MariCruz GonzÃ;lez GarcÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1505333/publications.pdf

Version: 2024-02-01

31 papers 2,530 citations

304743 22 h-index 32 g-index

32 all docs

32 docs citations

times ranked

32

2927 citing authors

#	Article	IF	CITATIONS
1	Redox regulation of chloroplast metabolism. Plant Physiology, 2021, 186, 9-21.	4.8	51
2	Current Knowledge on Mechanisms Preventing Photosynthesis Redox Imbalance in Plants. Antioxidants, 2021, 10, 1789.	5.1	9
3	Insights into the function of NADPH thioredoxin reductase C (NTRC) based on identification of NTRC-interacting proteins in vivo. Journal of Experimental Botany, 2019, 70, 5787-5798.	4.8	28
4	Chloroplast Redox Regulatory Mechanisms in Plant Adaptation to Light and Darkness. Frontiers in Plant Science, 2019, 10, 380.	3.6	61
5	An event of alternative splicing affects the expression of the NTRC gene, encoding NADPH-thioredoxin reductase C, in seed plants. Plant Science, 2017, 258, 21-28.	3.6	14
6	NADPH Thioredoxin Reductase C and Thioredoxins Act Concertedly in Seedling Development. Plant Physiology, 2017, 174, 1436-1448.	4.8	62
7	Metabolic Control of Tobacco Pollination by Sugars and Invertases. Plant Physiology, 2017, 173, 984-997.	4.8	67
8	Photosynthetic activity of cotyledons is critical during post-germinative growth and seedling establishment. Plant Signaling and Behavior, 2017, 12, e1347244.	2.4	7
9	Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato. Journal of Experimental Botany, 2015, 66, 863-878.	4.8	75
10	Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity. Journal of Experimental Botany, 2014, 65, 6081-6095.	4.8	61
11	Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide. Frontiers in Plant Science, 2013, 4, 310.	3.6	21
12	Chloroplast redox homeostasis is essential for lateral root formation in Arabidopsis. Plant Signaling and Behavior, 2012, 7, 1177-1179.	2.4	12
13	NADPH Thioredoxin Reductase C Is Localized in Plastids of Photosynthetic and Nonphotosynthetic Tissues and Is Involved in Lateral Root Formation in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 1534-1548.	6.6	82
14	Extracellular invertase is involved in the regulation of clubroot disease in <i>Arabidopsis thaliana</i> . Molecular Plant Pathology, 2011, 12, 247-262.	4.2	91
15	Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. Journal of Experimental Botany, 2010, 61, 4043-4054.	4.8	183
16	NADPH Thioredoxin Reductase C Controls the Redox Status of Chloroplast 2-Cys Peroxiredoxins in Arabidopsis thaliana. Molecular Plant, 2009, 2, 298-307.	8.3	75
17	The Quaternary Structure of NADPH Thioredoxin Reductase C Is Redox-Sensitive. Molecular Plant, 2009, 2, 457-467.	8.3	23
18	NTRC new ways of using NADPH in the chloroplast. Physiologia Plantarum, 2008, 133, 516-524.	5.2	63

#	Article	IF	CITATIONS
19	Regulation of Arbuscular Mycorrhization by Carbon. The Symbiotic Interaction Cannot Be Improved by Increased Carbon Availability Accomplished by Root-Specifically Enhanced Invertase Activity. Plant Physiology, 2007, 143, 1827-1840.	4.8	65
20	Gibberellin-regulated expression of neutral and vacuolar invertase genes in petioles of sugar beet plants. Plant Science, 2007, 172, 839-846.	3.6	17
21	Metabolic control of seedling development by invertases. Functional Plant Biology, 2007, 34, 508.	2.1	13
22	Gibberellin-dependent induction of tomato extracellular invertase Lin7 is required for pollen development. Functional Plant Biology, 2006, 33, 547.	2.1	33
23	Circadian and developmental regulation of vacuolar invertase expression in petioles of sugar beet plants. Planta, 2005, 222, 386-395.	3.2	38
24	Extracellular Invertase Is an Essential Component of Cytokinin-Mediated Delay of Senescence [W]. Plant Cell, 2004, 16, 1276-1287.	6.6	316
25	Function and regulation of plant invertases: sweet sensations. Trends in Plant Science, 2004, 9, 606-613.	8.8	761
26	Abiotic stresses affecting water balance induce phosphoenolpyruvate carboxylase expression in roots of wheat seedlings. Planta, 2003, 216, 985-992.	3.2	69
27	Isolation and characterisation of a wheat phosphoenolpyruvate carboxylase gene. Modelling of the encoded protein. Plant Science, 2002, 162, 233-238.	3.6	23
28	A germination-related gene encoding a serine carboxypeptidase is expressed during the differentiation of the vascular tissue in wheat grains and seedlings. Planta, 2002, 215, 727-734.	3.2	46
29	Evidence for a Slow-Turnover Form of the Ca2+-Independent Phosphoenolpyruvate Carboxylase Kinase in the Aleurone-Endosperm Tissue of Germinating Barley Seeds1. Plant Physiology, 1999, 119, 511-520.	4.8	31
30	Expression and Localization of Phosphoenolpyruvate Carboxylase in Developing and Germinating Wheat Grains 1. Plant Physiology, 1998, 116, 1249-1258.	4.8	79
31	In Vivo and in Vitro Phosphorylation of the Phosphoenolpyruvate Carboxylase from Wheat Seeds during Germination. Plant Physiology, 1996, 111, 551-558.	4.8	49