
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1509907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure and Function of HIV-1 Reverse Transcriptase: Molecular Mechanisms of Polymerization and Inhibition. Journal of Molecular Biology, 2009, 385, 693-713.	4.2	426
2	Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA. EMBO Journal, 2001, 20, 1449-1461.	7.8	388
3	Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody fab fragment at 2.8 A resolution. Journal of Molecular Biology, 1998, 284, 1095-1111.	4.2	317
4	Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis, 2005, 182, 1-15.	0.8	302
5	X-ray crystal structures of native HIV-1 capsid protein reveal conformational variability. Science, 2015, 349, 99-103.	12.6	212
6	Structures of HIV-1 reverse transcriptase with pre- and post-translocation AZTMP-terminated DNA. EMBO Journal, 2002, 21, 6614-6624.	7.8	185
7	Capsid-CPSF6 Interaction Licenses Nuclear HIV-1 Trafficking to Sites of Viral DNA Integration. Cell Host and Microbe, 2018, 24, 392-404.e8.	11.0	141
8	Enhanced hepatitis C virus genome replication and lipid accumulation mediated by inhibition of AMP-activated protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11549-11554.	7.1	126
9	Mechanism of Inhibition of HIV-1 Reverse Transcriptase by 4′-Ethynyl-2-fluoro-2′-deoxyadenosine Triphosphate, a Translocation-defective Reverse Transcriptase Inhibitor. Journal of Biological Chemistry, 2009, 284, 35681-35691.	3.4	117
10	2′-Deoxy-4′-C-ethynyl-2-halo-adenosines active against drug-resistant human immunodeficiency virus type 1 variants. International Journal of Biochemistry and Cell Biology, 2008, 40, 2410-2420.	2.8	114
11	Severe Acute Respiratory Syndrome Coronavirus Replication Inhibitor That Interferes with the Nucleic Acid Unwinding of the Viral Helicase. Antimicrobial Agents and Chemotherapy, 2012, 56, 4718-4728.	3.2	105
12	The Hepatitis B Virus Ribonuclease H Is Sensitive to Inhibitors of the Human Immunodeficiency Virus Ribonuclease H and Integrase Enzymes. PLoS Pathogens, 2013, 9, e1003125.	4.7	96
13	Evaluation of SSYA10-001 as a Replication Inhibitor of Severe Acute Respiratory Syndrome, Mouse Hepatitis, and Middle East Respiratory Syndrome Coronaviruses. Antimicrobial Agents and Chemotherapy, 2014, 58, 4894-4898.	3.2	96
14	HIV-1 replication complexes accumulate in nuclear speckles and integrate into speckle-associated genomic domains. Nature Communications, 2020, 11, 3505.	12.8	93
15	The M184V Mutation Reduces the Selective Excision of Zidovudine 5′-Monophosphate (AZTMP) by the Reverse Transcriptase of Human Immunodeficiency Virus Type 1. Journal of Virology, 2002, 76, 3248-3256.	3.4	85
16	Antiviral drugs specific for coronaviruses in preclinical development. Current Opinion in Virology, 2014, 8, 45-53.	5.4	85
17	Structural and Molecular Determinants of Membrane Binding by the HIV-1 Matrix Protein. Journal of Molecular Biology, 2016, 428, 1637-1655.	4.2	82
18	4′-Ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) Inhibits HIV-1 Reverse Transcriptase with Multiple Mechanisms. Journal of Biological Chemistry, 2014, 289, 24533-24548.	3.4	80

#	Article	IF	CITATIONS
19	Baicalein and Baicalin Inhibit SARS-CoV-2 RNA-Dependent-RNA Polymerase. Microorganisms, 2021, 9, 893.	3.6	80
20	Trapping HIV-1 Reverse Transcriptase Before and After Translocation on DNA. Journal of Biological Chemistry, 2003, 278, 16280-16288.	3.4	79
21	LOX-1 scavenger receptor mediates calcium-dependent recognition of phosphatidylserine and apoptotic cells. Biochemical Journal, 2006, 393, 107-115.	3.7	77
