List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1505133/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Plant immunity by damage-associated molecular patterns (DAMPs). Essays in Biochemistry, 2022, 66, 459-469.                                                                                                                         | 4.7 | 13        |
| 2  | Berberine Bridge Enzyme-like Oligosaccharide Oxidases Act as Enzymatic Transducers Between<br>Microbial Clycoside Hydrolases and Plant Peroxidases. Molecular Plant-Microbe Interactions, 2022,<br>35, 881-886.                    | 2.6 | 9         |
| 3  | The intracellular <scp>ROS</scp> accumulation in elicitorâ€induced immunity requires the multiple<br>organelleâ€targeted Arabidopsis <scp>NPK1</scp> â€related protein kinases. Plant, Cell and Environment,<br>2021, 44, 931-947. | 5.7 | 11        |
| 4  | Dampening the DAMPs: How Plants Maintain the Homeostasis of Cell Wall Molecular Patterns and Avoid Hyper-Immunity. Frontiers in Plant Science, 2020, 11, 613259.                                                                   | 3.6 | 39        |
| 5  | Cell wall traits that influence plant development, immunity, and bioconversion. Plant Journal, 2019, 97, 134-147.                                                                                                                  | 5.7 | 106       |
| 6  | An Arabidopsis berberine bridge enzymeâ€like protein specifically oxidizes cellulose oligomers and plays<br>a role in immunity. Plant Journal, 2019, 98, 540-554.                                                                  | 5.7 | 80        |
| 7  | An EFR fâ€9 chimera confers enhanced resistance to bacterial pathogens by SOBIR1―and BAK1â€dependent recognition of elf18. Molecular Plant Pathology, 2019, 20, 751-764.                                                           | 4.2 | 19        |
| 8  | Four Arabidopsis berberine bridge enzymeâ€like proteins are specific oxidases that inactivate the<br>elicitorâ€active oligogalacturonides. Plant Journal, 2018, 94, 260-273.                                                       | 5.7 | 114       |
| 9  | Extracellular DAMPs in Plants and Mammals: Immunity, Tissue Damage and Repair. Trends in<br>Immunology, 2018, 39, 937-950.                                                                                                         | 6.8 | 105       |
| 10 | Loss of the Arabidopsis Protein Kinases ANPs Affects Root Cell Wall Composition, and Triggers the<br>Cell Wall Damage Syndrome. Frontiers in Plant Science, 2018, 8, 2234.                                                         | 3.6 | 10        |
| 11 | Immune responses induced by oligogalacturonides are differentially affected by AvrPto and loss of BAK1/BKK1 and PEPR1/PEPR2. Molecular Plant Pathology, 2017, 18, 582-595.                                                         | 4.2 | 42        |
| 12 | GRP-3andKAPP,encoding interactors of WAK1, negatively affect defense responses induced by<br>oligogalacturonides and local response to wounding. Journal of Experimental Botany, 2016, 67,<br>1715-1729.                           | 4.8 | 77        |
| 13 | The Arabidopsis thaliana Class III Peroxidase AtPRX71 Negatively Regulates Growth under Physiological Conditions and in Response to Cell Wall Damage Plant Physiology, 2015, 169, pp.01464.2015.                                   | 4.8 | 56        |
| 14 | Sensitive detection and measurement of oligogalacturonides in Arabidopsis. Frontiers in Plant<br>Science, 2015, 06, 258.                                                                                                           | 3.6 | 26        |
| 15 | Combination of Pretreatment with White Rot Fungi and Modification of Primary and Secondary Cell<br>Walls Improves Saccharification. Bioenergy Research, 2015, 8, 175-186.                                                          | 3.9 | 10        |
| 16 | An update on polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein that protects crop plants against pathogens. Frontiers in Plant Science, 2015, 6, 146.                                                     | 3.6 | 125       |
| 17 | Controlled expression of pectic enzymes in Arabidopsis thaliana enhances biomass conversion without adverse effects on growth. Phytochemistry, 2015, 112, 221-230.                                                                 | 2.9 | 27        |
| 18 | Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5533-5538.        | 7.1 | 179       |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A lower content of de-methylesterified homogalacturonan improves enzymatic cell separation and isolation of mesophyll protoplasts in Arabidopsis. Phytochemistry, 2015, 112, 188-194.                                           | 2.9 | 29        |
