Maja Köhn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1505524/publications.pdf

Version: 2024-02-01

136740 123241 3,966 79 32 61 h-index citations g-index papers 95 95 95 5482 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The Staudinger Ligation—A Gift to Chemical Biology. Angewandte Chemie - International Edition, 2004, 43, 3106-3116.	7.2	532
2	Azide-Alkyne Coupling: A Powerful Reaction for Bioconjugate Chemistry. ChemBioChem, 2003, 4, 1147-1149.	1.3	194
3	Staudinger Ligation: A New Immobilization Strategy for the Preparation of Small-Molecule Arrays. Angewandte Chemie - International Edition, 2003, 42, 5830-5834.	7.2	186
4	Photochemical Surface Patterning by the Thiolâ€Ene Reaction. Angewandte Chemie - International Edition, 2008, 47, 4421-4424.	7.2	179
5	Diels-Alder Ligation and Surface Immobilization of Proteins. Angewandte Chemie - International Edition, 2006, 45, 296-301.	7.2	149
6	Molecular mechanism of SHP2 activation by PD-1 stimulation. Science Advances, 2020, 6, eaay4458.	4.7	149
7	Elucidating Human Phosphatase-Substrate Networks. Science Signaling, 2013, 6, rs10.	1.6	145
8	Site-Selective Protein Immobilization by Staudinger Ligation. Angewandte Chemie - International Edition, 2006, 45, 1408-1412.	7.2	136
9	Structure–Activity Analysis of Semisynthetic Nucleosomes: Mechanistic Insights into the Stimulation of Dot1L by Ubiquitylated Histone H2B. ACS Chemical Biology, 2009, 4, 958-968.	1.6	109
10	Molecular mechanisms of the PRL phosphatases. FEBS Journal, 2013, 280, 505-524.	2.2	109
11	Challenges and Opportunities in the Development of Protein Phosphatase-Directed Therapeutics. ACS Chemical Biology, 2013, 8, 36-45.	1.6	94
12	A Microarray Strategy for Mapping the Substrate Specificity of Protein Tyrosine Phosphatase. Angewandte Chemie - International Edition, 2007, 46, 7700-7703.	7.2	80
13	Functional Evaluation of Carbohydrate-Centred Glycoclusters by Enzyme-Linked Lectin Assay: Ligands for Concanavalin A. ChemBioChem, 2004, 5, 771-777.	1.3	79
14	Dual-Specificity Phosphatases as Molecular Targets for Inhibition in Human Disease. Antioxidants and Redox Signaling, 2014, 20, 2251-2273.	2.5	75
15	Approaches to Study Phosphatases. ACS Chemical Biology, 2016, 11, 2944-2961.	1.6	73
16	Noncanonical binding of Lck to CD3Î μ promotes TCR signaling and CAR function. Nature Immunology, 2020, 21, 902-913.	7.0	68
17	The human DEPhOsphorylation database DEPOD: a 2015 update. Nucleic Acids Research, 2015, 43, D531-D535.	6.5	65
18	Turn and Face the Strange: A New View on Phosphatases. ACS Central Science, 2020, 6, 467-477.	5. 3	65

#	Article	IF	CITATIONS
19	Development of a Peptide that Selectively Activates Protein Phosphatase†in Living Cells. Angewandte Chemie - International Edition, 2012, 51, 10054-10059.	7.2	64
20	Rapid erasure of hippocampal memory following inhibition of dentate gyrus granule cells. Nature Communications, 2016, 7, 10923.	5.8	63
21	Immobilization strategies for small molecule, peptide and protein microarrays. Journal of Peptide Science, 2009, 15, 393-397.	0.8	59
22	The Metastasis-Promoting Phosphatase PRL-3 Shows Activity toward Phosphoinositides. Biochemistry, 2011, 50, 7579-7590.	1.2	59
23	The cholesterol transfer protein GRAMD1A regulates autophagosome biogenesis. Nature Chemical Biology, 2019, 15, 710-720.	3.9	59
24	Biochemical evaluation of virtual screening methods reveals a cell-active inhibitor of the cancer-promoting phosphatases of regenerating liver. European Journal of Medicinal Chemistry, 2014, 88, 89-100.	2.6	51
25	Microcystins: Synthesis and structure–activity relationship studies toward PP1 and PP2A. Bioorganic and Medicinal Chemistry, 2018, 26, 1118-1126.	1.4	51
26	Preparation of Biomolecule Microstructures and Microarrays by Thiol–ene Photoimmobilization. ChemBioChem, 2010, 11, 235-247.	1.3	50
27	The human DEPhOsphorylation Database DEPOD: 2019 update. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	42
28	Mouse Rif1 is a regulatory subunit of protein phosphatase 1 (PP1). Scientific Reports, 2017, 7, 2119.	1.6	41
29	Dissecting the sequence determinants for dephosphorylation by the catalytic subunits of phosphatases PP1 and PP2A. Nature Communications, 2020, 11, 3583.	5.8	38
30	VHR / DUSP 3 phosphatase: structure, function and regulation. FEBS Journal, 2015, 282, 1871-1890.	2.2	35
31	Phosphatase of regenerating liver (PRL)-3 disrupts epithelial architecture by altering the post-mitotic midbody position. Journal of Cell Science, 2016, 129, 4130-4142.	1.2	33
32	A generic building block for C- and N-terminal protein-labeling and protein-immobilization. Bioorganic and Medicinal Chemistry, 2006, 14, 6288-6306.	1.4	32
33	Activation of protein phosphatase 1 by a selective phosphatase disrupting peptide reduces sarcoplasmic reticulum Ca ²⁺ leak in human heart failure. European Journal of Heart Failure, 2018, 20, 1673-1685.	2.9	30
34	Biosensorâ€Enabled Multiplexed Onâ€Site Therapeutic Drug Monitoring of Antibiotics. Advanced Materials, 2022, 34, e2104555.	11.1	29
35	Maintaining proteostasis under mechanical stress. EMBO Reports, 2021, 22, e52507.	2.0	28
36	Targeting the untargetable: recent advances in the selective chemical modulation of protein phosphatase-1 activity. Current Opinion in Chemical Biology, 2013, 17, 361-368.	2.8	27

