Maria-Gloria Basáñez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/15044/publications.pdf

Version: 2024-02-01

169 21,968 50 papers citations h-index

176 176 176 31783
all docs docs citations times ranked citing authors

9345

143

g-index

#	Article	IF	Citations
1	Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, The, 2012, 380, 2197-2223.	13.7	7,061
2	Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, The, 2012, 380, 2163-2196.	13.7	6,376
3	The Global Burden of Disease Study 2010: Interpretation and Implications for the Neglected Tropical Diseases. PLoS Neglected Tropical Diseases, 2014, 8, e2865.	3.0	796
4	Reducing Plasmodium falciparum Malaria Transmission in Africa: A Model-Based Evaluation of Intervention Strategies. PLoS Medicine, 2010, 7, e1000324.	8.4	451
5	A Research Agenda for Helminth Diseases of Humans: The Problem of Helminthiases. PLoS Neglected Tropical Diseases, 2012, 6, e1582.	3.0	250
6	Countering the Zika epidemic in Latin America. Science, 2016, 353, 353-354.	12.6	250
7	River Blindness: A Success Story under Threat?. PLoS Medicine, 2006, 3, e371.	8.4	194
8	The global burden of disease study 2013: What does it mean for the NTDs?. PLoS Neglected Tropical Diseases, 2017, 11, e0005424.	3.0	181
9	Effect of single-dose ivermectin on Onchocerca volvulus: a systematic review and meta-analysis. Lancet Infectious Diseases, The, 2008, 8, 310-322.	9.1	177
10	Modelling the impact of vector control interventions on Anopheles gambiae population dynamics. Parasites and Vectors, 2011, 4, 153.	2.5	177
11	Predicting mosquito infection from Plasmodium falciparum gametocyte density and estimating the reservoir of infection. ELife, 2013, 2, e00626.	6.0	175
12	A Research Agenda for Helminth Diseases of Humans: Intervention for Control and Elimination. PLoS Neglected Tropical Diseases, 2012, 6, e1549.	3.0	163
13	Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria. Nature Communications, 2015, 6, 5921.	12.8	154
14	A Research Agenda for Helminth Diseases of Humans: Diagnostics for Control and Elimination Programmes. PLoS Neglected Tropical Diseases, 2012, 6, e1601.	3.0	138
15	Association between Response to Albendazole Treatment and \hat{I}^2 -Tubulin Genotype Frequencies in Soil-transmitted Helminths. PLoS Neglected Tropical Diseases, 2013, 7, e2247.	3.0	131
16	Schistosomiasis — Assessing Progress toward the 2020 and 2025 Global Goals. New England Journal of Medicine, 2019, 381, 2519-2528.	27.0	123
17	Progression of Plasmodium berghei through Anopheles stephensi Is Density-Dependent. PLoS Pathogens, 2007, 3, e195.	4.7	113
18	Micro-epidemiology of urinary schistosomiasis in Zanzibar: Local risk factors associated with distribution of infections among schoolchildren and relevance for control. Acta Tropica, 2008, 105, 45-54.	2.0	102

