlies the success of Neotropical orchids. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130960.	1.2	54
120	Seeing the light: Illumination as a contextual cue to color choice behavior in bumblebees. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3852-3856.	3.3	52
121	Social Learning: Ants and the Meaning of Teaching. Current Biology, 2006, 16, R323-R325.	1.8	52
122	Predator crypsis enhances behaviourally mediated indirect effects on plants by altering bumblebee foraging preferences. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2031-2036.	1.2	51
123	Nicotine in floral nectar pharmacologically influences bumblebee learning of floral features. Scientific Reports, 2017, 7, 1951.	1.6	51
124	Bumblebees distinguish floral scent patterns, and can transfer these to corresponding visual patterns. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180661.	1.2	51
125	Bumble bees display cross-modal object recognition between visual and tactile senses. Science, 2020, 367, 910-912.	6.0	50
126	Bumblebee search time without ultraviolet light. Journal of Experimental Biology, 2004, 207, 1683-1688.	0.8	49

#	Article	IF	Citations
127	A possible structural correlate of learning performance on a colour discrimination task in the brain of the bumblebee. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171323.	1.2	49
128	The effects of floral design and display on pollinator economics and pollen dispersal., 2001,, 297-317.		48
129	Bumble bees alert to food with pheromone from tergal gland. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2003, 189, 47-51.	0.7	48
130	Is colour cognitive?. Optics and Laser Technology, 2011, 43, 251-260.	2.2	48
131	Behavioral and neural mechanisms of learning and memory as determinants of flower constancy. , 2001, , 21-40.		47
132	Visual search and the importance of time in complex decision making by bees. Arthropod-Plant Interactions, 2007, 1, 37-44.	0.5	47
133	Continuous Radar Tracking Illustrates the Development of Multi-destination Routes of Bumblebees. Scientific Reports, 2017, 7, 17323.	1.6	47
134	Analysis of Pollen and Nectar of <l>Arbutus unedo</l> as a Food Source for <l>Bombus terrestris</l> (Hymenoptera: Apidae). Journal of Economic Entomology, 2005, 98, 656-663.	0.8	46
135	Copy-when-uncertain: bumblebees rely on social information when rewards are highly variable. Biology Letters, 2016, 12, 20160188.	1.0	46
136	The effect of variation among floral traits on the flower constancy of pollinators. , 2001, , 1-20.		45
137	Breaking Haller's Rule: Brain-Body Size Isometry in a Minute Parasitic Wasp. Brain, Behavior and Evolution, 2013, 81, 86-92.	0.9	45
138	A Simple Iterative Model Accurately Captures Complex Trapline Formation by Bumblebees Across Spatial Scales and Flower Arrangements. PLoS Computational Biology, 2013, 9, e1002938.	1.5	43
139	Flower Iridescence Increases Object Detection in the Insect Visual System without Compromising Object Identity. Current Biology, 2016, 26, 802-808.	1.8	43
140	Counting insects. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160513.	1.8	43
141	Weak and contradictory effects of self-medication with nectar nicotine by parasitized bumblebees. F1000Research, 2015, 4, 73.	0.8	42
142	Bees use three-dimensional information to improve target detection. Die Naturwissenschaften, 2010, 97, 229-233.	0.6	41
143	Animal Cognition: Concepts from Apes to Bees. Current Biology, 2011, 21, R116-R119.	1.8	41
144	Information processing in miniature brains. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 885-888.	1.2	41

#	Article	IF	CITATIONS
145	Colour constancy in insects. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2014, 200, 435-448.	0.7	41
146	The effect of polyploidy and hybridization on the evolution of floral colour in <i>Nicotiana</i> (Solanaceae). Annals of Botany, 2015, 115, 1117-1131.	1.4	41
147	Insect Bio-inspired Neural Network Provides New Evidence on How Simple Feature Detectors Can Enable Complex Visual Generalization and Stimulus Location Invariance in the Miniature Brain of Honeybees. PLoS Computational Biology, 2017, 13, e1005333.	1.5	40
