Qilin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/150686/publications.pdf

Version: 2024-02-01

			18482	3	7204
185		11,170	62		96
papers		citations	h-index		g-index
	. '				
186		186	186		6651
all docs		docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 2019, 152, 21-37.	11.3	1,069
2	An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. Water Research, 2018, 147, 440-460.	11.3	323
3	Free Nitrous Acid (FNA)-Based Pretreatment Enhances Methane Production from Waste Activated Sludge. Environmental Science & En	10.0	234
4	Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles. Science of the Total Environment, 2017, 595, 743-751.	8.0	220
5	Side-stream sludge treatment using free nitrous acid selectively eliminates nitrite oxidizing bacteria and achieves the nitrite pathway. Water Research, 2014, 55, 245-255.	11.3	205
6	Achieving Stable Mainstream Nitrogen Removal via the Nitrite Pathway by Sludge Treatment Using Free Ammonia. Environmental Science & Environmental Sci	10.0	186
7	The underlying mechanism of calcium peroxide pretreatment enhancing methane production from anaerobic digestion of waste activated sludge. Water Research, 2019, 164, 114934.	11.3	184
8	Free ammonia enhances dark fermentative hydrogen production from waste activated sludge. Water Research, 2018, 133, 272-281.	11.3	163
9	Unveiling the mechanisms of how cationic polyacrylamide affects short-chain fatty acids accumulation during long-term anaerobic fermentation of waste activated sludge. Water Research, 2019, 155, 142-151.	11.3	159
10	Understanding and mitigating the toxicity of cadmium to the anaerobic fermentation of waste activated sludge. Water Research, 2017, 124, 269-279.	11.3	157
11	Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge. Water Research, 2018, 130, 281-290.	11,3	156
12	Triclocarban enhances short-chain fatty acids production from anaerobic fermentation of waste activated sludge. Water Research, 2017, 127, 150-161.	11.3	150
13	Fe(II) catalyzing sodium percarbonate facilitates the dewaterability of waste activated sludge: Performance, mechanism, and implication. Water Research, 2020, 174, 115626.	11.3	150
14	Ozone disinfection of chlorine-resistant bacteria in drinking water. Water Research, 2019, 160, 339-349.	11.3	147
15	Preparation of a novel graphene oxide/Fe-Mn composite and its application for aqueous Hg(II) removal. Journal of Hazardous Materials, 2016, 316, 151-158.	12.4	144
16	Enhancing methane production from waste activated sludge using combined free nitrous acid and heat pre-treatment. Water Research, 2014, 63, 71-80.	11.3	139
17	Free nitrous acid promotes hydrogen production from dark fermentation of waste activated sludge. Water Research, 2018, 145, 113-124.	11.3	137
18	Calcium peroxide promotes hydrogen production from dark fermentation of waste activated sludge. Chemical Engineering Journal, 2019, 355, 22-32.	12.7	137

#	Article	IF	CITATIONS
19	Aged refuse enhances anaerobic digestion of waste activated sludge. Water Research, 2017, 123, 724-733.	11.3	136
20	Monitoring antibiotic resistance genes in wastewater treatment: Current strategies and future challenges. Science of the Total Environment, 2021, 783, 146964.	8.0	136
21	Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp Applied Microbiology and Biotechnology, 2016, 100, 1421-1426.	3.6	132
22	Free nitrous acid pre-treatment of waste activated sludge enhances volatile solids destruction and improves sludge dewaterability in continuous anaerobic digestion. Water Research, 2018, 130, 13-19.	11.3	127
23	Microplastics contamination in different trophic state lakes along the middle and lower reaches of Yangtze River Basin. Environmental Pollution, 2019, 254, 112951.	7.5	123
24	Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production. Water Research, 2017, 118, 12-19.	11.3	119
25	A novel conditioning process for enhancing dewaterability of waste activated sludge by combination of zero-valent iron and persulfate. Bioresource Technology, 2015, 185, 416-420.	9.6	114
26	Experimental evaluation of decrease in bacterial activity due to cell death and activity decay in activated sludge. Water Research, 2009, 43, 3604-3612.	11.3	112