#	Article	IF	CITATIONS
19	Population biology of human onchocerciasis. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 809-826.	4.0	95
20	Required duration of mass ivermectin treatment for onchocerciasis elimination in Africa: a comparative modelling analysis. Parasites and Vectors, 2015, 8, 552.	2.5	94
21	Therapeutic Efficacy and Macrofilaricidal Activity of Doxycycline for the Treatment of River Blindness. Clinical Infectious Diseases, 2015, 60, 1199-1207.	5.8	94
22	Anopheles mortality is both age- and Plasmodium-density dependent: implications for malaria transmission. Malaria Journal, 2009, 8, 228.	2.3	93
23	Temperature during larval development and adult maintenance influences the survival of Anopheles gambiae s.s Parasites and Vectors, 2014, 7, 489.	2.5	93
24	The Development of an Age-Structured Model for Trachoma Transmission Dynamics, Pathogenesis and Control. PLoS Neglected Tropical Diseases, 2009, 3, e462.	3.0	89
25	Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity. PLoS Neglected Tropical Diseases, 2017, 11, e0005816.	3.0	87
26	A Research Agenda for Helminth Diseases of Humans: Modelling for Control and Elimination. PLoS Neglected Tropical Diseases, 2012, 6, e1548.	3.0	85
27	Reaching the London Declaration on Neglected Tropical Diseases Goals for Onchocerciasis: An Economic Evaluation of Increasing the Frequency of Ivermectin Treatment in Africa. Clinical Infectious Diseases, 2014, 59, 923-932.	5.8	82
28	Identifying host species driving transmission of schistosomiasis japonica, a multihost parasite system, in China. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11457-11462.	7.1	80
29	Quantitative analyses and modelling to support achievement of the 2020 goals for nine neglected tropical diseases. Parasites and Vectors, 2015, 8, 630.	2.5	80
30	Human infection patterns and heterogeneous exposure in river blindness. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15265-15270.	7.1	77
31	Identifying sub-optimal responses to ivermectin in the treatment of River Blindness. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16716-16721.	7.1	77
32	Observed Reductions in Schistosoma mansoni Transmission from Large-Scale Administration of Praziquantel in Uganda: A Mathematical Modelling Study. PLoS Neglected Tropical Diseases, 2010, 4, e897.	3.0	76
33	A Research Agenda for Helminth Diseases of Humans: Towards Control and Elimination. PLoS Neglected Tropical Diseases, 2012, 6, e1547.	3.0	76
34	Prevalence and causes of vision loss in sub-Saharan Africa: 1990–2010. British Journal of Ophthalmology, 2014, 98, 612-618.	3.9	75
35	Increased mortality attributed to Chagas disease: a systematic review and meta-analysis. Parasites and Vectors, 2016, 9, 42.	2.5	75
36	The epidemiology and control of urinary schistosomiasis and soil-transmitted helminthiasis in schoolchildren on Unguja Island, Zanzibar. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2009, 103, 1031-1044.	1.8	73

#	Article	IF	CITATIONS
37	Density dependence and overdispersion in the transmission of helminth parasites. Parasitology, 2005, 131, 121-132.	1.5	72
38	River Blindness. Advances in Parasitology, 2016, 94, 247-341.	3.2	66
39	Parasite genetic differentiation by habitat type and host species: molecular epidemiology of <i>Schistosoma japonicum</i> in hilly and marshland areas of Anhui Province, China. Molecular Ecology, 2009, 18, 2134-2147.	3.9	65
40	School-based control of urinary schistosomiasis on Zanzibar, Tanzania: Monitoring micro-haematuria with reagent strips as a rapid urological assessment. Journal of Pediatric Urology, 2007, 3, 364-368.	1,1	63
41	The potential impact of moxidectin on onchocerciasis elimination in Africa: an economic evaluation based on the Phase II clinical trial data. Parasites and Vectors, 2015, 8, 167.	2.5	62
42	Predicted Impact of COVID-19 on Neglected Tropical Disease Programs and the Opportunity for Innovation. Clinical Infectious Diseases, 2021, 72, 1463-1466.	5.8	62
43	Modelling for policy: The five principles of the Neglected Tropical Diseases Modelling Consortium. PLoS Neglected Tropical Diseases, 2020, 14, e0008033.	3.0	61
44	Transmission intensity and the patterns of Onchocerca volvulus infection in human communities American Journal of Tropical Medicine and Hygiene, 2002, 67, 669-679.	1.4	60
45	Model-Based Geostatistical Mapping of the Prevalence of Onchocerca volvulus in West Africa. PLoS Neglected Tropical Diseases, 2016, 10, e0004328.	3.0	59
46	Population Genetics of Schistosoma japonicum within the Philippines Suggest High Levels of Transmission between Humans and Dogs. PLoS Neglected Tropical Diseases, 2008, 2, e340.	3.0	59
47	Bayesian statistics for parasitologists. Trends in Parasitology, 2004, 20, 85-91.	3.3	58
48	Chapter 11 Onchocerca–Simulium Interactions and the Population and Evolutionary Biology of Onchocerca volvulus. Advances in Parasitology, 2009, 68, 263-313.	3.2	56
49	Modelling the impact of ivermectin on River Blindness and its burden of morbidity and mortality in African Savannah: EpiOncho projections. Parasites and Vectors, 2014, 7, 241.	2.5	55
50	Macrofilaricidal Efficacy of Repeated Doses of Ivermectin for the Treatment of River Blindness. Clinical Infectious Diseases, 2017, 65, 2026-2034.	5.8	55
51	How Can Onchocerciasis Elimination in Africa Be Accelerated? Modeling the Impact of Increased Ivermectin Treatment Frequency and Complementary Vector Control. Clinical Infectious Diseases, 2018, 66, S267-S274.	5.8	55
52	Does Increasing Treatment Frequency Address Suboptimal Responses to Ivermectin for the Control and Elimination of River Blindness?. Clinical Infectious Diseases, 2016, 62, 1338-1347.	5.8	54
53	Moxidectin: an oral treatment for human onchocerciasis. Expert Review of Anti-Infective Therapy, 2020, 18, 1067-1081.	4.4	54
54	Density dependence and the control of helminth parasites. Journal of Animal Ecology, 2006, 75, 1313-1320.	2.8	53