148	Social Learning: Public Information in Insects. Current Biology, 2005, 15, R869-R871.	1.8	39
149	Bird pollination of Canary Island endemic plants. Die Naturwissenschaften, 2009, 96, 221-232.	0.6	39
150	Circadian Foraging Rhythms of Bumblebees Monitored by Radio-frequency Identification. Journal of Biological Rhythms, 2010, 25, 257-267.	1.4	39
151	Speed–accuracy trade-offs and individually consistent decision making by individuals and dyads of zebrafish in a colour discrimination task. Animal Behaviour, 2015, 103, 277-283.	0.8	38
152	Dominance of Celestial Cues over Landmarks Disproves Map-Like Orientation in Honey Bees. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1990, 45, 723-726.	0.6	37
153	Epigenetics of Royalty. PLoS Biology, 2010, 8, e1000532.	2.6	36
154	The influence of past experience with flower reward quality on social learning in bumblebees. Animal Behaviour, 2015, 101, 11-18.	0.8	36
155	Local enhancement or stimulus enhancement? Bumblebee social learning results in a specific pattern of flower preference. Animal Behaviour, 2014, 97, 185-191.	0.8	35
156	Différences Interindividuelles en termes d'Apprentissage des Couleurs, Formes et Odeurs chez le Bourdon (Hymenoptera: Apidae: Bombus terrestris). Entomologia Generalis, 2012, 34, 1-8.	1.1	35
157	Bumblebee social learning can lead to suboptimal foraging choices. Animal Behaviour, 2018, 135, 209-214.	0.8	34
158	Gut microbiome drives individual memory variation in bumblebees. Nature Communications, 2021, 12, 6588.	5.8	34
159	The spectral input to honeybee visual odometry. Journal of Experimental Biology, 2003, 206, 2393-2397.	0.8	33
160	Bumblebees ($\langle i \rangle$ Bombus terrestris $\langle i \rangle$) use social information as an indicator of safety in dangerous environments. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133174.	1.2	33
161	Vergleich der Blþtenstetigkeit und Sammelleistung von drei Hummel-Arten (Hymenoptera: Apidae:) Tj ETQq1 1	. 0.784314 1.1	1 rgBT /Overl
162	A failed invasion? Commercially introduced pollinators in Southern France. Apidologie, 2010, 41, 1-13.	0.9	32

#	Article	IF	Citations
163	Spatiotemporal Dynamics of Bumblebees Foraging under Predation Risk. Physical Review Letters, 2012, 108, 098103.	2.9	32
164	Can bees simultaneously engage in adaptive foraging behaviour andÂattend to cryptic predators?. Animal Behaviour, 2013, 86, 859-866.	0.8	32
165	Speed and accuracy in nest-mate recognition: a hover wasp prioritizes face recognition over colony odour cues to minimize intrusion by outsiders. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142750.	1.2	32
166	Behavioural evidence for self-medication in bumblebees?. F1000Research, 0, 4, 73.	0.8	32
167	Pollinator behavior and plant speciation: looking beyond the "ethological isolation―paradigm. , 2001, , 318-336.		31
168	Animal Personalities: The Advantage of Diversity. Current Biology, 2008, 18, R961-R963.	1.8	31
169	Harmonic radar tracking reveals random dispersal pattern of bumblebee (Bombus terrestris) queens after hibernation. Scientific Reports, 2019, 9, 4651.	1.6	31
170	Insect-Inspired Sequential Inspection Strategy Enables an Artificial Network of Four Neurons to Estimate Numerosity. IScience, 2019, 11, 85-92.	1.9	31
171	Observational Conditioning in Flower Choice Copying by Bumblebees (Bombus terrestris): Influence of Observer Distance and Demonstrator Movement. PLoS ONE, 2014, 9, e88415.	1.1	31
172	Honeybee Longâ€distance Orientation in a Controlled Environment. Ethology, 1995, 99, 117-126.	0.5	30
173	Determining the Contribution of Epidermal Cell Shape to Petal Wettability Using Isogenic Antirrhinum Lines. PLoS ONE, 2011, 6, e17576.	1.1	30
174	Unravelling the mechanisms of trapline foraging in bees. Communicative and Integrative Biology, 2013, 6, e22701.	0.6	30
175	Associative visual learning by tethered bees in a controlled visual environment. Scientific Reports, 2017, 7, 12903.	1.6	30
