
## Evangelia D Chrysina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1508155/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                   | IF          | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 1  | Crystal Structures of Apo- and Holo-bovine α-Lactalbumin at 2.2-à Resolution Reveal an Effect of<br>Calcium on Inter-lobe Interactions. Journal of Biological Chemistry, 2000, 275, 37021-37029.                                                          | 3.4         | 224       |
| 2  | New Inhibitors of Glycogen Phosphorylase as Potential Antidiabetic Agents. Current Medicinal<br>Chemistry, 2008, 15, 2933-2983.                                                                                                                           | 2.4         | 133       |
| 3  | The structure of glycogen phosphorylase b with an alkyldihydropyridine-dicarboxylic acid compound,<br>a novel and potent inhibitor. Structure, 1997, 5, 1413-1425.                                                                                        | 3.3         | 82        |
| 4  | Kinetic and crystallographic studies on 2-(Â-D-glucopyranosyl)-5-methyl-1, 3, 4-oxadiazole,<br>-benzothiazole, and -benzimidazole, inhibitors of muscle glycogen phosphorylase b. Evidence for a new<br>binding site. Protein Science, 2005, 14, 873-888. | 7.6         | 77        |
| 5  | Role of conserved residues in structure and stability: Tryptophans of human serum retinolâ€binding protein, a model for the lipocalin superfamily. Protein Science, 2001, 10, 2301-2316.                                                                  | 7.6         | 72        |
| 6  | Glucose-derived spiro-isoxazolines are anti-hyperglycemic agents against type 2 diabetes through glycogen phosphorylase inhibition. European Journal of Medicinal Chemistry, 2016, 108, 444-454.                                                          | 5.5         | 69        |
| 7  | Binding of N -acetyl-N  ′-β-d -glucopyranosyl urea and N -benzoyl-N  ′-β-d -glucopyranosyl urea to glyc<br>phosphorylase b. FEBS Journal, 2002, 269, 1684-1696.                                                                                           | ogen<br>0.2 | 66        |
| 8  | Amide-1,2,3-triazole bioisosterism: the glycogen phosphorylase case. Tetrahedron: Asymmetry, 2009, 20,<br>733-740.                                                                                                                                        | 1.8         | 61        |
| 9  | Glucose-based spiro-isoxazolines: A new family of potent glycogen phosphorylase inhibitors.<br>Bioorganic and Medicinal Chemistry, 2009, 17, 7368-7380.                                                                                                   | 3.0         | 59        |
| 10 | Metagenomic mining for thermostable esterolytic enzymes uncovers a new family of bacterial esterases. Scientific Reports, 2016, 6, 38886.                                                                                                                 | 3.3         | 53        |
| 11 | High-resolution crystal structures of ribonuclease A complexed with adenylic and uridylic<br>nucleotide inhibitors. Implications for structure-based design of ribonucleolytic inhibitors. Protein<br>Science, 2009, 12, 2559-2574.                       | 7.6         | 49        |
| 12 | Synthesis of variously coupled conjugates of d-glucose, 1,3,4-oxadiazole, and 1,2,3-triazole for inhibition of glycogen phosphorylase. Carbohydrate Research, 2011, 346, 1427-1438.                                                                       | 2.3         | 49        |
| 13 | The binding of β- and γ-cyclodextrins to glycogen phosphorylase b: Kinetic and crystallographic studies.<br>Protein Science, 2003, 12, 1914-1924.                                                                                                         | 7.6         | 48        |
| 14 | Structural Studies on Phospho-CDK2/Cyclin A Bound to Nitrate, a Transition State Analogue:Â<br>Implications for the Protein Kinase Mechanismâ€,‡. Biochemistry, 2002, 41, 7301-7311.                                                                      | 2.5         | 44        |
| 15 | The Prototype of Glycogen Phosphorylase. Mini-Reviews in Medicinal Chemistry, 2010, 10, 1093-1101.                                                                                                                                                        | 2.4         | 42        |
| 16 | The structure of a novel glucuronoyl esterase from <i>Myceliophthora thermophila</i> gives new insights into its role as a potential biocatalyst. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 63-73.                          | 2.5         | 38        |
| 17 | Cubic lyotropic liquid crystals as drug delivery carriers: Physicochemical and morphological studies.<br>International Journal of Pharmaceutics, 2018, 550, 57-70.                                                                                        | 5.2         | 34        |