#	Article	IF	Citations
55	Onchocerciasis Control: Vision for the Future from a Ghanian perspective. Parasites and Vectors, 2009, 2, 7.	2.5	50
56	Uncertainty Surrounding Projections of the Long-Term Impact of Ivermectin Treatment on Human Onchocerciasis. PLoS Neglected Tropical Diseases, 2013, 7, e2169.	3.0	50
57	Onchocerciasis Transmission in Ghana: Persistence under Different Control Strategies and the Role of the Simuliid Vectors. PLoS Neglected Tropical Diseases, 2015, 9, e0003688.	3.0	50
58	Modelling the elimination of river blindness using long-term epidemiological and programmatic data from Mali and Senegal. Epidemics, 2017, 18, 4-15.	3.0	48
59	The Population Biology and Transmission Dynamics of Loa loa. Trends in Parasitology, 2018, 34, 335-350.	3.3	47
60	From river blindness to river epilepsy: Implications for onchocerciasis elimination programmes. PLoS Neglected Tropical Diseases, 2019, 13, e0007407.	3.0	47
61	Density-Dependent Mortality of the Human Host in Onchocerciasis: Relationships between Microfilarial Load and Excess Mortality. PLoS Neglected Tropical Diseases, 2012, 6, e1578.	3.0	46
62	Trachoma: transmission, infection, and control. Lancet Infectious Diseases, The, 2007, 7, 420-427.	9.1	45
63	Potential effects of warmer worms and vectors on onchocerciasis transmission in West Africa. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130559.	4.0	44
64	DENSITY DEPENDENCE AND THE SPREAD OF ANTHELMINTIC RESISTANCE. Evolution; International Journal of Organic Evolution, 2008, 62, 528-537.	2.3	42
65	Estimating Household and Community Transmission of Ocular Chlamydia trachomatis. PLoS Neglected Tropical Diseases, 2009, 3, e401.	3.0	42
66	Anaemia in Ugandan preschool-aged children: the relative contribution of intestinal parasites and malaria. Parasitology, 2011, 138, 1534-1545.	1.5	41
67	Individual Predisposition, Household Clustering and Risk Factors for Human Infection with Ascaris lumbricoides: New Epidemiological Insights. PLoS Neglected Tropical Diseases, 2011, 5, e1047.	3.0	41
68	The Cost of Annual versus Biannual Community-Directed Treatment of Onchocerciasis with Ivermectin: Ghana as a Case Study. PLoS Neglected Tropical Diseases, 2013, 7, e2452.	3.0	41
69	From river blindness control to elimination: bridge over troubled water. Infectious Diseases of Poverty, 2018, 7, 21.	3.7	41
70	Venezuela and its rising vector-borne neglected diseases. PLoS Neglected Tropical Diseases, 2017, 11, e0005423.	3.0	41
71	Incidence of Blindness during the Onchocerciasis Control Programme in Western Africa, 1971–2002. Journal of Infectious Diseases, 2004, 189, 1932-1941.	4.0	40
72	How universal is coverage and access to diagnosis and treatment for Chagas disease in Colombia? A health systems analysis. Social Science and Medicine, 2017, 175, 187-198.	3.8	40

