M Nsangou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1504857/publications.pdf

Version: 2024-02-01

58	838	16	28
papers	citations	h-index	g-index
58	58	58	874
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Insight of UV-vis spectra and atmospheric implication for the reaction of E™OH radical towards glyphosate herbicide and its hydrates. RSC Advances, 2021, 11, 16404-16418.	3.6	1
2	Basis set dependence of 1H–X spin–spin coupling constants in non-empirical pure DFT framework, X = 1H, 13C, 19F, 35Cl: Case of CHCl=CH–CF3 stereoisomers. AIP Advances, 2021, 11, .	1.3	2
3	Characterization of engine lubricants by fluorescence spectroscopy and chemometrics. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 252, 119539.	3.9	6
4	Temperature-dependent oxidation of BSCAPE molecule in methanol medium. Journal of Molecular Graphics and Modelling, 2021, 105, 107850.	2.4	0
5	Theoretical investigation of the atmospheric implication for the reaction of •OH radical with CF2C(CH3)-CX3, XÂ= H, F. Journal of Molecular Graphics and Modelling, 2021, 106, 107905.	2.4	O
6	Effects of fractional temporal evolution on chirped soliton solutions of the Chen-Lee-Liu equation. Physica Scripta, 2021, 96, 105215.	2.5	5
7	How strongly do Janus all-cis C6H6F6 and C6H6Cl6 bind ions in the gas-phase?. Journal of Fluorine Chemistry, 2020, 236, 109575.	1.7	1
8	Infrared spectra of PEHA molecule and its resistance to oxidation in water and methanol media at 298.15ÂK: solvent cluster size dependency. Journal of Molecular Modeling, 2020, 26, 323.	1.8	3
9	Insight and performance of LCâ€DFT vs DFT in the NMR shielding and chemical shift calculations: Case of CHClCHCF3. International Journal of Quantum Chemistry, 2020, 120, e26408.	2.0	1
10	Electronic transitions and ESIPT kinetics of the thienyl-3-hydroxychromone nucleobase surrogate in DNA duplexes: a DFT/MD-TDDFT study. RSC Advances, 2020, 10, 7349-7359.	3.6	6
11	Structures of the solvated copper(<scp>ii</scp>) ion in ammonia at various temperatures. New Journal of Chemistry, 2020, 44, 3637-3653.	2.8	21
12	Thermodynamic of solvation, solute – Solvent electron transfer and ionization potential of BSCAPE molecule and its UV–vis spectra in aqueous solution. Journal of Molecular Graphics and Modelling, 2019, 92, 100-111.	2.4	5
13	DFT Study of Photochemical Properties and Radiative Forcing Efficiency Features of the Stereoisomers ⟨i⟩cis⟨ i⟩- and ⟨i⟩trans⟨ i⟩-CHC â•CH–CF⟨sub⟩3⟨ sub⟩. Journal of Physical Chemistry A, 2019, 123, 10437-10445.	2.5	11
14	Hydration of l-glycylvaline and l-glycylvalylglycine zwitterions: Structural and vibrational studies using DFT method. Journal of Molecular Graphics and Modelling, 2019, 88, 194-202.	2.4	10
15	DFT study of geometrical and vibrational features of a 3′,5′-deoxydisugar-monophosphate (dDSMP) DNA model in the presence of counterions and solvent. Journal of Molecular Modeling, 2018, 24, 88. Rotational cross sections and rate coefficients of aluminium monoxide AlO(<mml:math) 0="" etqq0="" over<="" rgbt="" td="" tj=""><td>1.8 rlock 10 Tf</td><td>2 f 50 162 Td (x</td></mml:math)>	1.8 rlock 10 Tf	2 f 50 162 Td (x

-

16

#	Article	IF	CITATIONS
19	Fluorescence Spectroscopy Combined with Chemometrics for the Investigation of the Adulteration of Essential Oils. Food Analytical Methods. 2017, 10, 2539-2548. Collisional rate coefficients of SiH(X <mini:math)="" etqqo="" o<="" td="" tj="" xmins:mmi="http://www.w3.org/1998/Math/MathML"><td>2.6 0 rgBT /0</td><td>16 Overlock 10</td></mini:math>	2.6 0 rgBT /0	16 Overlock 10
20			