176	Partnerwahl-PrÃferenzen bei der kommerziell importierten Hummel-Art Bombus terrestris in Großbritannien (Hymenoptera: Apidae). Entomologia Generalis, 2005, 28, 233-238.	1.1	30
177	Pollinator individuality: when does it matter?. , 2001, , 191-213.		29
178	The promise of genomics in the study of plant-pollinator interactions. Genome Biology, 2013, 14, 207.	3.8	29
179	Subjective evaluation and choice behavior by nectar-and pollen-collecting bees., 2001,, 41-60.		28
180	â€~Personality' in bumblebees: individual consistency in responses to novel colours?. Animal Behaviour, 2010, 80, 1065-1074.	0.8	28

#	Article	IF	Citations
181	Your face looks familiar. Nature, 2012, 481, 154-155.	13.7	28
182	Signatures of a globally optimal searching strategy in the three-dimensional foraging flights of bumblebees. Scientific Reports, 2016, 6, 30401.	1.6	28
183	Do inexperienced bumblebee foragers use scent marks as social information?. Animal Cognition, 2011, 14, 915-919.	0.9	27
184	Epigenetics: The Making of Ant Castes. Current Biology, 2012, 22, R835-R838.	1.8	27
185	Bumblebees Use Sequential Scanning of Countable Items in Visual Patterns to Solve Numerosity Tasks. Integrative and Comparative Biology, 2020, 60, 929-942.	0.9	27
186	Monitoring Flower Visitation Networks and Interactions between Pairs of Bumble Bees in a Large Outdoor Flight Cage. PLoS ONE, 2016, 11, e0150844.	1.1	27
187	Illumination preference, illumination constancy and colour discrimination by bumblebees in an environment with patchy light. Journal of Experimental Biology, 2012, 215, 2173-2180.	0.8	26
188	Colour-independent shape recognition of cryptic predators by bumblebees. Behavioral Ecology and Sociobiology, 2012, 66, 487-496.	0.6	26
189	How foresight might support the behavioral flexibility of arthropods. Current Opinion in Neurobiology, 2019, 54, 171-177.	2.0	26
190	Why Sensory Ecology Needs to Become More Evolutionary â€" Insect Color Vision as a Case in Point. , 2001, , 19-37.		26
191	Cognitive Aspects of Comb-Building in the Honeybee?. Frontiers in Psychology, 2018, 9, 900.	1.1	25
192	Flower color phenology in European grassland and woodland habitats, through the eyes of pollinators. Israel Journal of Plant Sciences, 2009, 57, 211-230.	0.3	24
193	Olfactory learning without the mushroom bodies: Spiking neural network models of the honeybee lateral antennal lobe tract reveal its capacities in odour memory tasks of varied complexities. PLoS Computational Biology, 2017, 13, e1005551.	1.5	22
194	Daily Changes in Ultraviolet Light Levels Can Synchronize the Circadian Clock of Bumblebees (<i>Bombus terrestris</i>). Chronobiology International, 2013, 30, 434-442.	0.9	21
195	Analysing plant–pollinator interactions with spatial movement networks. Ecological Entomology, 2017, 42, 4-17.	1.1	21
196	Mengen der Nektarerzeugung bei 75 von Hummeln besuchten Blumenarten in einem deutschen Pflanzenbestand (Hymenoptera: Apidae: Bombus terrestris). Entomologia Generalis, 2007, 30, 191-192.	1.1	21
197	Can Bees See at a Glance?. Journal of Experimental Biology, 2014, 217, 1933-9.	0.8	20
198	Evolving understanding of nervous system evolution. Current Biology, 2016, 26, R937-R941.	1.8	20

#	Article	IF	Citations
199	Male bumblebees, Bombus terrestris, perform equally well as workers in a serial colour-learning task. Animal Behaviour, 2016, 111, 147-155.	0.8	20
200	Adaptive learning in non-social insects: from theory to field work, and back. Current Opinion in Insect Science, 2018, 27, 75-81.	2.2	20
201	FReD: The floral reflectance spectra database. Nature Precedings, 0, , .	0.1	19
202	Harmonic radar tracking reveals that honeybee drones navigate between multiple aerial leks. IScience, 2021, 24, 102499.	1.9	19
203	Foraging and spatial learning in hummingbirds. , 2001, , 127-147.		18
204	Animal Cognition: An Insect's Sense of Time?. Current Biology, 2006, 16, R851-R853.	1.8	18
205	High-Speed Videography Reveals How Honeybees Can Turn a Spatial Concept Learning Task Into a Simple Discrimination Task by Stereotyped Flight Movements and Sequential Inspection of Pattern Elements. Frontiers in Psychology, 2018, 9, 1347.	1.1	18