22	4′-Ethynyl-2-fluoro-2′-deoxyadenosine, MK-8591. Current Opinion in HIV and AIDS, 2018, 13, 294-299.	3.8	76
23	Structural basis of HIV inhibition by translocation-defective RT inhibitor 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA). Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9274-9279.	7.1	73
24	Oral Administration of the Nucleoside EFdA (4′-Ethynyl-2-Fluoro-2′-Deoxyadenosine) Provides Rapid Suppression of HIV Viremia in Humanized Mice and Favorable Pharmacokinetic Properties in Mice and the Rhesus Macaque. Antimicrobial Agents and Chemotherapy, 2015, 59, 4190-4198.	3.2	70
25	Global Rescue of Defects in HIV-1 Envelope Glycoprotein Incorporation: Implications for Matrix Structure. PLoS Pathogens, 2013, 9, e1003739.	4.7	67
26	Biochemical evidence of a role for matrix trimerization in HIV-1 envelope glycoprotein incorporation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E182-90.	7.1	65
27	The role of matrix in HIV-1 envelope glycoprotein incorporation. Trends in Microbiology, 2014, 22, 372-378.	7.7	60
28	Biochemical Mechanism of HIV-1 Resistance to Rilpivirine. Journal of Biological Chemistry, 2012, 287, 38110-38123.	3.4	59
29	Design, Synthesis, and Biological Evaluations of Hydroxypyridonecarboxylic Acids as Inhibitors of HIV Reverse Transcriptase Associated RNase H. Journal of Medicinal Chemistry, 2016, 59, 5051-5062.	6.4	54
30	Mutation of Amino Acids in the Connection Domain of Human Immunodeficiency Virus Type 1 Reverse Transcriptase That Contact the Template-Primer Affects RNase H Activity. Journal of Virology, 2003, 77, 8548-8554.	3.4	52
31	Hepatitis C Virus-Induced Autophagy Is Independent of the Unfolded Protein Response. Journal of Virology, 2012, 86, 10724-10732.	3.4	51
32	Response of Simian Immunodeficiency Virus to the Novel Nucleoside Reverse Transcriptase Inhibitor 4′-Ethynyl-2-Fluoro-2′-Deoxyadenosine <i>In Vitro</i> and <i>In Vivo</i> . Antimicrobial Agents and Chemotherapy, 2012, 56, 4707-4712.	3.2	50
33	Multiplex single-cell visualization of nucleic acids and protein during HIV infection. Nature Communications, 2017, 8, 1882.	12.8	50
34	The SMC5/6 complex compacts and silences unintegrated HIV-1 DNA and is antagonized by Vpr. Cell Host and Microbe, 2021, 29, 792-805.e6.	11.0	49
35	Avoiding Drug Resistance in HIV Reverse Transcriptase. Chemical Reviews, 2021, 121, 3271-3296.	47.7	46
36	Designing anti-AIDS drugs targeting the major mechanism of HIV-1 RT resistance to nucleoside analog drugs. International Journal of Biochemistry and Cell Biology, 2004, 36, 1706-1715.	2.8	45

#	Article	IF	CITATIONS
37	4′â€modified nucleoside analogs: Potent inhibitors active against entecavirâ€resistant hepatitis B virus. Hepatology, 2015, 62, 1024-1036.	7.3	43
38	The N348I Mutation at the Connection Subdomain of HIV-1 Reverse Transcriptase Decreases Binding to Nevirapine. Journal of Biological Chemistry, 2010, 285, 38700-38709.	3.4	41
39	Antiviral therapies: Focus on hepatitis B reverse transcriptase. International Journal of Biochemistry and Cell Biology, 2012, 44, 1060-1071.	2.8	40
40	3-Hydroxypyrimidine-2,4-dione-5- <i>N</i> -benzylcarboxamides Potently Inhibit HIV-1 Integrase and RNase H. Journal of Medicinal Chemistry, 2016, 59, 6136-6148.	6.4	40
41	The Use of Minimal RNA Toeholds to Trigger the Activation of Multiple Functionalities. Nano Letters, 2016, 16, 1746-1753.	9.1	40
42	3-Hydroxypyrimidine-2,4-diones as Selective Active Site Inhibitors of HIV Reverse Transcriptase-Associated RNase H: Design, Synthesis, and Biochemical Evaluations. Journal of Medicinal Chemistry, 2016, 59, 2648-2659.	6.4	39