| 18 | Binding of the potential antitumour agent indirubin-5-sulphonate at the inhibitor site of rabbit muscle<br>glycogen phosphorylase b. FEBS Journal, 2004, 271, 2280-2290.                                                                                  | 0.2         | 33        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                          | IF          | CITATIONS   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| 19 | Efficient Atropodiastereoselective Access to 5,5′â€Bisâ€1,2,3â€triazoles: Studies on 1â€Glucosylated 5â€Halo<br>1,2,3â€Triazoles and Their 5â€Substituted Derivatives as Glycogen Phosphorylase Inhibitors. Chemistry - A<br>European Journal, 2014, 20, 5423-5432.                                                                                              | geno<br>3.3 | 31          |
| 20 | A common â€~aggregationâ€prone' interface possibly participates in the selfâ€assembly of human zona<br>pellucida proteins. FEBS Letters, 2016, 590, 619-630.                                                                                                                                                                                                     | 2.8         | 30          |
| 21 | The binding of β-d-glucopyranosyl-thiosemicarbazone derivatives to glycogen phosphorylase: A new class of inhibitors. Bioorganic and Medicinal Chemistry, 2010, 18, 7911-7922.                                                                                                                                                                                   | 3.0         | 28          |
| 22 | In the Search of Glycogen Phosphorylase Inhibitors: Synthesis of<br>C-D-Glycopyranosylbenzo(hydro)quinones – Inhibition of and Binding to Glycogen Phosphorylase in<br>the Crystal. European Journal of Organic Chemistry, 2007, 2007, 596-606.                                                                                                                  | 2.4         | 27          |
| 23 | Glycogen phosphorylase inhibitors: A free energy perturbation analysis of glucopyranose<br>spirohydantoin analogues. Proteins: Structure, Function and Bioinformatics, 2005, 61, 984-998.<br>Crystallographic and computational studies on                                                                                                                       | 2.6         | 25          |
| 24 | 4â€phenylâ€ <i>N</i> à€(l²â€ <scp>D</scp> â€glucopyranosyl)â€1Hâ€1,2,3â€triazoleâ€1â€acetamide, an inhibito<br>phosphorylase: Comparison with l±â€ <scp>D</scp> â€glucose,<br><i>N</i> à€acetylâ€l²â€ <scp>D</scp> â€glucopyranosylamine and<br><i>N</i> à€benzoylâ€ <i>Nâ€2</i> àêl²â€ <scp>D</scp> â€glucopyranosyl urea binding. Proteins: Structure, Functic | 2.6         | gen<br>25   |
| 25 | Bioinformatics, 2008, 71, 1307-1323.<br>An Nâ€ŧerminal proâ€atrial natriuretic peptide (NTâ€proANP) â€~aggregationâ€prone' segment involved in<br>isolated atrial amyloidosis. FEBS Letters, 2014, 588, 52-57.                                                                                                                                                   | 2.8         | 25          |
| 26 | Crystallographic studies on two bioisosteric analogues, N-acetyl-β-d-glucopyranosylamine and<br>N-trifluoroacetyl-β-d-glucopyranosylamine, potent inhibitors of muscle glycogen phosphorylase.<br>Bioorganic and Medicinal Chemistry, 2006, 14, 181-189.                                                                                                         | 3.0         | 24          |
| 27 | Glucofuranose analogues of hydantocidin. Tetrahedron, 1996, 52, 10721-10736.                                                                                                                                                                                                                                                                                     | 1.9         | 23          |
| 28 | Crystallographic studies on acyl ureas, a new class of glycogen phosphorylase inhibitors, as potential antidiabetic drugs. Protein Science, 2005, 14, 1760-1771.                                                                                                                                                                                                 | 7.6         | 23          |
| 29 | Stimuli-Responsive Lyotropic Liquid Crystalline Nanosystems with Incorporated Poly(2-Dimethylamino) Tj ETQq1 1                                                                                                                                                                                                                                                   | 9.78431     | 4 rgBT /Ove |