#	Article	IF	Citations
37	Procyanidins Negatively Affect the Activity of the Phosphatases of Regenerating Liver. PLoS ONE, 2015, 10, e0134336.	1.1	25
38	Regulatory mechanisms of phosphatase of regenerating liver (PRL)-3. Biochemical Society Transactions, 2016, 44, 1305-1312.	1.6	25
39	Development of Accessible Peptidic Tool Compounds To Study the Phosphatase PTP1B in Intact Cells. ACS Chemical Biology, 2014, 9, 769-776.	1.6	22
40	Protein kinase/phosphatase balance mediates the effects of increased late sodium current on ventricular calcium cycling. Basic Research in Cardiology, 2019, 114, 13.	2.5	22
41	The receptor PTPRU is a redox sensitive pseudophosphatase. Nature Communications, 2020, 11, 3219.	5.8	21
42	Synthesis of Highly Selective Submicromolar Microcystinâ€Based Inhibitors of Protein Phosphatase (PP)2A over PP1. Angewandte Chemie - International Edition, 2016, 55, 13985-13989.	7.2	20
43	Chemical Activators of Protein Phosphatase-1 Induce Calcium Release inside Intact Cells. Chemistry and Biology, 2013, 20, 1179-1186.	6.2	17
44	Keep it on the edge: The post-mitotic midbody as a polarity signal unit. Communicative and Integrative Biology, 2017, 10, e1338990.	0.6	15
45	Interrogating PP1 Activity in the MAPK Pathway with Optimized PP1â€Disrupting Peptides. ChemBioChem, 2019, 20, 66-71.	1.3	14
46	Phosphatases: Their Roles in Cancer and Their Chemical Modulators. Advances in Experimental Medicine and Biology, 2016, 917, 209-240.	0.8	13
47	Unnatural Amino Acid Mutagenesis Reveals Dimerization As a Negative Regulatory Mechanism of VHR's Phosphatase Activity. ACS Chemical Biology, 2014, 9, 1451-1459.	1.6	12
48	Synthesis of hydrolysis-resistant pyridoxal 5′-phosphate analogs and their biochemical and X-ray crystallographic characterization with the pyridoxal phosphatase chronophin. Bioorganic and Medicinal Chemistry, 2015, 23, 2819-2827.	1.4	12
49	DTL-DephosSite: Deep Transfer Learning Based Approach to Predict Dephosphorylation Sites. Frontiers in Cell and Developmental Biology, 2021, 9, 662983.	1.8	12
50	Effects of stably incorporated iron on protein phosphataseâ€1 structure and activity. FEBS Letters, 2018, 592, 4028-4038.	1.3	11
51	Towards Dissecting the Mechanism of Protein Phosphataseâ€1 Inhibition by Its C â€Terminal Phosphorylation. ChemBioChem, 2021, 22, 834-838.	1.3	11
52	Protein tyrosine phosphatases in multiple myeloma. Cancer Letters, 2021, 501, 105-113.	3.2	11
53	Development of a solid phase synthesis strategy for soluble phosphoinositide analogues. Chemical Science, 2012, 3, 1893.	3.7	10
54	Structural and mechanistic insights into the interaction of the circadian transcription factor BMAL1 with the KIX domain of the CREB-binding protein. Journal of Biological Chemistry, 2019, 294, 16604-16619.	1.6	9