43	Double-Winged 3-Hydroxypyrimidine-2,4-diones: Potent and Selective Inhibition against HIV-1 RNase H with Significant Antiviral Activity. Journal of Medicinal Chemistry, 2017, 60, 5045-5056.	6.4	38
44	Small Molecule Inhibitor that Stabilizes the Autoinhibited Conformation of the Oncogenic Tyrosine Phosphatase SHP2. Journal of Medicinal Chemistry, 2019, 62, 1125-1137.	6.4	38
45	The subcellular localization of the hepatitis C virus non-structural protein NS2 is regulated by an ion channel-independent function of the p7 protein. Journal of General Virology, 2011, 92, 819-830.	2.9	38
46	Hypersusceptibility mechanism of Tenofovir-resistant HIV to EFdA. Retrovirology, 2013, 10, 65.	2.0	36
47	Design, synthesis and biological evaluations of N-Hydroxy thienopyrimidine-2,4-diones as inhibitors of HIV reverse transcriptase-associated RNase H. European Journal of Medicinal Chemistry, 2017, 141, 149-161.	5.5	36
48	Effects of Substitutions at the 4′ and 2 Positions on the Bioactivity of 4′-Ethynyl-2-Fluoro-2′-Deoxyadenosine. Antimicrobial Agents and Chemotherapy, 2013, 57, 6254-6264.	3.2	35
49	Small molecule inhibitors block Gas6-inducible TAM activation and tumorigenicity. Scientific Reports, 2017, 7, 43908.	3.3	35
50	Analysis of HIV-1 Matrix-Envelope Cytoplasmic Tail Interactions. Journal of Virology, 2019, 93, .	3.4	34
51	Glycosylated diphyllin as a broad-spectrum antiviral agent against Zika virus. EBioMedicine, 2019, 47, 269-283.	6.1	34
52	Development of a vaginal delivery film containing EFdA, a novel anti-HIV nucleoside reverse transcriptase inhibitor. International Journal of Pharmaceutics, 2014, 461, 203-213.	5.2	33
53	Structural and Inhibition Studies of the RNase H Function of Xenotropic Murine Leukemia Virus-Related Virus Reverse Transcriptase. Antimicrobial Agents and Chemotherapy, 2012, 56, 2048-2061.	3.2	31
54	Long-Acting Anti-HIV Drugs Targeting HIV-1 Reverse Transcriptase and Integrase. Pharmaceuticals, 2019, 12, 62.	3.8	30

#	Article	IF	CITATIONS
55	6-Biphenylmethyl-3-hydroxypyrimidine-2,4-diones potently and selectively inhibited HIV reverse transcriptase-associated RNase H. European Journal of Medicinal Chemistry, 2018, 156, 680-691.	5.5	28
56	Drug Resistance in Non-B Subtype HIV-1: Impact of HIV-1 Reverse Transcriptase Inhibitors. Viruses, 2014, 6, 3535-3562.	3.3	27
57	6-Arylthio-3-hydroxypyrimidine-2,4-diones potently inhibited HIV reverse transcriptase-associated RNase H with antiviral activity. European Journal of Medicinal Chemistry, 2018, 156, 652-665.	5.5	27
58	Cutting into the Substrate Dominance: Pharmacophore and Structure-Based Approaches toward Inhibiting Human Immunodeficiency Virus Reverse Transcriptase-Associated Ribonuclease H. Accounts of Chemical Research, 2020, 53, 218-230.	15.6	27
59	Rotten to the core: antivirals targeting the HIV-1 capsid core. Retrovirology, 2021, 18, 41.	2.0	27
60	The Cytoplasmic Tail of Retroviral Envelope Glycoproteins. Progress in Molecular Biology and Translational Science, 2015, 129, 253-284.	1.7	26
61	Feasibility of Known RNA Polymerase Inhibitors as Anti-SARS-CoV-2 Drugs. Pathogens, 2020, 9, 320.	2.8	26
62	Characterisation of the Role of Zinc in the Hepatitis C Virus NS2/3 Auto-cleavage and NS3 Protease Activities. Journal of Molecular Biology, 2007, 366, 1652-1660.	4.2	25
63	SAMHD1 Has Differential Impact on the Efficacies of HIV Nucleoside Reverse Transcriptase Inhibitors. Antimicrobial Agents and Chemotherapy, 2014, 58, 4915-4919.	3.2	25
64	Trimer Enhancement Mutation Effects on HIV-1 Matrix Protein Binding Activities. Journal of Virology, 2016, 90, 5657-5664.	3.4	25