27	Technologies for reducing sludge production in wastewater treatment plants: State of the art. Science of the Total Environment, 2017, 587-588, 510-521.	8.0	111
28	Achieving Stable Nitritation for Mainstream Deammonification by Combining Free Nitrous Acid-Based Sludge Treatment and Oxygen Limitation. Scientific Reports, 2016, 6, 25547.	3.3	104
29	Understanding the mechanisms of how poly aluminium chloride inhibits short-chain fatty acids production from anaerobic fermentation of waste activated sludge. Chemical Engineering Journal, 2018, 334, 1351-1360.	12.7	99
30	Understanding the fate and impact of capsaicin in anaerobic co-digestion of food waste and waste activated sludge. Water Research, 2021, 188, 116539.	11.3	99
31	Mechanistic insights into the effect of poly ferric sulfate on anaerobic digestion of waste activated sludge. Water Research, 2021, 189, 116645.	11.3	95
32	Electrochemical activation of peroxides for treatment of contaminated water with landfill leachate: Efficacy, toxicity and biodegradability evaluation. Chemosphere, 2021, 279, 130610.	8.2	95
33	Improving secondary sludge biodegradability using free nitrous acid treatment. Bioresource Technology, 2012, 116, 92-98.	9.6	93
34	Inactivation and adaptation of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria when exposed to free nitrous acid. Bioresource Technology, 2017, 245, 1266-1270.	9.6	92
35	Enhanced short-chain fatty acids production from waste activated sludge by sophorolipid: Performance, mechanism, and implication. Bioresource Technology, 2019, 284, 456-465.	9.6	91
36	Effect evaluation of microplastics on activated sludge nitrification and denitrification. Science of the Total Environment, 2020, 707, 135953.	8.0	91

#	Article	IF	Citations
37	Towards hydrogen production from waste activated sludge: Principles, challenges and perspectives. Renewable and Sustainable Energy Reviews, 2021, 135, 110283.	16.4	86
38	Enhanced short-chain fatty acids production from waste activated sludge by combining calcium peroxide with free ammonia pretreatment. Bioresource Technology, 2018, 262, 114-123.	9.6	85
39	A review on sludge conditioning by sludge pre-treatment with a focus on advanced oxidation. RSC Advances, 2014, 4, 50644-50652.	3.6	83
40	Producing free nitrous acid – A green and renewable biocidal agent – From anaerobic digester liquor. Chemical Engineering Journal, 2015, 259, 62-69.	12.7	82
41	Free Ammonia-Based Pretreatment Promotes Short-Chain Fatty Acid Production from Waste Activated Sludge. ACS Sustainable Chemistry and Engineering, 2018, 6, 9120-9129.	6.7	79
42	Feasibility of enhancing short-chain fatty acids production from sludge anaerobic fermentation at free nitrous acid pretreatment: Role and significance of Tea saponin. Bioresource Technology, 2018, 254, 194-202.	9.6	79
43	Zero valent iron enhances methane production from primary sludge in anaerobic digestion. Chemical Engineering Journal, 2018, 351, 1159-1165.	12.7	78
44	Improved methane production from waste activated sludge by combining free ammonia with heat pretreatment: Performance, mechanisms and applications. Bioresource Technology, 2018, 268, 230-236.	9.6	77
45	Biosorption of Pb (II) from aqueous solution by extracellular polymeric substances extracted from Klebsiella sp. J1: Adsorption behavior and mechanism assessment. Scientific Reports, 2016, 6, 31575.	3.3	75
46	Interaction between perfluorooctanoic acid and aerobic granular sludge. Water Research, 2020, 169, 115249.	11.3	75
47	A free nitrous acid (FNA)-based technology for reducing sludge production. Water Research, 2013, 47, 3663-3672.	11.3	74
48	AHL-mediated quorum sensing regulates the variations of microbial community and sludge properties of aerobic granular sludge under low organic loading. Environment International, 2019, 130, 104946.	10.0	74
49	Clarifying the Role of Free Ammonia in the Production of Short-Chain Fatty Acids from Waste Activated Sludge Anaerobic Fermentation. ACS Sustainable Chemistry and Engineering, 2018, 6, 14104-14113.	6.7	73