| 30 | Crystallographic Studies on α- and β-D-glucopyranosyl Formamide Analogues, Inhibitors of Glycogen<br>Phosphorylase. Biocatalysis and Biotransformation, 2003, 21, 233-242.                                                                                                                                                                                       | 2.0         | 22          |
| 31 | Kinetic and crystallographic studies of glucopyranose spirohydantoin and glucopyranosylamine<br>analogs inhibitors of glycogen phosphorylase. Proteins: Structure, Function and Bioinformatics,<br>2005, 61, 966-983.                                                                                                                                            | 2.6         | 22          |
| 32 | From Structure – Based to Knowledge – Based Drug Design Through X-Ray Protein Crystallography:<br>Sketching Glycogen Phosphorylase Binding Sites. Current Medicinal Chemistry, 2011, 18, 2620-2629.                                                                                                                                                              | 2.4         | 22          |
| 33 | Synthesis of 1,2,3-triazoles from xylosyl and 5-thioxylosyl azides: evaluation of the xylose scaffold<br>for the design of potential glycogen phosphorylase inhibitors. Carbohydrate Research, 2012, 364,<br>28-40.                                                                                                                                              | 2.3         | 22          |
| 34 | XynDZ5: A New Thermostable GH10 Xylanase. Frontiers in Microbiology, 2020, 11, 545.                                                                                                                                                                                                                                                                              | 3.5         | 20          |
| 35 | Crystal structure of rabbit muscle glycogen phosphorylase a in complex with a potential<br>hypoglycaemic drug at 2.0 A resolution. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003,<br>1647, 325-332.                                                                                                                                              | 2.3         | 19          |
| 36 | Binding of β-d-glucopyranosyl bismethoxyphosphoramidate to glycogen phosphorylase b: kinetic and crystallographic studies. Bioorganic and Medicinal Chemistry, 2005, 13, 765-772.                                                                                                                                                                                | 3.0         | 16          |

Evangelia D Chrysina

| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Synthesis of new glycosyl biuret and urea derivatives as potential glycoenzyme inhibitors.<br>Carbohydrate Research, 2010, 345, 208-213.                                                                                                                                     | 2.3 | 15        |
| 38 | The crystal structure of a <i>FusariumÂoxysporum</i> feruloyl esterase that belongs to the tannase family. FEBS Letters, 2020, 594, 1738-1749.                                                                                                                               | 2.8 | 15        |
| 39 | EstDZ3: A New Esterolytic Enzyme Exhibiting Remarkable Thermostability. Frontiers in Microbiology, 2016, 7, 1779.                                                                                                                                                            | 3.5 | 14        |
| 40 | Binding of oxalyl derivatives of β-d-glucopyranosylamine to muscle glycogen phosphorylase b.<br>Bioorganic and Medicinal Chemistry, 2006, 14, 3872-3882.                                                                                                                     | 3.0 | 13        |
| 41 | N-(4-Substituted-benzoyl)-N′-(β-d-glucopyranosyl)ureas as inhibitors of glycogen phosphorylase:<br>Synthesis and evaluation by kinetic, crystallographic, and molecular modelling methods. Bioorganic<br>and Medicinal Chemistry, 2012, 20, 1801-1816.                       | 3.0 | 13        |
| 42 | The structure of a GH10 xylanase from <i>Fusarium oxysporum</i> reveals the presence of an extended loop on top of the catalytic cleft. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 735-742.                                                     | 2.5 | 12        |
| 43 | A New Potent Inhibitor of Glycogen Phosphorylase Reveals the Basicity of the Catalytic Site. Chemistry<br>- A European Journal, 2017, 23, 8800-8805.                                                                                                                         | 3.3 | 11        |
