## Gerrit Groenhof

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1508467/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 2005, 26, 1701-1718.                                                                                                                              | 1.5 | 13,676    |
| 2  | g_membed: Efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. Journal of Computational Chemistry, 2010, 31, 2169-2174.                                               | 1.5 | 355       |
| 3  | Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein.<br>Science, 2016, 352, 725-729.                                                                                        | 6.0 | 348       |
| 4  | Photoactivation of the Photoactive Yellow Protein:Â Why Photon Absorption Triggers a Trans-to-Cis<br>Isomerization of the Chromophore in the Protein. Journal of the American Chemical Society, 2004, 126,<br>4228-4233. | 6.6 | 265       |
| 5  | Quantifying Artifacts in Ewald Simulations of Inhomogeneous Systems with a Net Charge. Journal of<br>Chemical Theory and Computation, 2014, 10, 381-390.                                                                 | 2.3 | 176       |
| 6  | Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser. Nature<br>Methods, 2014, 11, 923-926.                                                                                          | 9.0 | 173       |
| 7  | Ultrafast Deactivation of an Excited Cytosineâ^'Guanine Base Pair in DNA. Journal of the American<br>Chemical Society, 2007, 129, 6812-6819.                                                                             | 6.6 | 164       |
| 8  | Constant pH Molecular Dynamics in Explicit Solvent with λ-Dynamics. Journal of Chemical Theory and<br>Computation, 2011, 7, 1962-1978.                                                                                   | 2.3 | 163       |
| 9  | Ultrafast Deactivation Channel for Thymine Dimerization. Journal of the American Chemical Society, 2007, 129, 10996-10997.                                                                                               | 6.6 | 125       |
| 10 | Multiscale Molecular Dynamics Simulations of Polaritonic Chemistry. Journal of Chemical Theory and Computation, 2017, 13, 4324-4335.                                                                                     | 2.3 | 123       |
| 11 | Light-Induced Structural Changes in a Photosynthetic Reaction Center Caught by Laue Diffraction.<br>Science, 2010, 328, 630-633.                                                                                         | 6.0 | 103       |
| 12 | Tracking Polariton Relaxation with Multiscale Molecular Dynamics Simulations. Journal of Physical<br>Chemistry Letters, 2019, 10, 5476-5483.                                                                             | 2.1 | 100       |
| 13 | Chromophore Protonation State Controls Photoswitching of the Fluoroprotein asFP595. PLoS<br>Computational Biology, 2008, 4, e1000034.                                                                                    | 1.5 | 98        |
| 14 | Photoswitching of the Fluorescent Protein asFP595: Mechanism, Proton Pathways, and Absorption<br>Spectra. Angewandte Chemie - International Edition, 2007, 46, 530-536.                                                  | 7.2 | 95        |
| 15 | Introduction to QM/MM Simulations. Methods in Molecular Biology, 2013, 924, 43-66.                                                                                                                                       | 0.4 | 85        |
| 16 | Arginine52 Controls the Photoisomerization Process in Photoactive Yellow Protein. Journal of the American Chemical Society, 2008, 130, 3250-3251.                                                                        | 6.6 | 80        |
| 17 | The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser. ELife, 2020, 9, .                                                                                                    | 2.8 | 78        |
| 18 | A Unified AMBER-Compatible Molecular Mechanics Force Field for Thiolate-Protected Gold Nanoclusters. Journal of Chemical Theory and Computation, 2016, 12, 1342-1350.                                                    | 2.3 | 76        |

