Benoit R Gauthier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1507604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pancreatic Insulin Content Regulation by the Estrogen Receptor ERα. PLoS ONE, 2008, 3, e2069.	2.5	352
2	CD14 Is an Acute-Phase Protein. Journal of Immunology, 2004, 172, 4470-4479.	0.8	234
3	Therapeutic Potential of Mesenchymal Stem Cells for Cancer Therapy. Frontiers in Bioengineering and Biotechnology, 2020, 8, 43.	4.1	204
4	Low Concentration of Interleukin-1Â Induces FLICE-Inhibitory Protein-Mediated Â-Cell Proliferation in Human Pancreatic Islets. Diabetes, 2006, 55, 2713-2722.	0.6	151
5	MicroRNAs: 'ribo-regulators' of glucose homeostasis. Nature Medicine, 2006, 12, 36-38.	30.7	135
6	The diabetes-linked transcription factor PAX4 promotes β-cell proliferation and survival in rat and human islets. Journal of Cell Biology, 2004, 167, 1123-1135.	5.2	133
7	Cx36 makes channels coupling human pancreatic β-cells, and correlates with insulin expression. Human Molecular Genetics, 2009, 18, 428-439.	2.9	105
8	PDX1 Deficiency Causes Mitochondrial Dysfunction and Defective Insulin Secretion through TFAM Suppression. Cell Metabolism, 2009, 10, 110-118.	16.2	102
9	Synaptotagmins bind calcium to release insulin. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E1279-E1286.	3.5	97
10	Foxa2 (HNF3β) Controls Multiple Genes Implicated in Metabolism-Secretion Coupling of Glucose-induced Insulin Release. Journal of Biological Chemistry, 2002, 277, 17564-17570.	3.4	84
11	The Fas pathway is involved in pancreatic beta cell secretory function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2861-2866.	7.1	83
12	Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL. PLoS ONE, 2016, 11, e0163046.	2.5	75
13	Oligonucleotide Microarray Analysis Reveals PDX1 as an Essential Regulator of Mitochondrial Metabolism in Rat Islets. Journal of Biological Chemistry, 2004, 279, 31121-31130.	3.4	65
14	Adipose Mesenchymal Stromal Cells Isolated From Type 2 Diabetic Patients Display Reduced Fibrinolytic Activity. Diabetes, 2013, 62, 4266-4269.	0.6	63
15	Thyroid hormones in diabetes, cancer, and aging. Aging Cell, 2020, 19, e13260.	6.7	63
16	Immunohistochemical assessment of Pax8 expression during pancreatic islet development and in human neuroendocrine tumors. Histochemistry and Cell Biology, 2011, 136, 595-607.	1.7	62
17	A focus on the role of Pax4 in mature pancreatic islet β-cell expansion and survival in health and disease. Journal of Molecular Endocrinology, 2008, 40, 37-45.	2.5	56
18	The diabetes-linked transcription factor Pax4 is expressed in human pancreatic islets and is activated by mitogens and GLP-1. Human Molecular Genetics, 2007, 17, 478-489.	2.9	51