50	Enhanced dewaterability of anaerobically digested sludge by in-situ free nitrous acid treatment. Water Research, 2020, 169, 115264.	11.3	73
51	Improving dewaterability of anaerobically digested sludge by combination of persulfate and zero valent iron. Chemical Engineering Journal, 2016, 295, 436-442.	12.7	72
52	Enhanced Short-Chain Fatty Acids from Waste Activated Sludge by Heat–CaO ₂ Advanced Thermal Hydrolysis Pretreatment: Parameter Optimization, Mechanisms, and Implications. ACS Sustainable Chemistry and Engineering, 2019, 7, 3544-3555.	6.7	71
53	Free ammonia-based pretreatment enhances phosphorus release and recovery from waste activated sludge. Chemosphere, 2018, 213, 276-284.	8.2	70
54	Feasibility of enhancing short-chain fatty acids production from waste activated sludge after free ammonia pretreatment: Role and significance of rhamnolipid. Bioresource Technology, 2018, 267, 141-148.	9.6	70

#	Article	IF	CITATIONS
55	Activation of nitrite by freezing process for anaerobic digestion enhancement of waste activated sludge: Performance and mechanisms. Chemical Engineering Journal, 2020, 387, 124147.	12.7	70
56	Nitrite oxidizing bacteria (NOB) contained in influent deteriorate mainstream NOB suppression by sidestream inactivation. Water Research, 2019, 162, 331-338.	11.3	68
57	Thermal-alkaline pretreatment of polyacrylamide flocculated waste activated sludge: Process optimization and effects on anaerobic digestion and polyacrylamide degradation. Bioresource Technology, 2019, 281, 158-167.	9.6	68
58	Semi-continuous anaerobic digestion of secondary sludge with free ammonia pretreatment: Focusing on volatile solids destruction, dewaterability, pathogen removal and its implications. Water Research, 2021, 202, 117481.	11.3	68
59	Discrepant gene functional potential and cross-feedings of anammox bacteria Ca. Jettenia caeni and Ca. Brocadia sinica in response to acetate. Water Research, 2019, 165, 114974.	11.3	67
60	Role of extracellular polymeric substances in improvement of sludge dewaterability through peroxidation. Bioresource Technology, 2015, 192, 817-820.	9.6	65
61	Heat pretreatment assists free ammonia to enhance hydrogen production from waste activated sludge. Bioresource Technology, 2019, 283, 316-325.	9.6	65
62	Application of pulse electric field pretreatment for enhancing lipid extraction from Chlorella pyrenoidosa grown in wastewater. Renewable Energy, 2019, 133, 233-239.	8.9	64
63	Direct Cr (VI) bio-reduction with organics as electron donor by anaerobic sludge. Chemical Engineering Journal, 2017, 309, 330-338.	12.7	63
64	Digestion liquid based alkaline pretreatment of waste activated sludge promotes methane production from anaerobic digestion. Water Research, 2021, 199, 117198.	11.3	63
65	Heterotrophic denitrification plays an important role in N2O production from nitritation reactors treating anaerobic sludge digestion liquor. Water Research, 2014, 62, 202-210.	11.3	62
66	Immobilization of heavy metals in electroplating sludge by biochar and iron sulfide. Environmental Science and Pollution Research, 2016, 23, 14472-14488.	5.3	61
67	Ultrasonic waste activated sludge disintegration for recovering multiple nutrients for biofuel production. Water Research, 2016, 93, 56-64.	11.3	60
68	A Roadmap for Achieving Energy-Positive Sewage Treatment Based on Sludge Treatment Using Free Ammonia. ACS Sustainable Chemistry and Engineering, 2017, 5, 9630-9633.	6.7	59
69	Microbial degradation of N,N-dimethylformamide by Paracoccus sp. strain DMF-3 from activated sludge. Chemical Engineering Journal, 2018, 343, 324-330.	12.7	59
70	Synthesis of Core–Shell Magnetic Nanocomposite Fe ₃ O ₄ @ Microbial Extracellular Polymeric Substances for Simultaneous Redox Sorption and Recovery of Silver Ions as Silver Nanoparticles. ACS Sustainable Chemistry and Engineering, 2018, 6, 749-756.	6.7	56
71	Effects of free nitrous acid treatment conditions on the nitrite pathway performance in mainstream wastewater treatment. Science of the Total Environment, 2018, 644, 360-370.	8.0	56