GERRIT GROENHOF

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Hydrogen Bonding Controls Excited-State Decay of the Photoactive Yellow Protein Chromophore.<br>Journal of the American Chemical Society, 2009, 131, 13580-13581.                                                        | 6.6  | 75        |
| 20 | Molecular Basis of the Light-driven Switching of the Photochromic Fluorescent Protein Padron.<br>Journal of Biological Chemistry, 2010, 285, 14603-14609.                                                                | 1.6  | 65        |
| 21 | Molecular Mechanism of ATP Hydrolysis in an ABC Transporter. ACS Central Science, 2018, 4, 1334-1343.                                                                                                                    | 5.3  | 65        |
| 22 | Signal transduction in the photoactive yellow protein. I. Photon absorption and the isomerization of the chromophore. Proteins: Structure, Function and Bioinformatics, 2002, 48, 202-211.                               | 1.5  | 64        |
| 23 | Coherent Light Harvesting through Strong Coupling to Confined Light. Journal of Physical Chemistry<br>Letters, 2018, 9, 4848-4851.                                                                                       | 2.1  | 63        |
| 24 | Constant pH simulations with the coarse-grained MARTINI model — Application to oleic acid aggregates. Canadian Journal of Chemistry, 2013, 91, 839-846.                                                                  | 0.6  | 59        |
| 25 | Thermodynamics of hydronium and hydroxide surface solvation. Chemical Science, 2014, 5, 1745.                                                                                                                            | 3.7  | 56        |
| 26 | Anomalous Surface Diffusion of Protons on Lipid Membranes. Biophysical Journal, 2014, 107, 76-87.                                                                                                                        | 0.2  | 55        |
| 27 | Approximate switching algorithms for trajectory surface hopping. Chemical Physics, 2008, 351, 111-116.                                                                                                                   | 0.9  | 54        |
| 28 | Photochemical reactions in biological systems: probing the effect of the environment by means of hybrid quantum chemistry/molecular mechanics simulations. Physical Chemistry Chemical Physics, 2012, 14, 7912.          | 1.3  | 50        |
| 29 | Multi-scale dynamics simulations of molecular polaritons: The effect of multiple cavity modes on polariton relaxation. Journal of Chemical Physics, 2021, 154, 104112.                                                   | 1.2  | 50        |
| 30 | Acid–Base Properties and Surface Charge Distribution of the Water-Soluble<br>Au <sub>102</sub> ( <i>p</i> MBA) <sub>44</sub> Nanocluster. Journal of Physical Chemistry C, 2016, 120,<br>10041-10050.                    | 1.5  | 47        |
| 31 | Ultrafast structural changes within a photosynthetic reaction centre. Nature, 2021, 589, 310-314.                                                                                                                        | 13.7 | 47        |
| 32 | Auger spectrum of a water molecule after single and double core ionization. Journal of Chemical Physics, 2012, 136, 144304.                                                                                              | 1.2  | 46        |
| 33 | New QM/MM implementation of the DFTB3 method in the gromacs package. Journal of Computational Chemistry, 2015, 36, 1978-1989.                                                                                            | 1.5  | 45        |
| 34 | Exploring fast proton transfer events associated with lateral proton diffusion on the surface of<br>membranes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116,<br>2443-2451. | 3.3  | 45        |
| 35 | Charge-Neutral Constant pH Molecular Dynamics Simulations Using a Parsimonious Proton Buffer.<br>Journal of Chemical Theory and Computation, 2016, 12, 1040-1051.                                                        | 2.3  | 44        |
| 36 | Dynamics of Strongly Coupled Modes between Surface Plasmon Polaritons and Photoactive Molecules: The Effect of the Stokes Shift. ACS Photonics, 2017, 4, 28-37.                                                          | 3.2  | 42        |