| 20 | Enhancing immunity by engineering DAMPs. Oncotarget, 2015, 6, 28523-28524.                                                                                                                                                      | 1.8 | 7         |
| 21 | Plant cell wall dynamics and wall-related susceptibility in plantââ,¬â€œpathogen interactions. Frontiers<br>in Plant Science, 2014, 5, 228.                                                                                     | 3.6 | 348       |
| 22 | Wounding in the plant tissue: the defense of a dangerous passage. Frontiers in Plant Science, 2014, 5, 470.                                                                                                                     | 3.6 | 279       |
| 23 | The Arabidopsis NUCLEUS- AND PHRAGMOPLAST-LOCALIZED KINASE1-Related Protein Kinases Are Required for Elicitor-Induced Oxidative Burst and Immunity. Plant Physiology, 2014, 165, 1188-1202.                                     | 4.8 | 57        |
| 24 | Transgenic expression of pectin methylesterase inhibitors limits tobamovirus spread in tobacco and <scp>A</scp> rabidopsis. Molecular Plant Pathology, 2014, 15, 265-274.                                                       | 4.2 | 67        |
| 25 | How do pectin methylesterases and their inhibitors affect the spreading of tobamovirus?. Plant<br>Signaling and Behavior, 2014, 9, e972863.                                                                                     | 2.4 | 17        |
| 26 | The pgip family in soybean and three other legume species: evidence for a birth-and-death model of evolution. BMC Plant Biology, 2014, 14, 189.                                                                                 | 3.6 | 15        |
| 27 | Analysis of pectin mutants and natural accessions of Arabidopsis highlights the impact of<br>de-methyl-esterified homogalacturonan on tissue saccharification. Biotechnology for Biofuels, 2013,<br>6, 163.                     | 6.2 | 44        |
| 28 | Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Frontiers in Plant Science, 2013, 4, 49.                                                                              | 3.6 | 401       |
| 29 | A Single Amino-Acid Substitution Allows Endo-Polygalacturonase of Fusarium verticillioides to<br>Acquire Recognition by PGIP2 from Phaseolus vulgaris. PLoS ONE, 2013, 8, e80610.                                               | 2.5 | 23        |
| 30 | A gene for plant protection: expression of a bean polygalacturonase inhibitor in tobacco confers a<br>strong resistance against Rhizoctonia solani and two oomycetes. Frontiers in Plant Science, 2012, 3,<br>268.              | 3.6 | 34        |
| 31 | Methyl esterification of pectin plays a role during plant–pathogen interactions and affects plant resistance to diseases. Journal of Plant Physiology, 2012, 169, 1623-1630.                                                    | 3.5 | 213       |
| 32 | A functional pectin methylesterase inhibitor protein (SolyPMEI) is expressed during tomato fruit ripening and interacts with PME-1. Plant Molecular Biology, 2012, 79, 429-442.                                                 | 3.9 | 63        |
| 33 | Pectin Methylesterase Is Induced in <i>Arabidopsis</i> upon Infection and Is Necessary for a<br>Successful Colonization by Necrotrophic Pathogens. Molecular Plant-Microbe Interactions, 2011, 24,<br>432-440.                  | 2.6 | 146       |
| 34 | Engineering plant resistance by constructing chimeric receptors that recognize damageâ€associated molecular patterns (DAMPs). FEBS Letters, 2011, 585, 1521-1528.                                                               | 2.8 | 95        |
| 35 | Structural Resolution of the Complex between a Fungal Polygalacturonase and a Plant<br>Polygalacturonase-Inhibiting Protein by Small-Angle X-Ray Scattering Â. Plant Physiology, 2011, 157,<br>599-607.                         | 4.8 | 38        |
| 36 | A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9452-9457. | 7.1 | 638       |

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves<br>saccharification of plant tissues for bioconversion. Proceedings of the National Academy of Sciences<br>of the United States of America, 2010, 107, 616-621.    | 7.1 | 192       |
| 38 | Integration of evolutionary and desolvation energy analysis identifies functional sites in a plant<br>immunity protein. Proceedings of the National Academy of Sciences of the United States of America,<br>2009, 106, 7666-7671.                       | 7.1 | 68        |
| 39 | Three aspartic acid residues of polygalacturonase-inhibiting protein (PGIP) fromPhaseolus vulgarisare critical for inhibition ofFusarium phyllophilumPG. Plant Biology, 2009, 11, 738-743.                                                              | 3.8 | 18        |