65	Identification using phage display of peptides promoting targeting and internalization into HPV-transformed cell lines. Journal of Molecular Recognition, 2005, 18, 175-182.	2.1	23
66	Mechanism of Interaction of Human Mitochondrial DNA Polymerase γ with the Novel Nucleoside Reverse Transcriptase Inhibitor 4′-Ethynyl-2-Fluoro-2′-Deoxyadenosine Indicates a Low Potential for Host Toxicity. Antimicrobial Agents and Chemotherapy, 2012, 56, 1630-1634.	3.2	23
67	Elucidating the Mechanism by which Compensatory Mutations Rescue an HIV-1 Matrix Mutant Defective for Gag Membrane Targeting and Envelope Glycoprotein Incorporation. Journal of Molecular Biology, 2015, 427, 1413-1427.	4.2	23
68	Synthesis, biological evaluation and molecular modeling of 2-Hydroxyisoquinoline-1,3-dione analogues as inhibitors of HIV reverse transcriptase associated ribonuclease H and polymerase. European Journal of Medicinal Chemistry, 2017, 133, 85-96.	5.5	23
69	HIV-1 Matrix Trimerization-Impaired Mutants Are Rescued by Matrix Substitutions That Enhance Envelope Clycoprotein Incorporation. Journal of Virology, 2019, 94, .	3.4	23
70	Multifunctionality of a Picornavirus Polymerase Domain: Nuclear Localization Signal and Nucleotide Recognition. Journal of Virology, 2015, 89, 6848-6859.	3.4	22
71	Pharmacophore-based design of novel 3-hydroxypyrimidine-2,4-dione subtypes as inhibitors of HIV reverse transcriptase-associated RNase H: Tolerance of a nonflexible linker. European Journal of Medicinal Chemistry, 2019, 166, 390-399.	5.5	22
72	Novel PF74-like small molecules targeting the HIV-1 capsid protein: Balance of potency and metabolic stability. Acta Pharmaceutica Sinica B, 2021, 11, 810-822.	12.0	22

PHILIP TEDBURY

#	Article	IF	CITATIONS
73	Evaluation of Combinations of 4′-Ethynyl-2-Fluoro-2′-Deoxyadenosine with Clinically Used Antiretroviral Drugs. Antimicrobial Agents and Chemotherapy, 2013, 57, 4554-4558.	3.2	21
74	6-Cyclohexylmethyl-3-hydroxypyrimidine-2,4-dione as an inhibitor scaffold of HIV reverase transcriptase: Impacts of the 3-OH on inhibiting RNase H and polymerase. European Journal of Medicinal Chemistry, 2017, 128, 168-179.	5.5	21
75	The Heteroaryldihydropyrimidine Bay 38-7690 Induces Hepatitis B Virus Core Protein Aggregates Associated with Promyelocytic Leukemia Nuclear Bodies in Infected Cells. MSphere, 2018, 3, .	2.9	21
76	Marine Natural Products as Leads against SARS-CoV-2 Infection. Journal of Natural Products, 2022, 85, 657-665.	3.0	21
77	HIV-1 Gag: An Emerging Target for Antiretroviral Therapy. Current Topics in Microbiology and Immunology, 2015, 389, 171-201.	1.1	20
78	Fast Hepatitis C Virus RNA Elimination and NS5A Redistribution by NS5A Inhibitors Studied by a Multiplex Assay Approach. Antimicrobial Agents and Chemotherapy, 2015, 59, 3482-3492.	3.2	20
79	The High Genetic Barrier of EFdA/MK-8591 Stems from Strong Interactions with the Active Site of Drug-Resistant HIV-1 Reverse Transcriptase. Cell Chemical Biology, 2018, 25, 1268-1278.e3.	5.2	20
80	Toward Structurally Novel and Metabolically Stable HIV-1 Capsid-Targeting Small Molecules. Viruses, 2020, 12, 452.	3.3	20
81	Comparison of anti-SARS-CoV-2 activity and intracellular metabolism of remdesivir and its parent nucleoside. Current Research in Pharmacology and Drug Discovery, 2021, 2, 100045.	3.6	20
82	Impact of HIV-1 Integrase L74F and V75I Mutations in a Clinical Isolate on Resistance to Second-Generation Integrase Strand Transfer Inhibitors. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	19
83	3-Hydroxypyrimidine-2,4-Diones as Novel Hepatitis B Virus Antivirals Targeting the Viral Ribonuclease H. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	19