#	Article	IF	Citations
73	Larval and adult environmental temperatures influence the adult reproductive traits of Anopheles gambiae s.s Parasites and Vectors, 2015, 8, 456.	2.5	39
74	Assessing the impact of intervention strategies against Taenia solium cysticercosis using the EPICYST transmission model. Parasites and Vectors, 2017, 10, 73.	2.5	39
75	Density-dependent effects on the weight of female Ascaris lumbricoides infections of humans and its impact on patterns of egg production. Parasites and Vectors, 2009, 2, 11.	2.5	38
76	Evidence of suppression of onchocerciasis transmission in the Venezuelan Amazonian focus. Parasites and Vectors, 2016, 9, 40.	2.5	38
77	Onchocerciasis: The Pre-control Association between Prevalence of Palpable Nodules and Skin Microfilariae. PLoS Neglected Tropical Diseases, 2013, 7, e2168.	3.0	33
78	Modelling exposure heterogeneity and density dependence in onchocerciasis using a novel individual-based transmission model, EPIONCHO-IBM: Implications for elimination and data needs. PLoS Neglected Tropical Diseases, 2019, 13, e0007557.	3.0	33
79	Onchocerciasis transmission in Ghana: biting and parous rates of host-seeking sibling species of the Simulium damnosum complex. Parasites and Vectors, 2014, 7, 511.	2.5	32
80	An Analysis of Genetic Diversity and Inbreeding in Wuchereria bancrofti: Implications for the Spread and Detection of Drug Resistance. PLoS Neglected Tropical Diseases, 2008, 2, e211.	3.0	31
81	Population biology of malaria within the mosquito: density-dependent processes and potential implications for transmission-blocking interventions. Malaria Journal, 2010, 9, 311.	2.3	31
82	Neglected tools for neglected diseases: mathematical models in economic evaluations. Trends in Parasitology, 2014, 30, 562-570.	3.3	31
83	New approaches to measuring anthelminthic drug efficacy: parasitological responses of childhood schistosome infections to treatment with praziquantel. Parasites and Vectors, 2016, 9, 41.	2.5	30
84	Report of the first international workshop on onchocerciasis-associated epilepsy. Infectious Diseases of Poverty, 2018, 7, 23.	3.7	30
85	Strategies for tackling Taenia solium taeniosis/cysticercosis: A systematic review and comparison of transmission models, including an assessment of the wider Taeniidae family transmission models. PLoS Neglected Tropical Diseases, 2019, 13, e0007301.	3.0	30
86	Costs of crowding for the transmission of malaria parasites. Evolutionary Applications, 2013, 6, 617-629.	3.1	29
87	Human Onchocerciasis in the Amazonian Area of Southern Venezuela: Spatial and Temporal Variations in Biting and Parity Rates of Black Fly (Diptera: Simuliidae) Vectors. Journal of Medical Entomology, 2001, 38, 520-530.	1.8	28
88	Population biology of multispecies helminth infection: interspecific interactions and parasite distribution. Parasitology, 2005, 131, 417-433.	1.5	28
89	Modelling Neglected Tropical Diseases diagnostics: the sensitivity of skin snips for Onchocerca volvulus in near elimination and surveillance settings. Parasites and Vectors, 2016, 9, 343.	2.5	28
90	Human Onchocerciasis: Modelling the Potential Long-term Consequences of a Vaccination Programme. PLoS Neglected Tropical Diseases, 2015, 9, e0003938.	3.0	28