206	Bedazzled by flowers. Nature, 1998, 394, 835-836.	13.7	17
207	Merging of Long-Term Memories in an Insect. Current Biology, 2015, 25, 741-745.	1.8	17
208	Facial patterns in a tropical social wasp correlate with colony membership. Die Naturwissenschaften, 2016, 103, 80.	0.6	17
209	Bumble bees strategically use ground level linear features in navigation. Animal Behaviour, 2021, 179, 147-160.	0.8	17
210	Does Bee Color Vision Predate the Evolution of Flower Color?. Die Naturwissenschaften, 1996, 83, 136-138.	0.6	17
211	Social cognition in insects. Trends in Cognitive Sciences, 2022, 26, 578-592.	4.0	17
212	Bees, White Flowers, and the Color Hexagon - A Reassessment? No, Not Yet. Die Naturwissenschaften, 1999, 86, 595-597.	0.6	16
213	Effects of aposematic coloration on predation risk in bumblebees? A comparison between differently coloured populations, with consideration of the ultraviolet. Journal of Zoology, 2010, 282, 75-83.	0.8	16
214	Bumblebees utilize floral cues differently on vertically and horizontally arranged flowers. Behavioral Ecology, 2015, 26, 773-781.	1.0	16
215	A spatial network analysis of resource partitioning between bumblebees foraging on artificial flowers in a flight cage. Movement Ecology, 2019, 7, 4.	1.3	16
216	The Sign ificance of the Invasive Crucifer Species Bunias orientalis (Brassicaceae) as a Nectar Source for Central European Insects. Entomologia Generalis, 2001, 25, 115-120.	1.1	16

#	Article	IF	CITATIONS
217	Reuse of identified neurons in multiple neural circuits. Behavioral and Brain Sciences, 2010, 33, 285-285.	0.4	15
218	Editorial: The Mechanisms of Insect Cognition. Frontiers in Psychology, 2019, 10, 2751.	1.1	14
219	Dances as Windows into Insect Perception. PLoS Biology, 2004, 2, e216.	2.6	14
220	Do bees like Van Gogh's Sunflowers?. Optics and Laser Technology, 2006, 38, 323-328.	2.2	13
221	Modality-specific attention in foraging bumblebees. Royal Society Open Science, 2015, 2, 150324.	1.1	13
222	Multispectral images of flowers reveal the adaptive significance of using long-wavelength-sensitive receptors for edge detection in bees. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 301-311.	0.7	13
223	Caffeine Boosts Bees' Memories. Science, 2013, 339, 1157-1159.	6.0	12
224	Sheep in wolf's clothing: multicomponent traits enhance the success of mimicry in spider-mimicking moths. Animal Behaviour, 2017, 127, 219-224.	0.8	12
225	Photoreceptor Processing Speed and Input Resistance Changes during Light Adaptation Correlate with Spectral Class in the Bumblebee, Bombus impatiens. PLoS ONE, 2011, 6, e25989.	1.1	12
226	Expanding Consciousness. American Scientist, 2019, 107, 364.	0.1	11
227	Large-scale transcriptome changes in the process of long-term visual memory formation in the bumblebee, Bombus terrestris. Scientific Reports, 2018, 8, 534.	1.6	9
228	Genomic Signatures of Recent Adaptation in a Wild Bumblebee. Molecular Biology and Evolution, 2022, 39, .	3.5	9
229	Bumblebees Express Consistent, but Flexible, Speed-Accuracy Tactics Under Different Levels of Predation Threat. Frontiers in Psychology, 2018, 9, 1601.	1.1	8
230	Honey bees adjust colour preferences in response to concurrent social information from conspecifics and heterospecifics. Animal Behaviour, 2020, 170, 219-228.	0.8	8
231	The biological significance of color constancy: An agent-based model with bees foraging from flowers under varied illumination. Journal of Vision, 2013, 13, 10-10.	0.1	7
232	Color discrimination is not just limited by photoreceptor noise: a comment on Olsson et al Behavioral Ecology, 2018, 29, 285-286.	1.0	7
233	Randomly weighted receptor inputs can explain the large diversity of colour-coding neurons in the bee visual system. Scientific Reports, 2019, 9, 8330.	1.6	7
234	Bumblebees Learn a Relational Rule but Switch to a Win-Stay/Lose-Switch Heuristic After Extensive Training. Frontiers in Behavioral Neuroscience, 2020, 14, 137.	1.0	7