72	Full-scale evaluation of aerobic/extended-idle regime inducing biological phosphorus removal and its integration with intermittent sand filter to treat domestic sewage discharged from highway rest area. Biochemical Engineering Journal, 2016, 113, 114-122.	3.6	55

#	Article	IF	CITATIONS
73	Free ammonia pretreatment improves anaerobic methane generation from algae. Water Research, 2019, 162, 269-275.	11.3	54
74	Mechanisms of Persistence of the Ammonia-Oxidizing Bacteria <i>Nitrosomonas</i> to the Biocide Free Nitrous Acid. Environmental Science & Environmenta	10.0	52
75	Enhanced methane production from waste activated sludge by combining calcium peroxide with ultrasonic: Performance, mechanism, and implication. Bioresource Technology, 2019, 279, 108-116.	9.6	52
76	Free nitrous acid breaks down extracellular polymeric substances in waste activated sludge. RSC Advances, 2015, 5, 43312-43318.	3.6	51
77	Reducing N ₂ O Emission from a Domestic-Strength Nitrifying Culture by Free Nitrous Acid-Based Sludge Treatment. Environmental Science & Envi	10.0	51
78	Evaluating death and activity decay of Anammox bacteria during anaerobic and aerobic starvation. Chemosphere, 2018, 201, 25-31.	8.2	51
79	High performance nitrogen removal through integrating denitrifying anaerobic methane oxidation and Anammox: from enrichment to application. Environment International, 2019, 132, 105107.	10.0	51
80	Do Microplastics Affect Biological Wastewater Treatment Performance? Implications from Bacterial Activity Experiments. ACS Sustainable Chemistry and Engineering, 2019, 7, 20097-20101.	6.7	51
81	Enhancement of productivity of Chlorella pyrenoidosa lipids for biodiesel using co-culture with ammonia-oxidizing bacteria in municipal wastewater. Renewable Energy, 2020, 151, 598-603.	8.9	50
82	Zero Valent Iron Significantly Enhances Methane Production from Waste Activated Sludge by Improving Biochemical Methane Potential Rather Than Hydrolysis Rate. Scientific Reports, 2015, 5, 8263.	3.3	49
83	Effect of acetate to glycerol ratio on enhanced biological phosphorus removal. Chemosphere, 2018, 196, 78-86.	8.2	47
84	Modelling the long-term effect of wastewater compositions on maximum sulfide and methane production rates of sewer biofilm. Water Research, 2018, 129, 58-65.	11.3	47
85	Freezing in the presence of nitrite pretreatment enhances hydrogen production from dark fermentation of waste activated sludge. Journal of Cleaner Production, 2020, 248, 119305.	9.3	45
86	Improving dewaterability of waste activated sludge by combined conditioning with zero-valent iron and hydrogen peroxide. Bioresource Technology, 2014, 174, 103-107.	9.6	44
87	Free ammonia-based sludge treatment reduces sludge production in the wastewater treatment process. Chemosphere, 2018, 205, 484-492.	8.2	44
88	Enhancement of short-chain fatty acids production from microalgae by potassium ferrate addition: Feasibility, mechanisms and implications. Bioresource Technology, 2020, 318, 124266.	9.6	44
89	Advancements in detection and removal of antibiotic resistance genes in sludge digestion: A state-of-art review. Bioresource Technology, 2022, 344, 126197.	9.6	40
90	Persulfate and zero valent iron combined conditioning as a sustainable technique for enhancing dewaterability of aerobically digested sludge. Chemosphere, 2019, 232, 45-53.	8.2	39

#	Article	IF	CITATIONS
91	Enhanced dark fermentative hydrogen production from waste activated sludge by combining potassium ferrate with alkaline pretreatment. Science of the Total Environment, 2020, 707, 136105.	8.0	39
92	Efficient harvesting of Chlorella pyrenoidosa and Scenedesmus obliquus cultivated in urban sewage by magnetic flocculation using nano-Fe3O4 coated with polyethyleneimine. Bioresource Technology, 2019, 290, 121771.	9.6	38
93	Optimization of microwave assisted lipid extraction from microalga Scenedesmus obliquus grown on municipal wastewater. Journal of Cleaner Production, 2019, 221, 502-508.	9.3	38
94	Nonlinear pattern and algal dual-impact in N2O emission with increasing trophic levels in shallow lakes. Water Research, 2021, 203, 117489.	11.3	38