#	Article	IF	CITATIONS
91	Rates of microfilarial production by <i>Onchocerca volvulus</i> are not cumulatively reduced by multiple ivermectin treatments. Parasitology, 2008, 135, 1571-1581.	1.5	27
92	Integrated monitoring and evaluation and environmental risk factors for urogenital schistosomiasis and active trachoma in Burkina Faso before preventative chemotherapy using sentinel sites. BMC Infectious Diseases, 2011, 11, 191.	2.9	27
93	A Research Agenda for Helminth Diseases of Humans: Basic Research and Enabling Technologies to Support Control and Elimination of Helminthiases. PLoS Neglected Tropical Diseases, 2012, 6, e1445.	3.0	27
94	Atypical Clinical Manifestations of Loiasis and Their Relevance for Endemic Populations. Open Forum Infectious Diseases, 2019, 6, ofz417.	0.9	27
95	Temporal and micro-spatial heterogeneity in the distribution of Anopheles vectors of malaria along the Kenyan coast. Parasites and Vectors, 2013, 6, 311.	2.5	26
96	Paradigm lost: how parasite control may alter pattern and process in human helminthiases. Trends in Parasitology, 2012, 28, 161-171.	3.3	25
97	Stability and change in the distribution of cytospecies of the Simulium damnosum complex (Diptera:) Tj ETQq $1\ 1\ C$).784314 ı 2.5	rgBT /Overlo
98	What does the COVID-19 pandemic mean for the next decade of onchocerciasis control and elimination?. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 269-280.	1.8	25
99	Identifying co-endemic areas for major filarial infections in sub-Saharan Africa: seeking synergies and preventing severe adverse events during mass drug administration campaigns. Parasites and Vectors, 2018, 11, 70.	2.5	24
100	Density-dependent host choice by disease vectors: epidemiological implications of the ideal free distribution. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2007, 101, 256-269.	1.8	23
101	Measuring Morbidity Associated with Urinary Schistosomiasis: Assessing Levels of Excreted Urine Albumin and Urinary Tract Pathologies. PLoS Neglected Tropical Diseases, 2009, 3, e526.	3.0	23
102	Determination of Sample Sizes for the Estimation of Onchocerca volvulus (Filarioidea:) Tj ETQq0 0 0 rgBT /Overloc and Its Application to Ivermectin Control Programs. Journal of Medical Entomology, 1998, 35, 745-757.	k 10 Tf 50 1.8	307 Td (Or 22
103	Sampling strategies to detect anthelmintic resistance: the perspective of human onchocerciasis. Trends in Parasitology, 2009, 25, 11-17.	3.3	22
104	Targeting Antibiotics to Households for Trachoma Control. PLoS Neglected Tropical Diseases, 2010, 4, e862.	3.0	22
105	Modelling Anopheles gambiae s.s. Population Dynamics with Temperature- and Age-Dependent Survival. International Journal of Environmental Research and Public Health, 2015, 12, 5975-6005.	2.6	22
106	Uptake of <i>Onchocerca volvulus</i> (Nematoda: Onchocercidae) by <i>Simulium</i> (Diptera:) Tj ETQq0 0 0 rgBT of Medical Entomology, 2004, 41, 83-94.	/Overlock 1.8	10 Tf 50 14 21
107	Reductions in genetic diversity of Schistosoma mansoni populations under chemotherapeutic pressure: the effect of sampling approach and parasite population definition. Acta Tropica, 2013, 128, 196-205.	2.0	21
108	Models for measuring anthelmintic drug efficacy for parasitologists. Trends in Parasitology, 2014, 30, 528-537.	3.3	21