84	Structural Implications of Genotypic Variations in HIV-1 Integrase From Diverse Subtypes. Frontiers in Microbiology, 2018, 9, 1754.	3.5	19
85	A 2-Hydroxyisoquinoline-1,3-Dione Active-Site RNase H Inhibitor Binds in Multiple Modes to HIV-1 Reverse Transcriptase. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	17
86	CMCdG, a Novel Nucleoside Analog with Favorable Safety Features, Exerts Potent Activity against Wild-Type and Entecavir-Resistant Hepatitis B Virus. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	17
87	5-Aminothiophene-2,4-dicarboxamide analogues as hepatitis B virus capsid assembly effectors. European Journal of Medicinal Chemistry, 2019, 164, 179-192.	5.5	17
88	Probing the molecular mechanism of action of the HIV-1 reverse transcriptase inhibitor 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) using pre-steady-state kinetics. Antiviral Research, 2014, 106, 1-4.	4.1	16
89	Chemical profiling of HIV-1 capsid-targeting antiviral PF74. European Journal of Medicinal Chemistry, 2020, 200, 112427.	5.5	16
90	In vitro transport characteristics of EFdA, a novel nucleoside reverse transcriptase inhibitor using Caco-2 and MDCKII cell monolayers. European Journal of Pharmacology, 2014, 732, 86-95.	3.5	15

#	Article	IF	CITATIONS
91	Biochemical, inhibition and inhibitor resistance studies of xenotropic murine leukemia virus-related virus reverse transcriptase. Nucleic Acids Research, 2012, 40, 345-359.	14.5	14
92	Visualization of Positive and Negative Sense Viral RNA for Probing the Mechanism of Direct-Acting Antivirals against Hepatitis C Virus. Viruses, 2019, 11, 1039.	3.3	14
93	Novel HIV-1 capsid-targeting small molecules of the PF74 binding site. European Journal of Medicinal Chemistry, 2020, 204, 112626.	5.5	14
94	Discovery of New Small Molecule Hits as Hepatitis B Virus Capsid Assembly Modulators: Structure and Pharmacophore-Based Approaches. Viruses, 2021, 13, 770.	3.3	14
95	Molecular and Functional Bases of Selection against a Mutation Bias in an RNA Virus. Genome Biology and Evolution, 2017, 9, 1212-1228.	2.5	13
96	Novel Intersubunit Interaction Critical for HIV-1 Core Assembly Defines a Potentially Targetable Inhibitor Binding Pocket. MBio, 2019, 10, .	4.1	13
97	Novel Hepatitis B Virus Capsid-Targeting Antiviral That Aggregates Core Particles and Inhibits Nuclear Entry of Viral Cores. ACS Infectious Diseases, 2019, 5, 750-758.	3.8	13
98	Increased replication capacity following evolution of PYxE insertion in Gagâ€p6 is associated with enhanced virulence in HIVâ€1 subtype C from East Africa. Journal of Medical Virology, 2017, 89, 106-111.	5.0	12
99	Visualization of HIV-1 RNA Transcription from Integrated HIV-1 DNA in Reactivated Latently Infected Cells. Viruses, 2018, 10, 534.	3.3	12
100	Identification of a Structural Element in HIV-1 Gag Required for Virus Particle Assembly and Maturation. MBio, 2018, 9, .	4.1	12
101	Antiretroviral potency of 4′-ethnyl-2′-fluoro-2′-deoxyadenosine, tenofovir alafenamide and second-generation NNRTIs across diverse HIV-1 subtypes. Journal of Antimicrobial Chemotherapy, 2018, 73, 2721-2728.	3.0	12
102	Effect of Pâ€body component Mov10 on HCV virus production and infectivity. FASEB Journal, 2020, 34, 9433-9449.	0.5	11
103	Design, Synthesis and Characterization of HIV-1 CA-Targeting Small Molecules: Conformational Restriction of PF74. Viruses, 2021, 13, 479.	3.3	11
104	Molecular Dynamics Free Energy Simulations Reveal the Mechanism for the Antiviral Resistance of the M66I HIV-1 Capsid Mutation. Viruses, 2021, 13, 920.	3.3	11