95	Aggregation of carboxyl-modified polystyrene nanoplastics in water with aluminum chloride: Structural characterization and theoretical calculation. Water Research, 2022, 208, 117884.	11.3	36
96	Revealing the Underlying Mechanisms of How Initial pH Affects Waste Activated Sludge Solubilization and Dewaterability in Freezing and Thawing Process. ACS Sustainable Chemistry and Engineering, 2018, 6, 15822-15831.	6.7	35
97	Effect of free nitrous acid pre-treatment on primary sludge biodegradability and its implications. Chemical Engineering Journal, 2016, 290, 31-36.	12.7	34
98	Free Ammonia Pretreatment To Improve Bio-hydrogen Production from Anaerobic Dark Fermentation of Microalgae. ACS Sustainable Chemistry and Engineering, 2019, 7, 1642-1647.	6.7	34
99	Microplastics deteriorate the removal efficiency of antibiotic resistance genes during aerobic sludge digestion. Science of the Total Environment, 2021, 798, 149344.	8.0	34
100	Evaluating sludge minimization caused by predation and viral infection based on the extended activated sludge model No. 2d. Water Research, 2011, 45, 5130-5140.	11.3	33
101	Combined free nitrous acid and hydrogen peroxide pre-treatment of waste activated sludge enhances methane production via organic molecule breakdown. Scientific Reports, 2015, 5, 16631.	3.3	31
102	Combined Effect of Free Nitrous Acid Pretreatment and Sodium Dodecylbenzene Sulfonate on Short-Chain Fatty Acid Production from Waste Activated Sludge. Scientific Reports, 2016, 6, 21622.	3.3	31
103	Microwave pretreatment of polyacrylamide flocculated waste activated sludge: Effect on anaerobic digestion and polyacrylamide degradation. Bioresource Technology, 2019, 290, 121776.	9.6	31
104	Anaerobic microbial manganese oxidation and reduction: A critical review. Science of the Total Environment, 2022, 822, 153513.	8.0	31
105	Photocatalytic H2 generation from aqueous ammonia solution using TiO2 nanowires-intercalated reduced graphene oxide composite membrane under low power UV light. Emergent Materials, 2019, 2, 303-311.	5.7	30
106	Life-cycle cost analysis of a hybrid algae-based biological desalination – low pressure reverse osmosis system. Water Research, 2021, 195, 116957.	11.3	30
107	Effect of sodium dodecylbenzene sulfonate on hydrogen production from dark fermentation of waste activated sludge. Science of the Total Environment, 2021, 799, 149383.	8.0	30
108	A novel free ammonia based pretreatment technology to enhance anaerobic methane production from primary sludge. Biotechnology and Bioengineering, 2017, 114, 2245-2252.	3.3	29

#	Article	IF	CITATIONS
109	Enhanced hydrogen accumulation from waste activated sludge by combining ultrasonic and free nitrous acid pretreatment: Performance, mechanism, and implication. Bioresource Technology, 2019, 285, 121363.	9.6	28
110	Eutrophication triggers the shift of nutrient absorption pathway of submerged macrophytes: Implications for the phytoremediation of eutrophic waters. Journal of Environmental Management, 2019, 239, 376-384.	7.8	28
111	The fate and impact of TCC in nitrifying cultures. Water Research, 2020, 178, 115851.	11.3	28
112	Factors governing microalgae harvesting efficiency by flocculation using cationic polymers. Bioresource Technology, 2021, 340, 125669.	9.6	28
113	Development of multiple-step soft-sensors using a Gaussian process model with application for fault prognosis. Chemometrics and Intelligent Laboratory Systems, 2016, 157, 85-95.	3.5	27
114	Insights into the toxicity of troclocarban to anaerobic digestion: Sludge characteristics and methane production. Journal of Hazardous Materials, 2020, 385, 121615.	12.4	27
115	Experimental evaluation of decrease in the activities of polyphosphate/glycogenâ€accumulating organisms due to cell death and activity decay in activated sludge. Biotechnology and Bioengineering, 2010, 106, 399-407.	3.3	26
116	Free ammonia pretreatment enhances the removal of antibiotic resistance genes in anaerobic sludge digestion. Chemosphere, 2021, 279, 130910.	8.2	26
117	Combined zero valent iron and hydrogen peroxide conditioning significantly enhances the dewaterability of anaerobic digestate. Journal of Environmental Sciences, 2018, 67, 378-386.	6.1	25