| 40 | Crystal structure of the endopolygalacturonase from the phytopathogenic fungus<br><i>Colletotrichum lupini</i> and its interaction with polygalacturonaseâ€inhibiting proteins. Proteins:<br>Structure, Function and Bioinformatics, 2008, 70, 294-299. | 2.6 | 45        |
| 41 | Identification by 2â€Ð DIGE of apoplastic proteins regulated by oligogalacturonides in <b><i>Arabidopsis<br/>thaliana</i></b> . Proteomics, 2008, 8, 1042-1054.                                                                                         | 2.2 | 63        |
| 42 | Transgenic Expression of a Fungal endo-Polygalacturonase Increases Plant Resistance to Pathogens and Reduces Auxin Sensitivity. Plant Physiology, 2008, 146, 323-324.                                                                                   | 4.8 | 112       |
| 43 | Overexpression of Pectin Methylesterase Inhibitors in Arabidopsis Restricts Fungal Infection by<br>Botrytis cinerea Â. Plant Physiology, 2007, 143, 1871-1880.                                                                                          | 4.8 | 329       |
| 44 | Reduced Content of Homogalacturonan Does Not Alter the Ion-Mediated Increase in Xylem Hydraulic<br>Conductivity in Tobacco. Plant Physiology, 2007, 143, 1975-1981.                                                                                     | 4.8 | 15        |
| 45 | Plant neurobiology: no brain, no gain?. Trends in Plant Science, 2007, 12, 135-136.                                                                                                                                                                     | 8.8 | 146       |
| 46 | Oligogalacturonide-induced changes in the nuclear proteome of Arabidopsis thaliana. International<br>Journal of Mass Spectrometry, 2007, 268, 277-283.                                                                                                  | 1.5 | 10        |
| 47 | Polygalacturonase inhibiting proteins: players in plant innate immunity?. Trends in Plant Science, 2006, 11, 65-70.                                                                                                                                     | 8.8 | 153       |
| 48 | Antisense Expression of the Arabidopsis thaliana AtPGIP1 Gene Reduces Polygalacturonase-Inhibiting<br>Protein Accumulation and Enhances Susceptibility to Botrytis cinerea. Molecular Plant-Microbe<br>Interactions, 2006, 19, 931-936.                 | 2.6 | 87        |
| 49 | Polygalacturonase-inhibiting protein (PGIP) in plant defence: a structural view. Phytochemistry, 2006,<br>67, 528-533.                                                                                                                                  | 2.9 | 88        |
| 50 | Polygalacturonase-Inhibiting Protein Interacts with Pectin through a Binding Site Formed by Four<br>Clustered Residues of Arginine and Lysine. Plant Physiology, 2006, 141, 557-564.                                                                    | 4.8 | 88        |
| 51 | Characterization of a membrane-associated apoplastic lipoxygenase in Phaseolus vulgaris L<br>Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1748, 9-19.                                                                                 | 2.3 | 14        |
| 52 | The Polygalacturonase-Inhibiting Protein PGIP2 of Phaseolus vulgaris Has Evolved a Mixed Mode of<br>Inhibition of Endopolygalacturonase PG1 of Botrytis cinerea. Plant Physiology, 2005, 139, 1380-1388.                                                | 4.8 | 53        |
| 53 | Structural Basis for the Interaction between Pectin Methylesterase and a Specific Inhibitor Protein.<br>Plant Cell, 2005, 17, 849-858.                                                                                                                  | 6.6 | 207       |
| 54 | Targeted Modification of Homogalacturonan by Transgenic Expression of a Fungal Polygalacturonase<br>Alters Plant Growth. Plant Physiology, 2004, 135, 1294-1304.                                                                                        | 4.8 | 59        |

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | TwoArabidopsis thalianagenes encode functional pectin methylesterase inhibitors1. FEBS Letters, 2004, 557, 199-203.                                                                                                                                          | 2.8 | 97        |
| 56 | The crystal structure of polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein<br>involved in plant defense. Proceedings of the National Academy of Sciences of the United States of<br>America, 2003, 100, 10124-10128.                | 7.1 | 195       |
| 57 | Tandemly Duplicated Arabidopsis Genes That Encode Polygalacturonase-Inhibiting Proteins Are<br>Regulated Coordinately by Different Signal Transduction Pathways in Response to Fungal Infection.<br>Plant Cell, 2003, 15, 93-106.                            | 6.6 | 240       |