#	Article	IF	Citations
109	The impact of an 8-year mass drug administration programme on prevalence, intensity and co-infections of soil-transmitted helminthiases in Burundi. Parasites and Vectors, 2016, 9, 513.	2.5	21
110	Onchocerciasis in the Amazonian focus of southern Venezuela: altitude and blackfly species composition as predictors of endemicity to select communities for ivermectin control programmes. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1998, 92, 613-620.	1.8	20
111	Complementary Paths to Chagas Disease Elimination: The Impact of Combining Vector Control With Etiological Treatment. Clinical Infectious Diseases, 2018, 66, S293-S300.	5.8	20
112	Taenia solium taeniasis/cysticercosis: From parasite biology and immunology to diagnosis and control. Advances in Parasitology, 2021, 112, 133-217.	3.2	20
113	Prediction of community prevalence of human onchocerciasis in the Amazonian onchocerciasis focus: Bayesian approach. Bulletin of the World Health Organization, 2003, 81, 482-90.	3.3	20
114	A Research Agenda for Helminth Diseases of Humans: Health Research and Capacity Building in Disease-Endemic Countries for Helminthiases Control. PLoS Neglected Tropical Diseases, 2012, 6, e1602.	3.0	19
115	Economic evaluations of onchocerciasis interventions: a systematic review and research needs. Tropical Medicine and International Health, 2019, 24, 788-816.	2.3	19
116	Structural Uncertainty in Onchocerciasis Transmission Models Influences the Estimation of Elimination Thresholds and Selection of Age Groups for Seromonitoring. Journal of Infectious Diseases, 2020, 221, S510-S518.	4.0	19
117	Diurnal biting periodicity of parous Simulium (Diptera: Simuliidae) vectors in the onchocerciasis Amazonian focus. Acta Tropica, 2005, 94, 139-158.	2.0	17
118	Hispanic Latin America, Spain and the Spanish-speaking Caribbean: A rich source of reference material for public health, epidemiology and tropical medicine. Emerging Themes in Epidemiology, 2008, 5, 17.	2.7	17
119	The temporal dynamics of Plasmodium density through the sporogonic cycle within Anopheles mosquitoes. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2009, 103, 1197-1198.	1.8	17
120	Using a Nonparametric Multilevel Latent Markov Model to Evaluate Diagnostics for Trachoma. American Journal of Epidemiology, 2013, 177, 913-922.	3.4	17
121	Improving statistical inference on pathogen densities estimated by quantitative molecular methods: malaria gametocytaemia as a case study. BMC Bioinformatics, 2015, 16, 5.	2.6	17
122	Socio-demographic determinants of Toxoplasma gondii seroprevalence in migrant workers of Peninsular Malaysia. Parasites and Vectors, 2017, 10, 238.	2.5	17
123	Estimation of changes in the force of infection for intestinal and urogenital schistosomiasis in countries with schistosomiasis control initiative-assisted programmes. Parasites and Vectors, 2015, 8, 558.	2.5	16
124	Spatiotemporal distribution and population at risk of soil-transmitted helminth infections following an eight-year school-based deworming programme in Burundi, 2007–2014. Parasites and Vectors, 2017, 10, 583.	2.5	15
125	Modelling the impact of larviciding on the population dynamics and biting rates of Simulium damnosum (s.l.): implications for vector control as a complementary strategy for onchocerciasis elimination in Africa. Parasites and Vectors, $2018, 11, 316$.	2.5	15
126	Population biology of multispecies helminth infection: Competition and coexistence. Journal of Theoretical Biology, 2007, 244, 81-95.	1.7	13