Benoit R Gauthier

#	Article	IF	CITATIONS
19	LRH-1 agonism favours an immune-islet dialogue which protects against diabetes mellitus. Nature Communications, 2018, 9, 1488.	12.8	50
20	Synaptotagmin VII splice variants α, β, and δare expressed in pancreatic βâ€cells and regulate insulin exocytosis. FASEB Journal, 2008, 22, 194-206.	0.5	47
21	Hepatic Nuclear Factor-3 (HNF-3 or Foxa2) Regulates Glucagon Gene Transcription by Binding to the G1 and G2 Promoter Elements. Molecular Endocrinology, 2002, 16, 170-183.	3.7	46
22	Transcriptional response of pancreatic beta cells to metabolic stimulation: large scale identification of immediate-early and secondary response genes. BMC Molecular Biology, 2007, 8, 54.	3.0	45
23	In Vivo Conditional Pax4 Overexpression in Mature Islet β-Cells Prevents Stress-Induced Hyperglycemia in Mice. Diabetes, 2011, 60, 1705-1715.	0.6	45
24	The T1D-associated lncRNA <i>Lnc13</i> modulates human pancreatic β cell inflammation by allele-specific stabilization of <i>STAT1</i> mRNA. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9022-9031.	7.1	43
25	PAX4 Defines an Expandable Î ² -Cell Subpopulation in the Adult Pancreatic Islet. Scientific Reports, 2015, 5, 15672.	3.3	38
26	The liver receptor homolog-1 (LRH-1) is expressed in human islets and protects β-cells against stress-induced apoptosis. Human Molecular Genetics, 2011, 20, 2823-2833.	2.9	37
27	The type 2 diabetes-associated HMG20A gene is mandatory for islet beta cell functional maturity. Cell Death and Disease, 2018, 9, 279.	6.3	36
28	PAX4 preserves endoplasmic reticulum integrity preventing beta cell degeneration in a mouse model of type 1 diabetes mellitus. Diabetologia, 2016, 59, 755-765.	6.3	33
29	Experimental Models of Transcription Factor-Associated Maturity-Onset Diabetes of the Young. Diabetes, 2002, 51, S333-S342.	0.6	32
30	The Diabetes-Linked Transcription Factor PAX4: From Gene to Functional Consequences. Genes, 2017, 8, 101.	2.4	32
31	The β-cell specific transcription factor Nkx6.1 inhibits glucagon gene transcription by interfering with Pax6. Biochemical Journal, 2007, 403, 593-601.	3.7	30
32	Hepatic lipase affects both HDL and ApoB-containing lipoprotein levels in the mouse. Lipids and Lipid Metabolism, 1998, 1392, 276-290.	2.6	28
33	The cannabinoid ligand LH-21 reduces anxiety and improves glucose handling in diet-induced obese pre-diabetic mice. Scientific Reports, 2017, 7, 3946.	3.3	26
34	GATA6 Controls Insulin Biosynthesis and Secretion in Adult \hat{I}^2 -Cells. Diabetes, 2018, 67, 448-460.	0.6	25
35	Pancreatic alpha-cell mass in the early-onset and advanced stage of a mouse model of experimental autoimmune diabetes. Scientific Reports, 2019, 9, 9515.	3.3	25
36	Nuclear Envelope Integrity in Health and Disease: Consequences on Genome Instability and Inflammation. International Journal of Molecular Sciences, 2021, 22, 7281.	4.1	25

Benoit R Gauthier

#	Article	IF	CITATIONS
37	Levothyroxine enhances glucose clearance and blunts the onset of experimental type 1 diabetes mellitus in mice. British Journal of Pharmacology, 2017, 174, 3795-3810.	5.4	24
38	The Atypical Cannabinoid Abn-CBD Reduces Inflammation and Protects Liver, Pancreas, and Adipose Tissue in a Mouse Model of Prediabetes and Non-alcoholic Fatty Liver Disease. Frontiers in Endocrinology, 2020, 11, 103.	3.5	22
39	Hepatic Nuclear Factor 1α (HNF1α) Dysfunction Down-regulates X-box-binding Protein 1 (XBP1) and Sensitizes β-Cells to Endoplasmic Reticulum Stress. Journal of Biological Chemistry, 2011, 286, 32300-32312.	3.4	20
40	Islet <mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="bold-italic">β</mml:mi </mml:mrow></mml:math> -Cell Mass Preservation and Regeneration in Diabetes Mellitus: Four Factors with Potential Therapeutic Interest. Journal of Transplantation, 2012, 2012, 1-9.	0.5	19
41	A Simple High Efficiency Intra-Islet Transduction Protocol Using Lentiviral Vectors. Current Gene Therapy, 2015, 15, 436-446.	2.0	19
42	Using stem cells to produce insulin. Expert Opinion on Biological Therapy, 2015, 15, 1469-1489.	3.1	19
43	Molecular Modelling of Islet β-Cell Adaptation to Inflammation in Pregnancy and Gestational Diabetes Mellitus. International Journal of Molecular Sciences, 2019, 20, 6171.	4.1	19
44	Time for a paradigm shift in treating type 1 diabetes mellitus: coupling inflammation to islet regeneration. Metabolism: Clinical and Experimental, 2020, 104, 154137.	3.4	18
45	Transient <i>PAX8</i> Expression in Islets During Pregnancy Correlates With β-Cell Survival, Revealing a Novel Candidate Gene in Gestational Diabetes Mellitus. Diabetes, 2019, 68, 109-118.	0.6	17
46	Pax8 Detection in Well-Differentiated Pancreatic Endocrine Tumors. American Journal of Surgical Pathology, 2011, 35, 1906-1908.	3.7	16
47	The metabesity factor HMG20A potentiates astrocyte survival and reactive astrogliosis preserving neuronal integrity. Theranostics, 2021, 11, 6983-7004.	10.0	16
48	Targeting pancreatic expressed PAX genes for the treatment of diabetes mellitus and pancreatic neuroendocrine tumors. Expert Opinion on Therapeutic Targets, 2017, 21, 77-89.	3.4	15
49	Therapeutic potential of pancreatic PAX4-regulated pathways in treating diabetes mellitus. Current Opinion in Pharmacology, 2018, 43, 1-10.	3.5	15
50	Inadequate control of thyroid hormones sensitizes to hepatocarcinogenesis and unhealthy aging. Aging, 2019, 11, 7746-7779.	3.1	12
51	Dissecting the Brain/Islet Axis in Metabesity. Genes, 2019, 10, 350.	2.4	11
52	Hepatic Nuclear Factor-3 (HNF-3 or Foxa2) Regulates Glucagon Gene Transcription by Binding to the G1 and G2 Promoter Elements. Molecular Endocrinology, 2002, 16, 170-183.	3.7	10
53	Targeting LRH-1/NR5A2 to treat type 1 diabetes mellitus. Cell Stress, 2018, 2, 141-143.	3.2	9
54	NR5A2/LRH-1 regulates the PTGS2-PGE2-PTGER1 pathway contributing to pancreatic islet survival and function. IScience, 2022, 25, 104345.	4.1	9