#	Article	IF	Citations
37	Structures of protonated methanol clusters and temperature effects. Journal of Chemical Physics, 2013, 138, 184301.	3.0	59
38	Solvent effects on the antioxidant activity of 3,4-dihydroxyphenylpyruvic acid: DFT and TD-DFT studies. Computational and Theoretical Chemistry, 2011, 966, 232-243.	2.5	73
39	DFT study of geometrical and vibrational features of small amino acids with polar side chains in hydrated media: L-Threonine and L-Serine. Computational and Theoretical Chemistry, 2011, 966, 364-374.	2.5	9
40	Characterization and stereochemistry of alkyl 2-chloro-3-formylacrylates: Experimental NMR and theoretical DFT studies. Journal of Structural Chemistry, 2010, 51, 251-257.	1.0	9
41	Unusual Quantum Interference in the S ₁ State of DABCO and Observation of Intramolecular Vibrational Redistribution. Journal of Physical Chemistry A, 2010, 114, 3313-3319.	2.5	22
42	Single or double hydrogen atom transfer in the reaction of metal $\hat{a}\in$ Associated phenolic acids with $\hat{a}\in$ OH radical: DFT study. Computational and Theoretical Chemistry, 2009, 901, 49-55.	1.5	17
43	DFT study of the reaction of quercetin with and radicals. Computational and Theoretical Chemistry, 2009, 904, 35-42.	1.5	51
44	Geometrical and vibrational features of phosphate, phosphorothioate and phosphorodithioate linkages interacting with hydrated cations: A DFT study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 73, 805-814.	3.9	13
45	Theoretical investigations of the cyanogen anion. Chemical Physics, 2009, 355, 164-168.	1.9	10
46	Vibrational Analysis of Amino Acids and Short Peptides in Hydrated Media. IV. Amino Acids with Hydrophobic Side Chains: <scp>l</scp> -Alanine, <scp>l</scp> -Valine, and <scp>l</scp> -Isoleucine. Journal of Physical Chemistry B, 2009, 113, 3169-3178.	2.6	59
47	DFT study of the structure of hydroxybenzoic acids and their reactions with OH and radicals. Computational and Theoretical Chemistry, 2008, 850, 135-143.	1.5	35
48	Hydrogen atom transfer in the reaction of hydroxycinnamic acids with OH and HO2 radicals: DFT study. Computational and Theoretical Chemistry, 2008, 862, 53-59.	1.5	19
49	DFT study of proton transfer, cooperativity, and tautomerization in 2-pyridineselenol and 2-pyridinethiol ammonia and water clusters. Computational and Theoretical Chemistry, 2007, 819, 142-152.	1.5	18
50	Beryllium(II) complexes with (R2N)2P(O)F (R=Me or Et): Synthesis and characterisation by multinuclear (31P, 19F and 9Be) NMR in solution. Polyhedron, 2006, 25, 1373-1378.	2.2	5
51	Cooperativity and ground-state proton transfer in 7-hydroxyimidazo[1,2-a]pyridine·ammonia clusters: DFT study. Computational and Theoretical Chemistry, 2006, 758, 87-95.	1.5	6
52	On the use of the MNDO-d semiempirical method for the structural study of chlorophyll b and anhydrous chlorophyll b dimer. Computational and Theoretical Chemistry, 2005, 726, 245-251.	1.5	4
53	Dimer complex UV absorption spectra of some nitrogen heterocycles molecules from atom monopole–dipole interaction model. Computational and Theoretical Chemistry, 2005, 726, 125-133.	1.5	1
54	DFT study of ground state proton transfer in 2-pyridone/2-hydroxypyridine–ammonia clusters. Chemical Physics, 2005, 311, 277-285.	1.9	17

#	Article	IF	CITATIONS
55	Structural isomers and tautomerism of chlorophyll a in the ground state studied by semiempirical MNDO-d method. Computational and Theoretical Chemistry, 2004, 681, 213-224.	1.5	5
56	First results on the development of an energetic (sub)nanosecond XeCl laser system. , 2002, , .		0
57	Use of the principle of minimal sensitivity, the hypervirial and Hellmann–Feynman theorems in 1/N expansion for the calculation of bound states energies. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 301, 291-298.	2.1	1
58	1/Nexpansions for central potentials revisited in the light of hypervirial and Hellmann-Feynman theorems and the principle of minimal sensitivity. Physical Review A, 2000, 61, .	2.5	9