Frank Sainsbury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1510335/publications.pdf

Version: 2024-02-01

59 3,317 28 56
papers citations h-index g-index

73 73 73 3914
all docs docs citations times ranked citing authors

#	Article	lF	CITATIONS
1	pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnology Journal, 2009, 7, 682-693.	8.3	720
2	Bioengineering virusâ€like particles as vaccines. Biotechnology and Bioengineering, 2014, 111, 425-440.	3.3	278
3	Extremely High-Level and Rapid Transient Protein Production in Plants without the Use of Viral Replication. Plant Physiology, 2008, 148, 1212-1218.	4.8	258
4	A Serine Carboxypeptidase-Like Acyltransferase Is Required for Synthesis of Antimicrobial Compounds and Disease Resistance in Oats Â. Plant Cell, 2009, 21, 2473-2484.	6.6	149
5	Biochemical analysis of a multifunctional cytochrome P450 (CYP51) enzyme required for synthesis of antimicrobial triterpenes in plants. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3360-7.	7.1	137
6	Efficient generation of cowpea mosaicvirus empty virus-like particles by the proteolytic processing of precursors in insect cells and plants. Virology, 2009, 393, 329-337.	2.4	119
7	Nanoemulsions in drug delivery: formulation to medical application. Nanomedicine, 2018, 13, 2507-2525.	3.3	109
8	Transient expressions of synthetic biology in plants. Current Opinion in Plant Biology, 2014, 19, 1-7.	7.1	108
9	<i>Cowpea mosaic</i> Virus: The Plant Virus–Based Biotechnology Workhorse. Annual Review of Phytopathology, 2010, 48, 437-455.	7.8	105
10	Expression of multiple proteins using fullâ€length and deleted versions of cowpea mosaic virus RNAâ€2. Plant Biotechnology Journal, 2008, 6, 82-92.	8.3	74
11	Rapid Transient Production in Plants by Replicating and Non-Replicating Vectors Yields High Quality Functional Anti-HIV Antibody. PLoS ONE, 2010, 5, e13976.	2.5	73
12	Cowpea Mosaic Virus Unmodified Empty Viruslike Particles Loaded with Metal and Metal Oxide. Small, 2010, 6, 818-821.	10.0	72
13	A protease activity–depleted environment for heterologous proteins migrating towards the leaf cell apoplast. Plant Biotechnology Journal, 2012, 10, 83-94.	8.3	72
14	Improved foreign gene expression in plants using a virusâ€encoded suppressor of RNA silencing modified to be developmentally harmless. Plant Biotechnology Journal, 2011, 9, 703-712.	8.3	57
15	Protection of Recombinant Mammalian Antibodies from Development-Dependent Proteolysis in Leaves of Nicotiana benthamiana. PLoS ONE, 2013, 8, e70203.	2.5	54
16	Programmable <i>In Vitro</i> Coencapsidation of Guest Proteins for Intracellular Delivery by Virus-like Particles. ACS Nano, 2018, 12, 4615-4623.	14.6	44
17	Protein cages and virus-like particles: from fundamental insight to biomimetic therapeutics. Biomaterials Science, 2020, 8, 2771-2777.	5.4	44
18	Innovation in plant-based transient protein expression for infectious disease prevention and preparedness. Current Opinion in Biotechnology, 2020, 61, 110-115.	6.6	43

#	Article	IF	CITATIONS
19	Developmental reorientation of transverse cortical microtubules to longitudinal directions: a role for actomyosinâ€based streaming and partial microtubuleâ€membrane detachment. Plant Journal, 2008, 56, 116-131.	5.7	40
20	Identification of an E-box motif responsible for the expression of jasmonic acid-induced chitinase gene OsChia4a in rice. Journal of Plant Physiology, 2012, 169, 621-627.	3.5	39
21	Engineering Recombinant Virus-like Nanoparticles from Plants for Cellular Delivery. ACS Nano, 2017, 11, 3476-3484.	14.6	36
22	Peptideâ€Controlled Access to the Interior Surface of Empty Virus Nanoparticles. ChemBioChem, 2011, 12, 2435-2440.	2.6	34
23	Using a Virus-Derived System to Manipulate Plant Natural Product Biosynthetic Pathways. Methods in Enzymology, 2012, 517, 185-202.	1.0	34
24	Tomato cystatin <i><scp>S</scp>l</i> <scp>CYS</scp> 8 as a stabilizing fusion partner for human serpin expression in plants. Plant Biotechnology Journal, 2013, 11, 1058-1068.	8.3	32
25	Modulating secretory pathway pH by proton channel coâ€expression can increase recombinant protein stability in plants. Biotechnology Journal, 2015, 10, 1478-1486.	3.5	32
26	Cowpea Mosaic Virus-Based Systems for the Expression of Antigens and Antibodies in Plants. Methods in Molecular Biology, 2009, 483, 25-39.	0.9	31
27	Genetic Engineering and Characterization of Cowpea Mosaic Virus Empty Virus-Like Particles. Methods in Molecular Biology, 2014, 1108, 139-153.	0.9	31
28	Pore structure controls stability and molecular flux in engineered protein cages. Science Advances, 2022, 8, eabl7346.	10.3	30
29	Expression of active recombinant human gastric lipase in Nicotiana benthamiana using the CPMV-HT transient expression system. Protein Expression and Purification, 2012, 81, 69-74.	1.3	29
30	Towards designer nanoemulsions for precision delivery of therapeutics. Current Opinion in Chemical Engineering, 2014, 4, 11-17.	7.8	29
31	Multimodal Protein Constructs for Herbivore Insect Control. Toxins, 2012, 4, 455-475.	3.4	27
32	Discrimination of Differentially Inhibited Cysteine Proteases by Activity-Based Profiling Using Cystatin Variants with Tailored Specificities. Journal of Proteome Research, 2012, 11, 5983-5993.	3.7	27
33	Leaf proteome rebalancing in <i>Nicotiana benthamiana</i> for upstream enrichment of a transiently expressed recombinant protein. Plant Biotechnology Journal, 2015, 13, 1169-1179.	8.3	26
34	Virus-Derived Vectors for the Expression of Multiple Proteins in Plants. Methods in Molecular Biology, 2016, 1385, 39-54.	0.9	26
35	Artificial Self-assembling Nanocompartment for Organizing Metabolic Pathways in Yeast. ACS Synthetic Biology, 2021, 10, 3251-3263.	3.8	25
36	Beneficial â€~unintended effects' of a cereal cystatin in transgenic lines of potato, Solanum tuberosum. BMC Plant Biology, 2012, 12, 198.	3.6	24