118	Combined physical and chemical activation of sludge-based adsorbent enhances Cr(â¥) removal from wastewater. Journal of Cleaner Production, 2019, 238, 117904.	9.3	25
119	Performance and Mechanism of Potassium Ferrate(VI) Enhancing Dark Fermentative Hydrogen Accumulation from Waste Activated Sludge. ACS Sustainable Chemistry and Engineering, 2020, 8, 8681-8691.	6.7	25
120	Triclosan degradation in sludge anaerobic fermentation and its impact on hydrogen production. Chemical Engineering Journal, 2021, 421, 129948.	12.7	24
121	Recent developments in microbial degradation of polypropylene: Integrated approaches towards a sustainable environment. Science of the Total Environment, 2022, 826, 154056.	8.0	24
122	Towards energy positive wastewater treatment by sludge treatment using free nitrous acid. Chemosphere, 2016, 144, 1869-1873.	8.2	23
123	Fault prognosis of filamentous sludge bulking using an enhanced multi-output gaussian processes regression. Control Engineering Practice, 2017, 62, 46-54.	5.5	23
124	Mechanisms of free nitrous acid and freezing co-pretreatment enhancing short-chain fatty acids production from waste activated sludge anaerobic fermentation. Chemosphere, 2019, 230, 536-543.	8.2	23
125	In-depth research on percarbonate expediting zero-valent iron corrosion for conditioning anaerobically digested sludge. Journal of Hazardous Materials, 2021, 419, 126389.	12.4	23
126	A review on treatment of disinfection byproduct precursors by biological activated carbon process. Chinese Chemical Letters, 2022, 33, 4495-4504.	9.0	23

#	Article	IF	Citations
127	Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate. Scientific Reports, 2016, 6, 19713.	3.3	22
128	Enrichment and characteristics of ammonia-oxidizing archaea in wastewater treatment process. Chemical Engineering Journal, 2017, 323, 465-472.	12.7	22
129	Role of extracellular polymeric substances in anaerobic granular sludge: Assessing dewaterability during Fe(II)-peroxydisulfate conditioning and granulation processes. Journal of Cleaner Production, 2021, 286, 124968.	9.3	22
130	Enhancing methane production from waste activated sludge using a novel indigenous iron activated peroxidation pre-treatment process. Bioresource Technology, 2015, 182, 267-271.	9.6	21
131	Prediction of Filamentous Sludge Bulking using a State-based Gaussian Processes Regression Model. Scientific Reports, 2016, 6, 31303.	3.3	21
132	Free Ammonia Pretreatment Improves Degradation of Secondary Sludge During Aerobic Digestion. ACS Sustainable Chemistry and Engineering, 2018, 6, 1105-1111.	6.7	21
133	Effects of free nitrous acid and freezing co-pretreatment on sludge short-chain fatty acids production and dewaterability. Science of the Total Environment, 2019, 669, 600-607.	8.0	21
134	Norfloxacin-induced effect on enhanced biological phosphorus removal from wastewater after long-term exposure. Journal of Hazardous Materials, 2020, 392, 122336.	12.4	21
135	Statistical process monitoring with integration of data projection and one-class classification. Chemometrics and Intelligent Laboratory Systems, 2015, 149, 1-11.	3.5	20
136	Suspended particles potentially enhance nitrous oxide (N2O) emissions in the oxic estuarine waters of eutrophic lakes: Field and experimental evidence. Environmental Pollution, 2019, 252, 1225-1234.	7.5	20
137	Free nitrous acid-based nitrifying sludge treatment in a two-sludge system obtains high polyhydroxyalkanoates accumulation and satisfied biological nutrients removal. Bioresource Technology, 2019, 284, 16-24.	9.6	20
138	Improving heavy metals removal, dewaterability and pathogen removal of waste activated sludge using enhanced chemical leaching. Journal of Cleaner Production, 2020, 271, 122512.	9.3	20
139	Rebooting kernel CCA method for nonlinear quality-relevant fault detection in process industries. Chemical Engineering Research and Design, 2021, 149, 619-630.	5.6	20
140	Solid-Embedded Microplastics from Sewage Sludge to Agricultural Soils: Detection, Occurrence, and Impacts. ACS ES&T Water, 2021, 1, 1322-1333.	4.6	20