| 44 | Crystallographic studies on N-azidoacetyl-β-d-glucopyranosylamine, an inhibitor of glycogen<br>phosphorylase: Comparison with N-acetyl-β-d-glucopyranosylamine. Bioorganic and Medicinal<br>Chemistry, 2006, 14, 5316-5324.                                                  | 3.0 | 10        |
| 45 | Glucopyranosylidene-spiro-iminothiazolidinone, a new bicyclic ring system: Synthesis, derivatization,<br>and evaluation for inhibition of glycogen phosphorylase by enzyme kinetic and crystallographic<br>methods. Bioorganic and Medicinal Chemistry, 2014, 22, 4028-4041. | 3.0 | 10        |
| 46 | Kinetic and modelling studies on the lipase catalysed enantioselective esterification of (±)-perillyl<br>alcohol. Journal of Molecular Catalysis B: Enzymatic, 2004, 29, 9-12.                                                                                               | 1.8 | 9         |
| 47 | Indirubin-3-Aminooxy-Acetate Inhibits Glycogen Phosphorylase by Binding at the Inhibitor and the Allosteric Site. Broad Specificities of the Two Sites. Letters in Drug Design and Discovery, 2005, 2, 377-390.                                                              | 0.7 | 8         |
| 48 | C-Glucosylated malonitrile as a key intermediate towards carbohydrate-based glycogen phosphorylase inhibitors. Bioorganic and Medicinal Chemistry, 2012, 20, 5592-5599.                                                                                                      | 3.0 | 8         |
| 49 | Anomeric Spironucleosides of β-d-Glucopyranosyl Uracil as Potential Inhibitors of Glycogen<br>Phosphorylase. Molecules, 2019, 24, 2327.                                                                                                                                      | 3.8 | 8         |
| 50 | Discovery of the Glycogen Phosphorylase-Modulating Activity of a Resveratrol Glucoside by Using a<br>Virtual Screening Protocol Optimized for Solvation Effects. Planta Medica, 2015, 81, 507-516.                                                                           | 1.3 | 7         |
| 51 | Molecular investigation of artificial and natural sweeteners as potential anti-inflammatory agents.<br>Journal of Biomolecular Structure and Dynamics, 2022, 40, 12608-12620.                                                                                                | 3.5 | 7         |
| 52 | Synthesis of N4-aryl-Î <sup>2</sup> -d-glucopyranosylcytosines: a methodology study. Tetrahedron Letters, 2015, 56,<br>5549-5552.                                                                                                                                            | 1.4 | 6         |
| 53 | Crystallization and preliminary X-ray crystallographic analysis ofSclerotium rolfsiilectin. Acta<br>Crystallographica Section D: Biological Crystallography, 2003, 59, 363-365.                                                                                              | 2.5 | 5         |
| 54 | Halogen-substituted (C-β-d-glucopyranosyl)-hydroquinone regioisomers: Synthesis, enzymatic<br>evaluation and their binding to glycogen phosphorylase. Bioorganic and Medicinal Chemistry, 2011, 19,<br>5125-5136.                                                            | 3.0 | 5         |

Evangelia D Chrysina

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Synthesis of (benzimidazol-2-yl)aniline derivatives as glycogen phosphorylase inhibitors. Bioorganic<br>and Medicinal Chemistry, 2016, 24, 5423-5430.                                     | 3.0 | 5         |
| 56 | Multiscale time-resolved fluorescence study of a glycogen phosphorylase inhibitor combined with quantum chemistry calculations. Physical Chemistry Chemical Physics, 2019, 21, 7685-7696. | 2.8 | 3         |
| 57 | Rational Drug Design Using Integrative Structural Biology. Methods in Molecular Biology, 2018, 1824,<br>89-111.                                                                           | 0.9 | 1         |
| 58 | Synthesis, Kinetic and Conformational Studies of 2-Substituted-5-(β-d-glucopyranosyl)-pyrimidin-4-ones as Potential Inhibitors of Glycogen Phosphorylase. Molecules, 2020, 25, 5463.      | 3.8 | 1         |
| 59 | Formation and physicochemical properties of glycogen phosphorylase in complex with a cationic polyelectrolyte. International Journal of Biological Macromolecules, 2022, 206, 371-380.    | 7.5 | 1         |
| 60 | Frontispiece: A New Potent Inhibitor of Glycogen Phosphorylase Reveals the Basicity of the Catalytic<br>Site. Chemistry - A European Journal, 2017, 23, .                                 | 3.3 | 0         |
| 61 | Crystallographic studies on acyl ureas, a new class of inhibitors of glycogen phosphorylase. Acta<br>Crystallographica Section A: Foundations and Advances, 2005, 61, c182-c182.          | 0.3 | 0         |
| 62 | A glucose-based molecular rotor inhibitor of glycogen phosphorylase as a probe of cellular enzymatic function. Organic and Biomolecular Chemistry, 2022, , .                              | 2.8 | 0         |