#	Article	IF	CITATIONS
37	Positive selection of digestive Cys proteases in herbivorous Coleoptera. Insect Biochemistry and Molecular Biology, 2015, 65, 10-19.	2.7	20
38	Using elongated microparticles to enhance tailorable nanoemulsion delivery in excised human skin and volunteers. Journal of Controlled Release, 2018, 288, 264-276.	9.9	20
39	Droplet shape control using microfluidics and designer biosurfactants. Journal of Colloid and Interface Science, 2021, 584, 528-538.	9.4	20
40	A Chimeric Affinity Tag for Efficient Expression and Chromatographic Purification of Heterologous Proteins from Plants. Frontiers in Plant Science, 2016, 7, 141.	3.6	19
41	Functional proteomics-aided selection of protease inhibitors for herbivore insect control. Scientific Reports, 2016, 6, 38827.	3.3	17
42	Assembly and Purification of Polyomavirus-Like Particles from Plants. Molecular Biotechnology, 2015, 57, 904-913.	2.4	15
43	Recombinant protein susceptibility to proteolysis in the plant cell secretory pathway is <scp>pH</scp> â€dependent. Plant Biotechnology Journal, 2018, 16, 1928-1938.	8.3	15
44	Single substitutions to closely related amino acids contribute to the functional diversification of an insectâ€inducible, positively selected plant cystatin. FEBS Journal, 2016, 283, 1323-1335.	4.7	13
45	A rapid and simple screening method to identify conditions for enhanced stability of modular vaccine candidates. Biochemical Engineering Journal, 2015, 100, 50-58.	3.6	12
46	Companion Protease Inhibitors for the In Situ Protection of Recombinant Proteins in Plants. Methods in Molecular Biology, 2016, 1385, 115-126.	0.9	12
47	Insights into the interfacial structure–function of poly(ethylene glycol)-decorated peptide-stabilised nanoscale emulsions. Soft Matter, 2017, 13, 7953-7961.	2.7	11
48	Virus-like nanoparticles: emerging tools for targeted cancer diagnostics and therapeutics. Therapeutic Delivery, 2017, 8, 1019-1021.	2.2	11
49	The structure of a plant-specific partitivirus capsid reveals a unique coat protein domain architecture with an intrinsically disordered protrusion. Communications Biology, 2021, 4, 1155.	4.4	11
50	Design and production of a novel antimicrobial fusion protein in Escherichia coli. Applied Microbiology and Biotechnology, 2018, 102, 8763-8772.	3.6	10
51	Insert engineering and solubility screening improves recovery of virusâ€like particle subunits displaying hydrophobic epitopes. Protein Science, 2015, 24, 1820-1828.	7.6	8
52	Virus-Derived Nanoparticles. Methods in Molecular Biology, 2020, 2073, 149-162.	0.9	7
53	Emergence by Design in Self-Assembling Protein Shells. ACS Nano, 2020, 14, 2565-2568.	14.6	5
54	Impact of Site-Specific Bioconjugation on the Interfacial Activity of a Protein Biosurfactant. Langmuir, 2019, 35, 13588-13594.	3. 5	4

#	Article	IF	Citations
55	Particle-Stabilized Fluid-Fluid Interfaces: The Impact of Core Composition on Interfacial Structure. Frontiers in Chemistry, 2018, 6, 383.	3.6	3
56	A crispa null mutant facilitates identification of a crispa-like pseudogene in pea. Functional Plant Biology, 2006, 33, 757.	2.1	3
57	pH Gradient Mitigation in the Leaf Cell Secretory Pathway Attenuates the Defense Response of <i>Nicotiana benthamiana</i> to Agroinfiltration. Journal of Proteome Research, 2020, 19, 106-118.	3.7	2
58	Templating core–shell particles using metal ion-chelating biosurfactants. Particuology, 2022, 64, 145-152.	3.6	2
59	Cystatin Activity–Based Protease Profiling to Select Protease Inhibitors Useful in Plant Protection. Methods in Molecular Biology, 2020, 2139, 353-366.	0.9	1