| 58 | Structural requirements of endopolygalacturonase for the interaction with PGIP<br>(polygalacturonase-inhibiting protein). Proceedings of the National Academy of Sciences of the United<br>States of America, 2001, 98, 13425-13430.                         | 7.1 | 131       |
| 59 | THEROLE OFPOLYGALACTURONASE-INHIBITINGPROTEINS(PGIPS)INDEFENSEAGAINSTPATHOGENICFUNGI.<br>Annual Review of Phytopathology, 2001, 39, 313-335.                                                                                                                 | 7.8 | 325       |
| 60 | Secondary Structure and Post-Translational Modifications of the Leucine-Rich Repeat Protein PCIP<br>(Polygalacturonase-Inhibiting Protein) fromPhaseolus vulgarisâ€. Biochemistry, 2001, 40, 569-576.                                                        | 2.5 | 62        |
| 61 | The Interaction betweenEndopolygalacturonase fromFusarium moniliformeand PGIP fromPhaseolus<br>vulgarisStudied by Surface Plasmon Resonance and Mass Spectrometry. Comparative and Functional<br>Genomics, 2001, 2, 359-364.                                 | 2.0 | 23        |
| 62 | Extracellular H2O2 Induced by Oligogalacturonides Is Not Involved in the Inhibition of the<br>Auxin-Regulated rolB Gene Expression in Tobacco Leaf Explants. Plant Physiology, 2000, 122, 1379-1386.                                                         | 4.8 | 248       |
| 63 | Crystallization and preliminary X-ray diffraction study of the endo-polygalacturonase from Fusarium<br>moniliforme. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1359-1361.                                                       | 2.5 | 4         |
| 64 | A leucine-rich repeat receptor-like protein kinase (LRPKm1) gene is induced in Malus x domestica by<br>Venturia inaequalis infection and salicylic acid treatment. Plant Molecular Biology, 1999, 40, 945-957.                                               | 3.9 | 58        |
| 65 | The specificity of polygalacturonase-inhibiting protein (PGIP): a single amino acid substitution in the solvent-exposed l²-strand/l²-turn region of the leucine-rich repeats (LRRs) confers a new recognition capability. EMBO Journal, 1999, 18, 2352-2363. | 7.8 | 214       |
| 66 | The promoter of a gene encoding a polygalacturonase-inhibiting protein of Phaseolus vulgaris L. is activated by wounding but not by elicitors or pathogen infection. Planta, 1998, 205, 165-174.                                                             | 3.2 | 44        |
| 67 | Targeted Mutants of Cochliobolus carbonum Lacking the Two Major Extracellular<br>Polygalacturonases. Applied and Environmental Microbiology, 1998, 64, 1497-1503.                                                                                            | 3.1 | 76        |
| 68 | Polygalacturonase-Inhibiting Proteins (PGIPs) with Different Specificities Are Expressed in Phaseolus<br>vulgaris. Molecular Plant-Microbe Interactions, 1997, 10, 852-860.                                                                                  | 2.6 | 112       |
| 69 | Developmental and pathogen-induced accumulation of transcripts of polygalacturonase-inhibiting protein in Phaseolus vulgaris L Planta, 1997, 202, 284-292.                                                                                                   | 3.2 | 32        |
| 70 | Polygalacturonase-Inhibiting Proteins (PGIPs): Their Role in Specificity and Defense against Pathogenic<br>Fungi. , 1997, , 76-93.                                                                                                                           |     | 22        |
| 71 | Differential accumulation of PGIP (polygalacturonase-inhibiting protein) mRNA in two near-isogenic<br>lines ofPhaseolus vulgarisL. upon infection withColletotrichum lindemuthianum. Physiological and<br>Molecular Plant Pathology, 1996, 48, 83-89.        | 2.5 | 43        |
| 72 | Oligogalacturonides Prevent Rhizogenesis in rolB-Transformed Tobacco Explants by Inhibiting<br>Auxin-Induced Expression of the rolB Gene. Plant Cell, 1996, 8, 477.                                                                                          | 6.6 | 16        |

FELICE CERVONE

| #  | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Oligogalacturonides Prevent Rhizogenesis in rolB-Transformed Tobacco Explants by Inhibiting<br>Auxin-Induced Expression of the rolB Gene Plant Cell, 1996, 8, 477-487.                                                                                                         | 6.6 | 88        |
| 74 | Mutagenesis of Endopolygalacturonase from <i>Fusarium moniliforme:</i> Histidine Residue 234 Is<br>Critical for Enzymatic and Macerating Activities and Not for Binding to Polygalacturonase-Inhibiting<br>Protein (PGIP). Molecular Plant-Microbe Interactions, 1996, 9, 617. | 2.6 | 69        |