#	Article	IF	Citations
235	Charles H. Turner, pioneer in animal cognition. Science, 2020, 370, 530-531.	6.0	7
236	The Significance of Landmarks for Path Integration in Homing Honeybee Foragers. Die Naturwissenschaften, 1995, 82, 341-343.	0.6	7
237	Alarm substances induce associative social learning in honeybees, Apis mellifera. Animal Behaviour, 2016, 122, 17-22.	0.8	6
238	Animal Behaviour: Conformity and the Beginnings ofÂCulture in an Insect. Current Biology, 2019, 29, R167-R169.	1.8	6
239	Different effects of reward value and saliency during bumblebee visual search for multiple rewarding targets. Animal Cognition, 2021, 24, 803-814.	0.9	6
240	Stigmergy versus behavioral flexibility and planning in honeybee comb construction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2111310118.	3.3	6
241	Strategies of the honeybee Apis mellifera during visual search for vertical targets presented at various heights: a role for spatial attention?. F1000Research, 2014, 3, 174.	0.8	6
242	Potential application of the bumblebee foraging recruitment pheromone for commercial greenhouse pollination. Apidologie, 2009, 40, 608-616.	0.9	5
243	Descending control of nociception in insects?. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	5
244	Animal Cognition: The Self-Image of a Bumblebee. Current Biology, 2021, 31, R207-R209.	1.8	4
245	Influence of Intermittent Rewards in Learning to Handle Flowers in Bumblebees (Hymenoptera: Apidae:) Tj ETQq1	1,0,78431	4 4rgBT /Ove
246	False memory susceptibility is correlated with categorisation ability in humans. F1000Research, 2014, 3, 154.	0.8	4
247	False memory susceptibility is correlated with categorisation ability in humans. F1000Research, 2014, 3, 154.	0.8	4
248	Response to Comment on "Floral Iridescence, Produced by Diffractive Optics, Acts As a Cue for Animal Pollinators― Science, 2009, 325, 1072-1072.	6.0	3
249	The Importance of Spatial Visual Scene Parameters in Predicting Optimal Cone Sensitivities in Routinely Trichromatic Frugivorous Old-World Primates. Frontiers in Computational Neuroscience, 2018, 12, 15.	1.2	3
250	Possible chemical mimicry of the European lady's slipper orchid (Cypripedium calceolus). Contributions To Zoology, 2012, 81, 103-110.	0.2	2
251	Flower colour diversity seen through the eyes of pollinators. A commentary on:  Floral colour structure in two Australian herbaceous communities: it depends on who is looking'. Annals of Botany, 2019, 124, viii-ix.	1.4	2
252	Temporal correlation of elevated PRMT1 gene expression with mushroom body neurogenesis during bumblebee brain development. Journal of Insect Physiology, 2019, 116, 57-69.	0.9	2

#	Article	IF	CITATIONS
253	Honeybees (Apis mellifera)Âexhibit flexible visual search strategies for vertical targets presented at various heights. F1000Research, 0, 3, 174.	0.8	2
254	Discrimination of edge orientation by bumblebees. PLoS ONE, 2022, 17, e0263198.	1.1	2
255	Plants and animals, forever entangled. Trends in Ecology and Evolution, 2003, 18, 12-13.	4.2	1
256	Kein Nachweis fÃ $\frac{1}{4}$ r Hummelbesuch der Kanarischen Vogelblumen (Hymenoptera: Apidae). Entomologia Generalis, 2007, 30, 153-154.	1.1	1
257	Cognitive dimensions of predator responses to imperfect mimicry?. Nature Precedings, 2007, , .	0.1	0
258	Bumblebees gain fitness through learning. Nature Precedings, 2007, , .	0.1	0
259	Bird pollination of Canary Island endemic plants. Nature Precedings, 2008, , .	0.1	0
260	Lars Chittka. Current Biology, 2010, 20, R1006-R1008.	1.8	0
261	Bumblebee colour patterns and predation risk: a reply to Owen (2014). Journal of Zoology, 2014, 292, 133-135.	0.8	0
262	Merging of Long-Term Memories in an Insect. Current Biology, 2015, 25, 970.	1.8	0
263	Editorial overview: Behavioural ecology â€" molecular and neural mechanisms underpinning adaptive behaviour in insects. Current Opinion in Insect Science, 2016, 15, vii-ix.	2.2	0
264	The secret lives of bees as horticulturists?. Science, 2020, 368, 824-825.	6.0	0
265	Central Place Foraging. , 2018, , 1-4.		0
266	Central Place Foraging. , 2022, , 1149-1153.		0