105	Effects of Moloney Leukemia Virus 10 Protein on Hepatitis B Virus Infection and Viral Replication. Viruses, 2019, 11, 651.	3.3	10
106	Determinants of Active-Site Inhibitor Interaction with HIV-1 RNase H. ACS Infectious Diseases, 2019, 5, 1963-1974.	3.8	10
107	Development of Human Immunodeficiency Virus Type 1 Resistance to 4′-Ethynyl-2-Fluoro-2′-Deoxyadenosine Starting with Wild-Type or Nucleoside Reverse Transcriptase Inhibitor-Resistant Strains. Antimicrobial Agents and Chemotherapy, 2021, 65, e0116721.	3.2	10
108	Elucidating the Basis for Permissivity of the MT-4 T-Cell Line to Replication of an HIV-1 Mutant Lacking the gp41 Cytoplasmic Tail. Journal of Virology, 2020, 94, .	3.4	9

#	Article	IF	CITATIONS
109	Selection and identification of an RNA aptamer that specifically binds the HIV-1 capsid lattice and inhibits viral replication. Nucleic Acids Research, 2022, 50, 1701-1717.	14.5	9
110	Effect of tRNA on the Maturation of HIV-1 Reverse Transcriptase. Journal of Molecular Biology, 2018, 430, 1891-1900.	4.2	7
111	Conformational Changes in HIV-1 Reverse Transcriptase that Facilitate Its Maturation. Structure, 2019, 27, 1581-1593.e3.	3.3	7
112	7-Deaza-7-fluoro modification confers on 4′-cyano-nucleosides potent activity against entecavir/adefovir-resistant HBV variants and favorable safety. Antiviral Research, 2020, 176, 104744.	4.1	7
113	A comparative analysis of the fluorescence properties of the wild-type and active site mutants of the hepatitis C virus autoprotease NS2-3. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 212-222.	2.3	6
114	Factors influencing the efficacy of rilpivirine in HIV-1 subtype C in low- and middle-income countries. Journal of Antimicrobial Chemotherapy, 2016, 71, 367-371.	3.0	6
115	Strain-specific effect on biphasic DNA binding by HIV-1 integrase. Aids, 2019, 33, 588-592.	2.2	6
116	Specific mutations in the HIV-1 G-tract of the 3′-polypurine tract cause resistance to integrase strand transfer inhibitors. Journal of Antimicrobial Chemotherapy, 2022, 77, 574-577.	3.0	6
117	Structure-based virtual screening workflow to identify antivirals targeting HIV-1 capsid. Journal of Computer-Aided Molecular Design, 2022, 36, 193-203.	2.9	6
118	Contribution of a Multifunctional Polymerase Region of Foot-and-Mouth Disease Virus to Lethal Mutagenesis. Journal of Virology, 2018, 92, .	3.4	5
119	TRIM5α Restriction of HIV-1-N74D Viruses in Lymphocytes Is Caused by a Loss of Cyclophilin A Protection. Viruses, 2022, 14, 363.	3.3	5
120	Drug Interactions in Lenacapavir-Based Long-Acting Antiviral Combinations. Viruses, 2022, 14, 1202.	3.3	5
121	Exposing HIV's weaknesses. Journal of Biological Chemistry, 2017, 292, 6027-6028.	3.4	3
122	Structural basis of cladeâ€specific HIVâ€1 neutralization by humanized antiâ€V3 monoclonal antibody KDâ€247. FASEB Journal, 2015, 29, 70-80.	0.5	2
123	Single-Cell Multiplexed Fluorescence Imaging to Visualize Viral Nucleic Acids and Proteins and Monitor HIV, HTLV, HBV, HCV, Zika Virus, and Influenza Infection. Journal of Visualized Experiments, 2020, , .	0.3	2
124	RT Slides Home Science, 2008, 322, 1059-1060.	12.6	1
125	Potency and metabolic stability: a molecular hybrid case in the design of novel PF74-like small molecules targeting HIV-1 capsid protein. RSC Medicinal Chemistry, 2021, 12, 2031-2044.	3.9	1

#	Article	IF	CITATIONS
127	Remembering Professor Walter A. Scott. Viruses, 2014, 6, 3873-3874.	3.3	0
128	Structures of Wildâ€Type and AZTâ€Resistant HIVâ€1 Reverse Transcriptase Complexed with AZTppppA Yield Insights into the Nucleotide Excision Mechanism. FASEB Journal, 2007, 21, A640.	0.5	0
129	Virus Assembly. , 2013, , 1-11.		0