#	Article	IF	CITATIONS
55	To β-e or Not to β-e Replicating after 30: Retrospective Dating of Human Pancreatic Islets. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 4552-4554.	3.6	8
56	Abnormal cannabidiol ameliorates inflammation preserving pancreatic beta cells in mouse models of experimental type 1 diabetes and beta cell damage. Biomedicine and Pharmacotherapy, 2022, 145, 112361.	5.6	6
57	Reply to comment on: Biason-Lauber A, Boehm B, Lang-Muritano M et al. (2005) Association of childhood type 1 diabetes mellitus with a variant of PAX4: possible link to beta cell regenerative capacity. Diabetologia 48:900–905. Diabetologia, 2005, 48, 2185-2186.	6.3	5
58	Dual Trade of Bcl-2 and Bcl-xLin Islet Physiology. Diabetes, 2013, 62, 18-21.	0.6	4
59	Mobilization of naturally-occurring gonococcal penicillinase-producing plasmids by different conjugative plasmids. , 1991, , 511-516.		3
60	Characterization of a Novel Liver-Specific Protein/DNA Binding Site in the Human HMG CoA Reductase Promoter. Biochemical and Biophysical Research Communications, 1998, 247, 280-286.	2.1	3
61	Advances in Genetics of Regeneration in Metabesity. Genes, 2019, 10, 383.	2.4	3
62	Harnessing the Endogenous Plasticity of Pancreatic Islets: A Feasible Regenerative Medicine Therapy for Diabetes?. International Journal of Molecular Sciences, 2021, 22, 4239.	4.1	3
63	Physical Forces and Transient Nuclear Envelope Rupture during Metastasis: The Key for Success?. Cancers, 2022, 14, 83.	3.7	3
64	SENP7 overexpression protects cancer cells from oxygen and glucose deprivation and associates with poor prognosis in colon cancer. Genes and Diseases, 2022, 9, 1419-1422.	3.4	2
65	Statement of Retraction. Kathrin Maedier, Desiree M. Schumann, Nadine Sauter, Heiga Ellingsgaard, Domenico Bosco, Reto Baertschiger, Yoichiro Iwakura, José Oberholzer, Claes B. Wollheim, Benoit R. Gauthier, and Marc Y. Donath. Low Concentration of Interleukin-1Î ² Induces FLICE-Inhibitory Protein†Mediated Î ² -Cell Proliferation in Human Pancreatic Islets. Diabetes 2006;55:2713–2722. DOI:	0.6	1
66	10.2007/db05-b 100. MMIO: b70000005. Diabetes, 2020, 60, 400-405. Human Omental Mesothelial Cells Impart an Immunomodulatory Landscape Impeding B- and T-Cell Activation. International Journal of Molecular Sciences, 2022, 23, 5924.	4.1	1
67	PARP-1 and cytokine-mediated β-cell damage: a nick in the Okamoto model?. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E170-E171.	3.5	0
68	Emerging Therapeutic Targets in Regenerative Medicine for the Treatment of Diabetes Mellitus: A Patent Literature Review. Recent Patents on Regenerative Medicine, 2012, 3, 56-62.	0.4	0
69	Expression of Concern. Low Concentration of Interleukin-1β Induces FLICE-Inhibitory Protein–Mediated β-Cell Proliferation in Human Pancreatic Islets. Diabetes 2006;55:2713–2722; DOI: 10.2337/db05-1430. Diabetes, 2016, 65, 2462-2462.	0.6	0
70	Update to Expression of Concern. Kathrin Maedler, Desiree M. Schumann, Nadine Sauter, Helga Ellingsgaard, Domenico Bosco, Reto Baertschiger, Yoichiro Iwakura, José Oberholzer, Claes B. Wollheim, Benoit R. Gauthier, and Marc Y. Donath. Low Concentration of Interleukin-11 ² Induces FLICE-Inhibitory Protein–Mediated β-Cell Proliferation in Human Pancreatic Islets. Diabetes 2006;55:2713-2722. DOI:10.2337/db05-1430. PMID: 17003335. Diabetes, 2018, 67, 2479-2480.	0.6	0