| 75 | Extracellular Accumulation of an Auxin-Regulated Protein in <i>Phaseolus Vulgaris</i> L. Cells is<br>Inhibited by Oligogalacturonides. Giornale Botanico Italiano (Florence, Italy: 1962), 1995, 129, 994-995.                                                                 | 0.0 | 0         |
| 76 | The accumulation of PGIP is correlated with the hypersensitive response in racecultivar interactions.<br>Giornale Botanico Italiano (Florence, Italy: 1962), 1995, 129, 1130-1131.                                                                                             | 0.0 | 0         |
| 77 | Extracellular Accumulation of an Auxin-regulated Protein in Phaseolus vulgaris L. Cells is Inhibited by Oligogalacturonides. Journal of Plant Physiology, 1995, 147, 367-370.                                                                                                  | 3.5 | 3         |
| 78 | Polygalacturonase-inhibiting protein accumulates in Phaseolus vulgaris L. in response to wounding, elicitors and fungal infection. Plant Journal, 1994, 5, 625-634.                                                                                                            | 5.7 | 105       |
| 79 | Polygalacturonase, PGIP and oligogalacturonides in cell-cell communication. Biochemical Society Transactions, 1994, 22, 394-397.                                                                                                                                               | 3.4 | 86        |
| 80 | Oligogalacturonides inhibit the formation of roots on tobacco explants. Plant Journal, 1993, 4, 207-213.                                                                                                                                                                       | 5.7 | 91        |
| 81 | Cytological localization of thePGIP genes in the embryo suspensor cells ofPhaseolus vulgavis L.<br>Theoretical and Applied Genetics, 1993, 87, 369-373.                                                                                                                        | 3.6 | 54        |
| 82 | Fusarium moniliforme secretes four endopolygalacturonases derived from a single gene product.<br>Physiological and Molecular Plant Pathology, 1993, 43, 453-462.                                                                                                               | 2.5 | 56        |
| 83 | Cloning and characterization of a gene encoding the endopolygalacturonase of Fusarium moniliforme. Mycological Research, 1993, 97, 497-505.                                                                                                                                    | 2.5 | 72        |
| 84 | Expression and localization of polygalacturonase during the outgrowth of lateral roots in Allium porrum L. Planta, 1992, 188, 164-172.                                                                                                                                         | 3.2 | 58        |
| 85 | Cloning and characterization of the gene encoding the endopolygalacturonase-inhibiting protein<br>(PGIP) of Phaseolus vulgaris L Plant Journal, 1992, 2, 367-373.                                                                                                              | 5.7 | 115       |
| 86 | Cloning and characterization of the gene encoding the endo polygalacturonase-inhibiting protein<br>(PGIP) of Phaseolus vulgaris L Plant Journal, 1992, 2, 367-373.                                                                                                             | 5.7 | 95        |
| 87 | Bacterial endopectate lyase: evidence that plant cell wall pH prevents tissue maceration and increases the half-life of elicitor-active oligogalacturonides. Physiological and Molecular Plant Pathology, 1991, 39, 335-344.                                                   | 2.5 | 31        |
| 88 | Can Phaseolus PGIP inhibit pectic enzymes from microbes and plants?. Phytochemistry, 1990, 29, 447-449.                                                                                                                                                                        | 2.9 | 85        |
| 89 | Endopolygalacturonase Is Not Required for Pathogenicity of Cochliobolus carbonum on Maize. Plant<br>Cell, 1990, 2, 1191.                                                                                                                                                       | 6.6 | 53        |
| 90 | A Polygalacturonase-Inhibiting Protein in the Flowers of Phaseolus vulgaris L Journal of Plant<br>Physiology, 1990, 136, 513-518.                                                                                                                                              | 3.5 | 60        |

6

| #   | Article                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Endopolygalacturonase from the maize pathogen Cochliobolus carbonum. Physiological and<br>Molecular Plant Pathology, 1990, 36, 351-359.                                                                                                                                                       | 2.5 | 47        |