141	Measuring the activities of higher organisms in activated sludge by means of mechanical shearing pretreatment and oxygen uptake rate. Water Research, 2010, 44, 3993-4001.	11.3	19
142	Simultaneous sorption and reduction of Cr(VI) in aquatic system by microbial extracellular polymeric substances from <i>Klebsiella</i> sp. J1. Journal of Chemical Technology and Biotechnology, 2018, 93, 3152-3159.	3.2	19
143	A comparative study on denitrifying sludge granulation with different electron donors: Sulfide, thiosulfate and organics. Chemosphere, 2017, 186, 322-330.	8.2	18
144	Nitrate addition improves hydrogen production from acidic fermentation of waste activated sludge. Chemosphere, 2019, 235, 814-824.	8.2	18

#	Article	IF	Citations
145	Robust adaptive boosted canonical correlation analysis for quality-relevant process monitoring of wastewater treatment. ISA Transactions, 2021, 117, 210-220.	5.7	18
146	Simultaneous biological removal of phenol, sulfide, and nitrate using expanded granular sludge bed reactor. Applied Microbiology and Biotechnology, 2016, 100, 4211-4217.	3.6	17
147	Free ammonia pretreatment assists potassium ferrate to enhance the production of short-chain fatty acids from waste activated sludge: Performance, mechanisms and applications. Journal of Cleaner Production, 2021, 328, 129620.	9.3	16
148	Role of oxidants in enhancing dewaterability of anaerobically digested sludge through Fe (II) activated oxidation processes: hydrogen peroxide versus persulfate. Scientific Reports, 2016, 6, 24800.	3.3	15
149	Enhancing aerobic digestion of full-scale waste activated sludge using free nitrous acid pre-treatment. RSC Advances, 2015, 5, 19128-19134.	3.6	14
150	Biological Nitrogen Removal through Nitritation Coupled with Thiosulfate-Driven Denitritation. Scientific Reports, 2016, 6, 27502.	3.3	14
151	Enhancing post aerobic digestion of full-scale anaerobically digested sludge using free nitrous acid pretreatment. Chemosphere, 2016, 150, 152-158.	8.2	14
152	Enhancing dewaterability of waste activated sludge by combined oxidative conditioning process with zero-valent iron and peroxymonosulfate. Water Science and Technology, 2017, 76, 2427-2433.	2.5	14
153	Effects of voltage on the emergence and spread of antibiotic resistance genes in microbial electrolysis cells: From mutation to horizontal gene transfer. Chemosphere, 2022, 291, 132703.	8.2	14
154	Microbial methane emissions from the non-methanogenesis processes: A critical review. Science of the Total Environment, 2022, 806, 151362.	8.0	14
155	Subcritical n-hexane/isopropanol extraction of lipid from wet microalgal pastes of Scenedesmus obliquus. World Journal of Microbiology and Biotechnology, 2018, 34, 39.	3.6	13
156	Enhancement of Lipid Production of Scenedesmus obliquus Cultivated in Municipal Wastewater by Plant Growth Regulator Treatment. Waste and Biomass Valorization, 2019, 10, 2479-2485.	3.4	12
157	Critical flux on a submerged membrane bioreactor for nitrification of source separated urine. Chemical Engineering Research and Design, 2021, 153, 518-526.	5.6	12
158	Inactivation of antibiotic resistant bacterium Escherichia coli by electrochemical disinfection on molybdenum carbide electrode. Chemosphere, 2022, 287, 132398.	8.2	12
159	Modelling Methane Production and Sulfate Reduction in Anaerobic Granular Sludge Reactor with Ethanol as Electron Donor. Scientific Reports, 2016, 6, 35312.	3.3	10
160	Free sulfurous acid (FSA) inhibition of biological thiosulfate reduction (BTR) in the sulfur cycle-driven wastewater treatment process. Chemosphere, 2017, 176, 212-220.	8.2	10
161	Enhancing post anaerobic digestion of full-scale anaerobically digested sludge using free nitrous acid treatment. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 713-717.	3.0	9
162	Improving Post-Anaerobic Digestion of Full-Scale Anaerobic Digestate Using Free Ammonia Treatment. ACS Sustainable Chemistry and Engineering, 2019, 7, 7171-7176.	6.7	9

#	Article	IF	Citations
163	Role of indigenous iron in improving sludge dewaterability through peroxidation. Scientific Reports, 2015, 5, 7516.	3.3	8