GERRIT GROENHOF

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The room temperature crystal structure of a bacterial phytochrome determined by serial femtosecond crystallography. Scientific Reports, 2016, 6, 35279.                                                                                                      | 1.6 | 39        |
| 38 | Promiscuity of Carbonic Anhydrase II. Unexpected Ester Hydrolysis of Carbohydrate-Based Sulfamate<br>Inhibitors. Journal of the American Chemical Society, 2011, 133, 18452-18462.                                                                           | 6.6 | 38        |
| 39 | Explicit proton transfer in classical molecular dynamics simulations. Journal of Computational Chemistry, 2014, 35, 657-671.                                                                                                                                 | 1.5 | 37        |
| 40 | Dynamic Stabilization of the Ligand–Metal Interface in Atomically Precise Gold Nanoclusters<br>Au <sub>68</sub> and Au <sub>144</sub> Protected by <i>meta</i> -Mercaptobenzoic Acid. ACS Nano,<br>2017, 11, 11872-11879.                                    | 7.3 | 37        |
| 41 | Signal transduction in the photoactive yellow protein. II. Proton transfer initiates conformational changes. Proteins: Structure, Function and Bioinformatics, 2002, 48, 212-219.                                                                            | 1.5 | 36        |
| 42 | Hydrogen Bond Fluctuations Control Photochromism in a Reversibly Photoâ€ <del>S</del> witchable Fluorescent<br>Protein. Angewandte Chemie - International Edition, 2016, 55, 576-578.                                                                        | 7.2 | 35        |
| 43 | Controlling the Photoreactivity of the Photoactive Yellow Protein Chromophore by Substituting at the <i>p</i> -Coumaric Acid Group. Journal of Physical Chemistry B, 2011, 115, 7021-7028.                                                                   | 1.2 | 28        |
| 44 | The Lineshape of the Electronic Spectrum of the Green Fluorescent Protein Chromophore, Part II:<br>Solution Phase. ChemPhysChem, 2014, 15, 3246-3257.                                                                                                        | 1.0 | 27        |
| 45 | Accurate Three States Model for Amino Acids with Two Chemically Coupled Titrating Sites in Explicit<br>Solvent Atomistic Constant pH Simulations and p <i>K</i> <sub>a</sub> Calculations. Journal of<br>Chemical Theory and Computation, 2017, 13, 147-160. | 2.3 | 27        |
| 46 | Cationic and Anionic Impact on the Electronic Structure of Liquid Water. Journal of Physical Chemistry Letters, 2017, 8, 3759-3764.                                                                                                                          | 2.1 | 26        |
| 47 | Evaluating nonpolarizable nucleic acid force fields: A systematic comparison of the nucleobases<br>hydration free energies and chloroformâ€toâ€water partition coefficients. Journal of Computational<br>Chemistry, 2012, 33, 2225-2232.                     | 1.5 | 25        |
| 48 | Protonation of the Biliverdin IXα Chromophore in the Red and Far-Red Photoactive States of a<br>Bacteriophytochrome. Journal of Physical Chemistry B, 2019, 123, 2325-2334.                                                                                  | 1.2 | 25        |
| 49 | Combined QM/MM Investigation on the Light-Driven Electron-Induced Repair of the (6–4) Thymine<br>Dimer Catalyzed by DNA Photolyase. Journal of Physical Chemistry B, 2013, 117, 10071-10079.                                                                 | 1.2 | 24        |
| 50 | Effect of molecular Stokes shift on polariton dynamics. Journal of Chemical Physics, 2021, 154, 154303.                                                                                                                                                      | 1.2 | 23        |
| 51 | Control Mechanisms of Photoisomerization in Protonated Schiff Bases. Journal of Physical Chemistry Letters, 2013, 4, 1005-1011.                                                                                                                              | 2.1 | 18        |
| 52 | The Low Barrier Hydrogen Bond in the Photoactive Yellow Protein: A Vacuum Artifact Absent in the Crystal and Solution. Journal of the American Chemical Society, 2016, 138, 16620-16631.                                                                     | 6.6 | 18        |
| 53 | Controlling Exciton Propagation in Organic Crystals through Strong Coupling to Plasmonic<br>Nanoparticle Arrays. ACS Photonics, 2022, 9, 2263-2272.                                                                                                          | 3.2 | 18        |
| 54 | The Lineshape of the Electronic Spectrum of the Green Fluorescent Protein Chromophore, Part I: Gas<br>Phase. ChemPhysChem, 2014, 15, 3236-3245.                                                                                                              | 1.0 | 16        |

