Christopher S Walker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1509861/publications.pdf

Version: 2024-02-01

49 papers

2,711 citations

218677 26 h-index 243625 44 g-index

49 all docs 49 docs citations

times ranked

49

3521 citing authors

#	Article	IF	Citations
1	CGRP receptor antagonists for migraine. Are they also AMY (sub) 1 (sub) receptor antagonists?. British Journal of Pharmacology, 2022, 179, 454-459.	5.4	25
2	Beyond CGRP: The calcitonin peptide family as targets for migraine and pain. British Journal of Pharmacology, 2022, 179, 381-399.	5.4	32
3	Pharmacological characterisation of mouse calcitonin and calcitonin receptorâ€ike receptors reveals differences compared with human receptors. British Journal of Pharmacology, 2022, 179, 416-434.	5.4	16
4	Characterisation of agonist signalling profiles and agonistâ€dependent antagonism at PACAPâ€responsive receptors: Implications for drug discovery. British Journal of Pharmacology, 2022, 179, 435-453.	5.4	16
5	Lipidated Calcitonin Gene-Related Peptide (CGRP) Peptide Antagonists Retain CGRP Receptor Activity and Attenuate CGRP Action In Vivo. Frontiers in Pharmacology, 2022, 13, 832589.	3.5	7
6	Calcitonin receptor antibody validation and expression in the rodent brain. Cephalalgia, 2022, 42, 815-826.	3.9	10
7	Atogepant (Qulipta®) for migraine prevention. Trends in Pharmacological Sciences, 2022, 43, 701-702.	8.7	2
8	CGRP and the Calcitonin Receptor are Co-Expressed in Mouse, Rat and Human Trigeminal Ganglia Neurons. Frontiers in Physiology, 2022, 13, .	2.8	13
9	Amylin Analog Pramlintide Induces Migraineâ€ike Attacks in Patients. Annals of Neurology, 2021, 89, 1157-1171.	5.3	58
10	Effect of Adrenomedullin on Migraine-Like Attacks in Patients With Migraine. Neurology, 2021, 96, e2488-e2499.	1.1	29
11	Amylin antibodies frequently display cross-reactivity with CGRP: characterization of eight amylin antibodies. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R697-R703.	1.8	15
12	Calcitonin receptors in GtoPdb v.2021.2. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
13	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G proteinâ€coupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	5.4	337
14	Incorporation of a Nitric Oxide Donating Motif into Novel PC-PLC Inhibitors Provides Enhanced Anti-Proliferative Activity. International Journal of Molecular Sciences, 2021, 22, 11518.	4.1	1
15	Stimulation of Posterior Thalamic Nuclei Induces Photophobic Behavior in Mice. Headache, 2020, 60, 1961-1981.	3.9	13
16	Antagonism of CGRP Signaling by Rimegepant at Two Receptors. Frontiers in Pharmacology, 2020, 11, 1240.	3.5	35
17	Agonist bias and agonistâ€dependent antagonism at corticotrophin releasing factor receptors. Pharmacology Research and Perspectives, 2020, 8, e00595.	2.4	7
18	Identification of Small-Molecule Positive Modulators of Calcitonin-like Receptor-Based Receptors. ACS Pharmacology and Translational Science, 2020, 3, 305-320.	4.9	17