| 92  | Isolation and characterization of pectin inducible cDNA clones from the phytopathogenic fungus<br>Fusarium moniliforme. Mycological Research, 1990, 94, 635-640.                                                                                                                              | 2.5 | 5         |
| 93  | Host-pathogen interactions. XXXVII. Abilities of the Polygalacturonase-inhibiting proteins from four cultivars of Phaseolus vulgaris to inhibit the endopolygalacturonases from three races of Colletotrichum lindemuthianum. Physiological and Molecular Plant Pathology, 1990, 36, 421-435. | 2.5 | 41        |
| 94  | Host-Pathogen Interactions. Plant Physiology, 1989, 90, 542-548.                                                                                                                                                                                                                              | 4.8 | 262       |
| 95  | Pectinolytic activity in some ericoid mycorrhizal fungi. Transactions of the British Mycological Society, 1988, 91, 537-539.                                                                                                                                                                  | 0.6 | 18        |
| 96  | Competitive inhibition of the auxinâ€induced elongation by αâ€Dâ€oligogalacturonides in pea stem segments.<br>Physiologia Plantarum, 1988, 72, 499-504.                                                                                                                                       | 5.2 | 125       |
| 97  | A Polygalacturonase-Inhibiting Protein in Alfalfa Callus Cultures. Journal of Plant Physiology, 1988,<br>133, 364-366.                                                                                                                                                                        | 3.5 | 24        |
| 98  | Purification and Characterization of a Polygalacturonase-Inhibiting Protein from <i>Phaseolus vulgaris</i> L Plant Physiology, 1987, 85, 631-637.                                                                                                                                             | 4.8 | 131       |
| 99  | Elicitation of Necrosis in Vigna unguiculata Walp. by Homogeneous Aspergillus niger<br>Endo-Polygalacturonase and by α-d-Galacturonate Oligomers. Plant Physiology, 1987, 85, 626-630.                                                                                                        | 4.8 | 102       |
| 100 | Elicitation of phenylalanine ammonia-lyase in Daucus carota by oligogalacturonides released from sodium polypectate by homogeneous polygalacturonase. Plant Science, 1987, 51, 147-150.                                                                                                       | 3.6 | 36        |
| 101 | Dual autogenous regulatory role of threonine deaminase in Escherichia coli K-12. Molecular Genetics and Genomics, 1978, 159, 27-32.                                                                                                                                                           | 2.4 | 9         |
| 102 | Endopolygalacturonase from Rhizoctonia fragariae Purification and characterization of two<br>isoenzymes. Biochimica Et Biophysica Acta - Biomembranes, 1977, 482, 379-385.                                                                                                                    | 2.6 | 32        |
| 103 | The Role of the Sulphydryl Groups of Spleen Deoxycytidylate Aminohydrolase. FEBS Journal, 1974, 46, 401-405.                                                                                                                                                                                  | 0.2 | 1         |
| 104 | Dansyl chloride binding to proteins quantitative estimation of N-terminal, lysyl, and tyrosyl residues<br>by the radioactive reagent. Analytical Biochemistry, 1974, 57, 38-45.                                                                                                               | 2.4 | 16        |
| 105 | Simple procedures for the separation and identification of bovine milk whey proteins. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1973, 295, 555-563.                                                                                                                            | 1.7 | 21        |
| 106 | The action of O-methyl-threonine and thiaisoleucine on threonine deaminase purified fromEscherichia coliK-12. FEBS Letters, 1972, 26, 56-60.                                                                                                                                                  | 2.8 | 10        |