GERRIT GROENHOF

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The planar conformation of a strained proline ring: A QM/MM study. Proteins: Structure, Function and Bioinformatics, 2006, 64, 700-710.                                                                      | 1.5 | 15        |
| 56 | Force Distribution Analysis of Mechanochemically Reactive Dimethylcyclobutene. ChemPhysChem, 2013, 14, 2687-2697.                                                                                            | 1.0 | 15        |
| 57 | Weak intermolecular interactions promote blue luminescence of protonated 2,2′-dipyridylamine salts.<br>Journal of Materials Chemistry C, 2014, 2, 8285-8294.                                                 | 2.7 | 14        |
| 58 | Core hole screening and decay rates of double core ionized first row hydrides. Journal of Chemical Physics, 2013, 138, 164304.                                                                               | 1.2 | 13        |
| 59 | Computer Simulations of Photobiological Processes: The Effect of the Protein Environment. Advances in Quantum Chemistry, 2010, , 181-212.                                                                    | 0.4 | 12        |
| 60 | On the use of reduced active space in CASSCF calculations. Computational and Theoretical Chemistry, 2014, 1040-1041, 6-13.                                                                                   | 1.1 | 12        |
| 61 | Inclusion of ionization states of ligands in affinity calculations. Proteins: Structure, Function and<br>Bioinformatics, 2009, 76, 138-150.                                                                  | 1.5 | 10        |
| 62 | Identifying Vibrations that Control Non-adiabatic Relaxation of Polaritons in Strongly Coupled<br>Molecule–Cavity Systems. Journal of Physical Chemistry Letters, 2022, 13, 6259-6267.                       | 2.1 | 10        |
| 63 | Exploring Strategies for Labeling Viruses with Gold Nanoclusters through Non-equilibrium<br>Molecular Dynamics Simulations. Bioconjugate Chemistry, 2017, 28, 2327-2339.                                     | 1.8 | 9         |
| 64 | Steering the excited state dynamics of a photoactive yellow protein chromophore analogue with external electric fields. Computational and Theoretical Chemistry, 2014, 1040-1041, 120-125.                   | 1.1 | 8         |
| 65 | Room temperature crystal structure of the fast switching M159T mutant of the fluorescent protein dronpa. Proteins: Structure, Function and Bioinformatics, 2015, 83, 397-402.                                | 1.5 | 8         |
| 66 | Excitation-Wavelength-Dependent Photocycle Initiation Dynamics Resolve Heterogeneity in the<br>Photoactive Yellow Protein from <i>Halorhodospira halophila</i> . Biochemistry, 2018, 57, 1733-1747.          | 1.2 | 7         |
| 67 | Theory for the stationary polariton response in the presence of vibrations. Physical Review B, 2019, 100, .                                                                                                  | 1.1 | 7         |
| 68 | Covalent and non-covalent coupling of a Au <sub>102</sub> nanocluster with a fluorophore: energy transfer, quenching and intracellular pH sensing. Nanoscale Advances, 2021, 3, 6649-6658.                   | 2.2 | 7         |
| 69 | The Photocycle of Bacteriophytochrome Is Initiated by Counterclockwise Chromophore<br>Isomerization. Journal of Physical Chemistry Letters, 2022, 13, 4538-4542.                                             | 2.1 | 7         |
| 70 | Solving Chemical Problems with a Mixture of Quantumâ€Mechanical and Molecular Mechanics<br>Calculations: Nobel Prize in Chemistry 2013. Angewandte Chemie - International Edition, 2013, 52,<br>12489-12491. | 7.2 | 6         |
| 71 | Observe while it happens: catching photoactive proteins in the act with non-adiabatic molecular dynamics simulations. Current Opinion in Structural Biology, 2020, 61, 106-112.                              | 2.6 | 6         |
| 72 | Photoactive Yellow Protein Chromophore Photoisomerizes around a Single Bond if the Double Bond<br>Is Locked. Journal of Physical Chemistry Letters, 2020, 11, 2177-2181.                                     | 2.1 | 4         |

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | GROMEX: A Scalable and Versatile Fast Multipole Method for Biomolecular Simulation. Lecture Notes in Computational Science and Engineering, 2020, , 517-543.                                                                                                | 0.1 | 2         |
| 74 | From fast light-activated processes in biomolecules to large-scale aggregation of membrane proteins:<br>molecular dynamics simulations at different time and length scales. Chemistry Central Journal, 2009,<br>3, .                                        | 2.6 | 0         |
| 75 | Constant pH Simulations In Explicit Solvent Using The Lambda-Dynamics Approach. Biophysical Journal, 2009, 96, 574a.                                                                                                                                        | 0.2 | 0         |
| 76 | Aluminum Plasmonics: Fabrication and Characterization of Broadly Tunable Plasmonic Surfaces for<br>Plasmon Molecule Strong-Coupling and Fluorescence Enhancement. NATO Science for Peace and<br>Security Series B: Physics and Biophysics, 2018, , 429-430. | 0.2 | 0         |
| 77 | Is ATP Hydrolysis the Power Stroke in ABC Transporters?. Biophysical Journal, 2018, 114, 148a.                                                                                                                                                              | 0.2 | 0         |