#	Article	IF	CITATIONS
19	Molecular Mechanisms of Class B GPCR Activation: Insights from Adrenomedullin Receptors. ACS Pharmacology and Translational Science, 2020, 3, 246-262.	4.9	28
20	Distinct Patterns of Internalization of Different Calcitonin Gene-Related Peptide Receptors. ACS Pharmacology and Translational Science, 2020, 3, 296-304.	4.9	36
21	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G proteinâ€coupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	5.4	519
22	Molecular studies of CGRP and the CGRP family of peptides in the central nervous system. Cephalalgia, 2019, 39, 403-419.	3.9	54
23	Calcitonin receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	6
24	CGRP receptor antagonist activity of olcegepant depends on the signalling pathway measured. Cephalalgia, 2018, 38, 437-451.	3.9	63
25	Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. British Journal of Pharmacology, 2018, 175, 3-17.	5.4	269
26	Pituitary adenylate cyclaseâ€activating polypeptide receptors in the trigeminovascular system: implications for migraine. British Journal of Pharmacology, 2018, 175, 4109-4120.	5.4	22
27	Molecular Signature for Receptor Engagement in the Metabolic Peptide Hormone Amylin. ACS Pharmacology and Translational Science, 2018, 1, 32-49.	4.9	48
28	Signalling and agonist-selective antagonism at corticotropin-releasing factor receptors. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-1-135.	0.0	0
29	CGRP and its receptors. Headache, 2017, 57, 625-636.	3.9	92
30	CGRP receptor activity in mice with global expression of human receptor activity modifying protein 1. British Journal of Pharmacology, 2017, 174, 1826-1840.	5.4	24
31	Class B GPCR: Receptors and RAMPs., 2017,, 289-305.		O
32	Receptor activity-modifying protein dependent and independent activation mechanisms in the coupling of calcitonin gene-related peptide and adrenomedullin receptors to Gs. Biochemical Pharmacology, 2017, 142, 96-110.	4.4	30
33	Receptor activity-modifying proteins; multifunctional G protein-coupled receptor accessory proteins. Biochemical Society Transactions, 2016, 44, 568-573.	3.4	36
34	Mapping the calcitonin receptor in human brain stem. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R788-R793.	1.8	26
35	Reply to comment on: A second trigeminal <scp>CGRP</scp> receptor: function and expression of the <scp>AMY</scp> 1 receptor. Annals of Clinical and Translational Neurology, 2016, 3, 309-310.	3.7	6
36	A second trigeminal <scp>CGRP</scp> receptor: function and expression of the <scp>AMY</scp> ₁ receptor. Annals of Clinical and Translational Neurology, 2015, 2, 595-608.	3.7	158

#	Article	IF	CITATIONS
37	Renal depletion of <i>myo </i> -inositol is associated with its increased degradation in animal models of metabolic disease. American Journal of Physiology - Renal Physiology, 2015, 309, F755-F763.	2.7	28
38	Structural Basis for Receptor Activity-Modifying Protein-Dependent Selective Peptide Recognition by a G Protein-Coupled Receptor. Molecular Cell, 2015, 58, 1040-1052.	9.7	112
39	Anxiogenic and Stressor Effects of the Hypothalamic Neuropeptide RFRP-3 Are Overcome by the NPFFR Antagonist GJ14. Endocrinology, 2015, 156, 4152-4162.	2.8	49
40	<scp>PACAP</scp> receptor pharmacology and agonist bias: analysis in primary neurons and glia from the trigeminal ganglia and transfected cells. British Journal of Pharmacology, 2014, 171, 1521-1533.	5.4	32
41	Receptor activityâ€modifying proteinâ€dependent effects of mutations in the calcitonin receptorâ€like receptor: implications for adrenomedullin and calcitonin geneâ€related peptide pharmacology. British Journal of Pharmacology, 2014, 171, 772-788.	5.4	32
42	α-Calcitonin gene related peptide (α-CGRP) mediated lipid mobilization in 3T3-L1 adipocytes. Peptides, 2014, 58, 14-19.	2.4	13
43	<scp>CGRP</scp> in the trigeminovascular system: a role for <scp>CGRP</scp> , adrenomedullin and amylin receptors?. British Journal of Pharmacology, 2013, 170, 1293-1307.	5.4	76
44	Pharmacological characterization of rat amylin receptors: implications for the identification of amylin receptor subtypes. British Journal of Pharmacology, 2012, 166, 151-167.	5.4	70
45	Mice Lacking the Neuropeptide α-Calcitonin Gene-Related Peptide Are Protected Against Diet-Induced Obesity. Endocrine Reviews, 2010, 31, 601-602.	20.1	0
46	Mice Lacking the Neuropeptide α-Calcitonin Gene-Related Peptide Are Protected Against Diet-Induced Obesity. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 4078-4079.	3.6	0
47	Mice Lacking the Neuropeptide α-Calcitonin Gene-Related Peptide Are Protected Against Diet-Induced Obesity. Endocrinology, 2010, 151, 4257-4269.	2.8	74
48	Adrenomedullin and calcitonin gene-related peptide receptors in endocrine-related cancers: opportunities and challenges. Endocrine-Related Cancer, 2010, 18, C1-C14.	3.1	54
49	Regulation of signal transduction by calcitonin gene-related peptide receptors. Trends in Pharmacological Sciences, 2010, 31, 476-483.	8.7	121