#	Article	IF	CITATIONS
127	Modelling Trachoma for Control Programmes. Advances in Experimental Medicine and Biology, 2010, 673, 141-156.	1.6	12
128	Modelling for <i>Taenia solium</i> control strategies beyond 2020. Bulletin of the World Health Organization, 2020, 98, 198-205.	3.3	12
129	Estimating the Future Impact of a Multi-Pronged Intervention Strategy on Ocular Disease Sequelae Caused by Trachoma: A Modeling Study. Ophthalmic Epidemiology, 2015, 22, 394-402.	1.7	11
130	Onchocerciasis transmission in Ghana: the human blood index of sibling species of the Simulium damnosum complex. Parasites and Vectors, 2016, 9, 432.	2.5	11
131	Systematic review of studies generating individual participant data on the efficacy of drugs for treating soil-transmitted helminthiases and the case for data-sharing. PLoS Neglected Tropical Diseases, 2017, 11, e0006053.	3.0	11
132	Contribution of migrant coffee labourers infected with Onchocerca volvulusto the maintenance of the microfilarial reservoir in an ivermectin-treated area of Mexico. Parasites and Vectors, 2007, 6, 16.	1.3	10
133	Vector competence of Simulium oyapockense s.l. and S. incrustatum for Onchocerca volvulus: Implications for ivermectin-based control in the Amazonian focus of human onchocerciasis, a multi-vector–host system. Acta Tropica, 2008, 107, 80-89.	2.0	10
134	Predicting the environmental suitability for onchocerciasis in Africa as an aid to elimination planning. PLoS Neglected Tropical Diseases, 2021, 15, e0008824.	3.0	10
135	Vector competence for Onchocerca volvulus in the Simulium (Notolepria) exiguum complex: Cytoforms or density-dependence?. Acta Tropica, 2007, 103, 58-68.	2.0	9
136	Trickle or clumped infection process? An analysis of aggregation in the weights of the parasitic roundworm of humans, Ascaris lumbricoides. International Journal for Parasitology, 2010, 40, 1373-1380.	3.1	9
137	Trickle or clumped infection process? A stochastic model for the infection process of the parasitic roundworm of humans, Ascaris lumbricoides. International Journal for Parasitology, 2010, 40, 1381-1388.	3.1	9
138	Ascaris lumbricoides. , 2013, , 155-201.		9
139	Mathematical Modelling of Trachoma Transmission, Control and Elimination. Advances in Parasitology, 2016, 94, 1-48.	3.2	9
140	Preface. Advances in Parasitology, 2015, 87, xiii-xviii.	3.2	8
141	Designing antifilarial drug trials using clinical trial simulators. Nature Communications, 2020, 11, 2685.	12.8	8
142	Taking the strain out of onchocerciasis? A reanalysis of blindness and transmission data does not support the existence of a savannah blinding strain of onchocerciasis in West Africa. Advances in Parasitology, 2021, 112, 1-50.	3.2	8
143	Scaling-Down Mass Ivermectin Treatment for Onchocerciasis Elimination: Modeling the Impact of the Geographical Unit for Decision Making. Clinical Infectious Diseases, 2021, 72, S165-S171.	5.8	8
144	The Genomic Architecture of Novel Simulium damnosum Wolbachia Prophage Sequence Elements and Implications for Onchocerciasis Epidemiology. Frontiers in Microbiology, 2017, 8, 852.	3.5	7

