## **Clement Opoku-Temeng**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1504627/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Innate Host Defense against <b><i>Klebsiella pneumoniae</i></b> and the Outlook<br>for Development of Immunotherapies. Journal of Innate Immunity, 2022, 14, 167-181.                                                        | 3.8 | 13        |
| 2  | Targeting Cyclic Dinucleotide Signaling with Small Molecules. , 2020, , 577-591.                                                                                                                                             |     | 2         |
| 3  | Inhibitors of Intracellular Gram-Positive Bacterial Growth Synthesized via Povarov–Doebner<br>Reactions. ACS Infectious Diseases, 2019, 5, 1820-1830.                                                                        | 3.8 | 11        |
| 4  | Amino alkynylisoquinoline and alkynylnaphthyridine compounds potently inhibit acute myeloid leukemia proliferation in mice. EBioMedicine, 2019, 40, 231-239.                                                                 | 6.1 | 11        |
| 5  | Proteomic analysis of bacterial response to a 4-hydroxybenzylidene indolinone compound, which re-sensitizes bacteria to traditional antibiotics. Journal of Proteomics, 2019, 202, 103368.                                   | 2.4 | 27        |
| 6  | Antibacterial Small Molecules That Potently Inhibit <i>Staphylococcus aureus</i> Lipoteichoic Acid<br>Biosynthesis. ChemMedChem, 2019, 14, 1000-1004.                                                                        | 3.2 | 25        |
| 7  | Klebsiella pneumoniae capsule polysaccharide as a target for therapeutics and vaccines.<br>Computational and Structural Biotechnology Journal, 2019, 17, 1360-1366.                                                          | 4.1 | 60        |
| 8  | 3H-pyrazolo[4,3-f]quinoline haspin kinase inhibitors and anticancer properties. Bioorganic Chemistry, 2018, 78, 418-426.                                                                                                     | 4.1 | 35        |
| 9  | Alkynylnicotinamideâ€Based Compounds as ABL1 Inhibitors with Potent Activities against Drugâ€Resistant<br>CML Harboring ABL1(T315I) Mutant Kinase. ChemMedChem, 2018, 13, 1172-1180.                                         | 3.2 | 12        |
| 10 | Dual FLT3/TOPK inhibitor with activity against FLT3-ITD secondary mutations potently inhibits acute myeloid leukemia cell lines. Future Medicinal Chemistry, 2018, 10, 823-835.                                              | 2.3 | 17        |
| 11 | Tetrahydro-3 <i>H</i> -pyrazolo[4,3- <i>a</i> ]phenanthridine-based CDK inhibitor. Chemical<br>Communications, 2018, 54, 4521-4524.                                                                                          | 4.1 | 11        |
| 12 | Suramin potently inhibits cGAMP synthase, cGAS, in THP1 cells to modulate IFN-Î <sup>2</sup> levels. Future<br>Medicinal Chemistry, 2018, 10, 1301-1317.                                                                     | 2.3 | 78        |
| 13 | N-(1,3,4-oxadiazol-2-yl)benzamide analogs, bacteriostatic agents against methicillin- and<br>vancomycin-resistant bacteria. European Journal of Medicinal Chemistry, 2018, 155, 797-805.                                     | 5.5 | 34        |
| 14 | Fluorescent analogs of cyclic and linear dinucleotides as phosphodiesterase and oligoribonuclease activity probes. RSC Advances, 2017, 7, 5421-5426.                                                                         | 3.6 | 11        |
| 15 | Aminoisoquinoline benzamides, FLT3 and Src-family kinase inhibitors, potently inhibit proliferation of acute myeloid leukemia cell lines. Future Medicinal Chemistry, 2017, 9, 1213-1225.                                    | 2.3 | 15        |
| 16 | Hydroxybenzylidene-indolinones, c-di-AMP synthase inhibitors, have antibacterial and anti-biofilm<br>activities and also re-sensitize resistantÂbacteria to methicillin and vancomycin. RSC Advances, 2017, 7,<br>8288-8294. | 3.6 | 19        |
| 17 | Targeting c-di-GMP Signaling, Biofilm Formation, and Bacterial Motility with Small Molecules.<br>Methods in Molecular Biology, 2017, 1657, 419-430.                                                                          | 0.9 | 28        |
| 18 | Fluorescent 2-Aminopurine c-di-GMP and GpG Analogs as PDE Probes. Methods in Molecular Biology,<br>2017, 1657, 245-261.                                                                                                      | 0.9 | 1         |

| #  | Article                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Inhibition of cyclic diadenylate cyclase, DisA, by polyphenols. Scientific Reports, 2016, 6, 25445.                                                               | 3.3 | 24        |
| 20 | Cyclic dinucleotide (c-di-GMP, c-di-AMP, and cGAMP) signalings have come of age to be inhibited by small molecules. Chemical Communications, 2016, 52, 9327-9342. | 4.1 | 78        |
| 21 | Inhibition of P. aeruginosa c-di-GMP phosphodiesterase RocR and swarming motility by a benzoisothiazolinone derivative. Chemical Science, 2016, 7, 6238-6244.     | 7.4 | 39        |
| 22 | Potent inhibition of cyclic diadenylate monophosphate cyclase by the antiparasitic drug, suramin.<br>Chemical Communications, 2016, 52, 3754-3757.                | 4.1 | 19        |
| 23 | Structure–activity relationship studies of c-di-AMP synthase inhibitor, bromophenol-thiohydantoin.<br>Tetrahedron, 2016, 72, 3554-3558.                           | 1.9 | 7         |
| 24 | 3-Aminooxazolidinone AHL analogs as hydrolytically-stable quorum sensingagonists in Gram-negative bacteria. MedChemComm, 2015, 6, 1086-1092.                      | 3.4 | 9         |
| 25 | Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Medicinal Chemistry, 2015, 7, 493-512.                                         | 2.3 | 492       |
| 26 | Agents that inhibit bacterial biofilm formation. Future Medicinal Chemistry, 2015, 7, 647-671.                                                                    | 2.3 | 226       |
| 27 | Geminal dihalogen isosteric replacement in hydrated AI-2 affords potent quorum sensing modulators.<br>Chemical Communications, 2015, 51, 2617-2620.               | 4.1 | 9         |