#	Article	IF	CITATIONS
55	Development of a Photoactivatable Protein Phosphatase-1-Disrupting Peptide. Journal of Organic Chemistry, 2020, 85, 1712-1717.	1.7	9
56	Miklós Bodanszky Award Lecture: Advances in the selective targeting of protein phosphataseâ€1 and phosphataseâ€2A with peptides. Journal of Peptide Science, 2017, 23, 749-756.	0.8	8
57	Evolutionary crossroads of cell signaling: PP1 and PP2A substrate sites in intrinsically disordered regions. Biochemical Society Transactions, 2021, 49, 1065-1074.	1.6	8
58	Azide–alkyne cycloaddition-mediated cyclization of phosphonopeptides and their evaluation as PTP1B binders and enrichment tools. Bioorganic and Medicinal Chemistry, 2015, 23, 2848-2853.	1.4	7
59	Structural basis of Naa20 activity towards a canonical NatB substrate. Communications Biology, 2021, 4, 2.	2.0	6
60	Efficient Scaled-Up Synthesis of N-α-Fmoc-4-Phosphono(difluoromethyl)-l-phenylalanine and Its Incorporation into Peptides. Synthesis, 2011, 2011, 3255-3260.	1.2	5
61	Cross-TCR Antagonism Revealed by Optogenetically Tuning the Half-Life of the TCR Ligand Binding. International Journal of Molecular Sciences, 2021, 22, 4920.	1.8	5
62	finDr: A web server for in silico D-peptide ligand identification. Synthetic and Systems Biotechnology, 2021, 6, 402-413.	1.8	5
63	A Molecular Têteâ€Ãâ€Tête Arranged by a Designed Adaptor Protein. Angewandte Chemie - International Edition, 2012, 51, 8160-8162.	7.2	4
64	Prediction and verification of novel peptide targets of protein tyrosine phosphatase 1B. Bioorganic and Medicinal Chemistry, 2016, 24, 3255-3258.	1.4	4
65	Mutational Analysis of a Conserved Glutamate Reveals Unique Mechanistic and Structural Features of the Phosphatase PRL-3. ACS Omega, 2017, 2, 9171-9180.	1.6	4
66	Simultaneous Protein Tagging in Two Colors. Chemistry and Biology, 2008, 15, 91-92.	6.2	3
67	Synthesis of Highly Selective Submicromolar Microcystinâ€Based Inhibitors of Protein Phosphatase (PP)2A over PP1. Angewandte Chemie, 2016, 128, 14191-14195.	1.6	3
68	The phosphatase PRL-3 affects intestinal homeostasis by altering the crypt cell composition. Journal of Molecular Medicine, 2021, 99, 1413-1426.	1.7	3
69	Short peptide pharmacophores developed from protein phosphatase-1 disrupting peptides (PDPs). Bioorganic and Medicinal Chemistry, 2022, 65, 116785.	1.4	3
70	Quantitative proteomics identifies PTP1B as modulator of B cell antigen receptor signaling. Life Science Alliance, 2021, 4, e202101084.	1.3	2
71	Chemical Biology Techniques Unlock the Secrets of Casein Kinase 2 Regulation by Phosphorylation and Glycosylation. ChemBioChem, 2012, 13, 1253-1255.	1.3	1
72	Omics and chemical biology—a powerful synergism. Current Opinion in Chemical Biology, 2012, 16, 204-205.	2.8	1

#	Article	IF	CITATIONS
73	Chemistry and biology of protein and inositol phosphorylation. Bioorganic and Medicinal Chemistry, 2015, 23, 2747-2748.	1.4	1
74	Biosensorâ€Enabled Multiplexed Onâ€Site Therapeutic Drug Monitoring of Antibiotics (Adv. Mater.) Tj ETQq0 0	O rgBT /Ov	verlock 10 Tf
75	PLDMS: Phosphopeptide Library Dephosphorylation Followed by Mass Spectrometry Analysis to Determine the Specificity of Phosphatases for Dephosphorylation Site Sequences. Methods in Molecular Biology, 2022, , 43-64.	0.4	1
76	Building Up a Chemical Proteomics Network in Europe and Beyond. ACS Chemical Biology, 2014, 9, 1647-1648.	1.6	0
77	Phosphatases: Their Roles in Cancer and Their Chemical Modulators. , 2015, , 209-240.		0
78	P5841PP1 activation as novel antiarrhythmic approach in human heart failure. European Heart Journal, 2017, 38, .	1.0	0
79	The Leishmania donovani LDBPK_220120.1 Gene Encodes for an Atypical Dual Specificity Lipid-Like Phosphatase Expressed in Promastigotes and Amastigotes; Substrate Specificity, Intracellular Localizations, and Putative Role(s). Frontiers in Cellular and Infection Microbiology, 2021, 11, 591868.	1.8	0