#	Article	IF	CITATIONS
145	Spatial distribution and risk factors for human cysticercosis in Colombia. Parasites and Vectors, 2021, 14, 590.	2.5	7
146	â€~Slash and clear' vector control for onchocerciasis elimination and epilepsy prevention: a protocol of a cluster randomised trial in Cameroonian villages. BMJ Open, 2021, 11, e050341.	1.9	7
147	Force-of-infection of Taenia solium porcine cysticercosis: a modelling analysis to assess global incidence and prevalence trends. Scientific Reports, 2020, 10, 17637.	3.3	6
148	Unusual Localization of Blood-Borne <i>Loa loa</i> Microfilariae in the Skin Depends on Microfilarial Density in the Blood: Implications for Onchocerciasis Diagnosis in Coendemic Areas. Clinical Infectious Diseases, 2021, 72, S158-S164.	5.8	6
149	Modelling diagnostics for Echinococcus granulosus surveillance in sheep using Latent Class Analysis: Argentina as a case study. One Health, 2022, 14, 100359.	3.4	6
150	Reducing onchocerciasis-associated morbidity in onchocerciasis-endemic foci with high ongoing transmission: a focus on the children International Journal of Infectious Diseases, 2022, 116, 302-305.	3.3	6
151	Development and evaluation of a Markov model to predict changes in schistosomiasis prevalence in response to praziquantel treatment: a case study of Schistosoma mansoni in Uganda and Mali. Parasites and Vectors, 2016, 9, 543.	2.5	5
152	Serological Evaluation of Onchocerciasis and Lymphatic Filariasis Elimination in the Bakoye and Falémé Foci, Mali. Clinical Infectious Diseases, 2021, 72, 1585-1593.	5.8	5
153	Supporting Drug Development for Neglected Tropical Diseases Using Mathematical Modeling. Clinical Infectious Diseases, 2021, 73, e1391-e1396.	5.8	5
154	Improving anthelmintic treatment for schistosomiasis and soil-transmitted helminthiases through sharing and reuse of individual participant data. Wellcome Open Research, 2022, 7, 5.	1.8	5
155	How modelling can help steer the course set by the World Health Organization 2021-2030 roadmap on neglected tropical diseases. Gates Open Research, 2021, 5, 112.	1.1	4
156	Integrating geostatistical maps and infectious disease transmission models using adaptive multiple importance sampling. Annals of Applied Statistics, 2021, 15, .	1.1	4
157	Neurocysticercosis and HIV/AIDS coâ€infection: A scoping review. Tropical Medicine and International Health, 2021, 26, 1140-1152.	2.3	3
158	Demographic patterns of human antibody levels to Simulium damnosum s.l. saliva in onchocerciasis-endemic areas: An indicator of exposure to vector bites. PLoS Neglected Tropical Diseases, 2022, 16, e0010108.	3.0	3
159	Vector control and entomological capacity for onchocerciasis elimination. Trends in Parasitology, 2022, 38, 591-604.	3.3	3
160	Human immune response against salivary antigens of Simulium damnosum s.l.: A new epidemiological marker for exposure to blackfly bites in onchocerciasis endemic areas. PLoS Neglected Tropical Diseases, 2021, 15, e0009512.	3.0	2
161	'Slash and clear' vector control for onchocerciasis elimination and epilepsy prevention: a protocol of a cluster randomised trial in Cameroonian villages. BMJ Open, 2021, 11, e050341.	1.9	2
162	Spatiotemporal variations in exposure: Chagas disease in Colombia as a case study. BMC Medical Research Methodology, 2022, 22, 13.	3.1	2

#	Article	IF	CITATIONS
163	Mathematical modelling of parasitic infections: from data and parameter estimation to evolutionary implications. Parasitology, 2008, 135, 1487-1488.	1.5	1
164	Collaborate or Collapse: Capacity Building in Zoonotic and Neglected Tropical Disease Modelling. Trends in Parasitology, 2018, 34, 356-358.	3.3	1
165	Situation analysis of onchocerciasis in Cameroon: a protocol for systematic review of epidemiological studies and impact of disease control interventions. Systematic Reviews, 2020, 9, 27.	5.3	1
166	How modelling can help steer the course set by the World Health Organization 2021-2030 roadmap on neglected tropical diseases. Gates Open Research, 0, 5, 112.	1.1	1
167	Immunodiagnosis of cystic echinococcosis in livestock: Development and validation dataset of an ELISA test using a recombinant B8/2 subunit of Echinococcus granulosus sensu lato. Data in Brief, 2022, 42, 108255.	1.0	1
168	Consumer-Resource Dynamics. By William W. Murdoch, Cheryl J. Briggs & Roger M. Nisbet, pp. 462. Monographs in Population Biology, 36. Princeton University Press, Princeton, USA and Oxford, UK, 2003. ISBN 0 691 00658 X (hbk) and 0 691 00657 1 (pbk). \hat{A} £55.00 (cloth) and \hat{A} £24.95 (paper) Parasitology, 2005, 131, 579.	1.5	0
169	Response to the Letter to the Editor by Eberhard et al Parasites and Vectors, 2017, 10, 240.	2.5	0