164	Improved degradation of anaerobically digested sludge during post aerobic digestion using ultrasonic pretreatment. Environmental Science: Water Research and Technology, 2017, 3, 857-864.	2.4	8
165	Enhanced hydrogen production by photofermentative microbial aggregation induced by <scp>I</scp> -cysteine: the effect of substrate concentration, C/N ratio and agitation rate. RSC Advances, 2015, 5, 91120-91126.	3.6	7
166	Modeling of Nitrous Oxide Production from Nitritation Reactors Treating Real Anaerobic Digestion Liquor. Scientific Reports, 2016, 6, 25336.	3.3	7
167	Fabrication of novel particle electrode \hat{I}^3 -Al2O3@ZIF-8 and its application for degradation of Rhodamine B. Water Science and Technology, 2019, 80, 109-116.	2.5	7
168	Biological Reduction of Organic Matter in Buji River Sediment (Shenzhen, China) with Artificial Oxygenation. Water (Switzerland), 2020, 12, 3592.	2.7	7
169	Improved stormwater management through the combination of the conventional water sensitive urban design and stormwater pipeline network. Chemical Engineering Research and Design, 2022, 159, 1164-1173.	5.6	7
170	Effect of carbon sources on the aggregation of photo fermentative bacteria induced by L-cysteine for enhancing hydrogen production. Environmental Science and Pollution Research, 2016, 23, 25312-25322.	5.3	6
171	Effects of particle size of zero-valent iron (ZVI) on peroxydisulfate-ZVI enhanced sludge dewaterability. Korean Journal of Chemical Engineering, 2017, 34, 2672-2677.	2.7	6
172	Free Ammonia Pretreatment to Enhance Biodegradation of Anaerobically Digested Sludge in Post Aerobic Digestion. ACS Sustainable Chemistry and Engineering, 2018, 6, 11836-11842.	6.7	6
173	Rapid enrichment and ammonia oxidation performance of ammonia-oxidizing archaea from an urban polluted river of China. Environmental Pollution, 2019, 255, 113258.	7.5	6
174	The mutation of Scenedesmus obliquus grown in municipal wastewater by laser combined with ultraviolet. Korean Journal of Chemical Engineering, 2019, 36, 880-885.	2.7	6
175	Adaptive Transfer Learning of Cross-Spatiotemporal Canonical Correlation Analysis for Plant-Wide Process Monitoring. Industrial & Engineering Chemistry Research, 2020, 59, 21602-21614.	3.7	6
176	Ecotoxicological response of Spirulina platensis to coexisted copper and zinc in anaerobic digestion effluent. Science of the Total Environment, 2022, 837, 155874.	8.0	6
177	A biofilm model for assessing perchlorate reduction in a methane-based membrane biofilm reactor. Chemical Engineering Journal, 2017, 327, 555-563.	12.7	5
178	Effects of the Combined Utilization of Ultrasonic/Hydrogen Peroxide on Excess Sludge Destruction. Water (Switzerland), 2021, 13, 266.	2.7	4
179	Comprehensive investigation into in-situ chemical oxidation of ferrous iron/sodium percarbonate (Fe(II)/SPC) processing dredged sediments for positive feedback of solid–liquid separation. Chemical Engineering Journal, 2021, 425, 130467.	12.7	4
180	Methane production from peroxymonosulfate pretreated algae biomass: Insights into microbial mechanisms, microcystin detoxification and heavy metal partitioning behavior. Science of the Total Environment, 2022, 834, 155500.	8.0	4

#	Article	lF	CITATIONS
181	Emerging investigator series: effects of sediment particle size on the spatial distributions of contaminants and bacterial communities in the reservoir sediments. Environmental Science: Water Research and Technology, 2022, 8, 957-967.	2.4	2
182	Dynamics of the activated sludge in a newly-defined green bio-sorption reactor (GBR). Chemical Engineering Journal, 2019, 374, 1046-1054.	12.7	1
183	Proof of concept: Integrated membrane distillation-forward osmosis approaches water production in a low-temperature CO2 capture. Environmental Technology and Innovation, 2021, 22, 101508.	6.1	1
184	A novel Mg(OH) ₂ binding layer-based DGT technique for measuring phosphorus in water and sediment. Environmental Sciences: Processes and Impacts, 2020, 22, 340-349.	3.5	0
185	Zero Valent Iron Significantly Enhances Methane Production from Waste Activated Sludge by Improving Biochemical Methane Potential Rather Than Hydrolysis Rate., 2016,, 219-236.		0