Gregory Scott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/150418/publications.pdf

Version: 2024-02-01

		430874	302126
51	1,626	18	39
papers	citations	h-index	g-index
55	55	55	2874
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Single-variable porous nanomaterial series from polymer structure-directing agents. Journal of Materials Research, 2022, 37, 25-42.	2.6	5
2	Coordination of Quantum Dots in a Polar Solvent by Small-Molecule Imidazole Ligands. Inorganic Chemistry, 2022, 61, 10942-10949.	4.0	3
3	Pseudocapacitance: Nanostructure Dependence of Tâ€Nb ₂ O ₅ Intercalation Pseudocapacitance Probed Using Tunable Isomorphic Architectures (Adv. Funct. Mater. 1/2021). Advanced Functional Materials, 2021, 31, 2170005.	14.9	O
4	Tailored porous carbons enabled by persistent micelles with glassy cores. Materials Advances, 2021, 2, 5381-5395.	5.4	10
5	Effect of Membrane Properties on the Carbonation of Anion Exchange Membrane Fuel Cells. Membranes, 2021, 11, 102.	3.0	13
6	Reversible Molecular and Ionic Storage Mechanisms in High-Performance $Zn < sub > 0.1 < sub > V < sub > 2 < sub > O < sub > 5 < sub > Â < i > n < i > H < sub > 2 < sub > O Xerogel Cathode for Aqueous Zn-Ion Batteries. ACS Nano, 2021, 15, 10678-10688.$	14.6	68
7	Persistent Micelle Corona Chemistry Enables Constant Micelle Core Size with Independent Control of Functionality and Polyelectrolyte Response. Langmuir, 2021, 37, 9817-9825.	3.5	7
8	Mesoporous TiO < sub > 2 < /sub > Microparticles with Tailored Surfaces, Pores, Walls, and Particle Dimensions Using Persistent Micelle Templates. Langmuir, 2021, 37, 12874-12886.	3.5	5
9	Surfaceâ€Initiated RAFT Polymerization of 2,3â€Dimethylâ€1,3â€butadiene on Silica Nanoparticles for Matrixâ€free Methyl Rubber Nanocomposites. Journal of Polymer Science, 2020, 58, 417-427.	3.8	3
10	Tunable Fluorophobic Effect Determines Nanoparticle Dispersion in Homopolymers and Block Polymers. Advanced Materials Interfaces, 2020, 7, 1901691.	3.7	4
11	Growth of Crystalline Bimetallic Metal–Organic Framework Films via Transmetalation. Langmuir, 2020, 36, 9900-9908.	3.5	6
12	A High Performing Znâ€lon Battery Cathode Enabled by In Situ Transformation of V ₂ O ₅ Atomic Layers. Angewandte Chemie, 2020, 132, 17152-17159.	2.0	33
13	Effects of Trace Water on Self-Assembly of Sulfonated Block Copolymers During Solution Processing. ACS Applied Polymer Materials, 2020, 2, 4893-4901.	4.4	5
14	A High Performing Zn″on Battery Cathode Enabled by In Situ Transformation of V ₂ O ₅ Atomic Layers. Angewandte Chemie - International Edition, 2020, 59, 17004-17011.	13.8	158
15	Fluorophobic Effect: Tunable Fluorophobic Effect Determines Nanoparticle Dispersion in Homopolymers and Block Polymers (Adv. Mater. Interfaces 5/2020). Advanced Materials Interfaces, 2020, 7, 2070025.	3.7	O
16	A Dual Threat: Redoxâ€Activity and Electronic Structures of Wellâ€Defined Donor–Acceptor Fulleretic Covalentâ€Organic Materials. Angewandte Chemie - International Edition, 2020, 59, 6000-6006.	13.8	20
17	Supramolecular Assembly of Oriented Spherulitic Crystals of Conjugated Polymers Surrounding Carbon Nanotube Fibers. Macromolecular Rapid Communications, 2019, 40, 1900098.	3.9	8
18	Widely tunable persistent micelle templates via homopolymer swelling. Soft Matter, 2019, 15, 5193-5203.	2.7	19

#	Article	IF	Citations
19	Atomic Layer Deposition of Spaceâ€Efficient SnO 2 Underlayers for BiVO 4 Host–Guest Architectures for Photoassisted Water Splitting. ChemSusChem, 2019, 12, 1770-1770.	6.8	1
20	Full Gamut Wall Tunability from Persistent Micelle Templates via Ex Situ Hydrolysis. Small, 2019, 15, e1900393.	10.0	15
21	Atomic Layer Deposition of Spaceâ€Efficient SnO 2 Underlayers for BiVO 4 Host–Guest Architectures for Photoassisted Water Splitting. ChemSusChem, 2019, 12, 1916-1924.	6.8	10
22	Extended LaMer Synthesis of Cobalt-Doped Ferrite. IEEE Magnetics Letters, 2018, 9, 1-5.	1.1	6
23	2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids. Nature Nanotechnology, 2018, 13, 456-462.	31.5	252
24	Expanded Kinetic Control for Persistent Micelle Templates with Solvent Selection. Langmuir, 2018, 34, 5738-5749.	3.5	18
25	Emerging Postsynthetic Improvements of BiVO ₄ Photoanodes for Solar Water Splitting. ACS Energy Letters, 2018, 3, 112-124.	17.4	97
26	Ringâ€Banded Spherulitic Crystals of Poly(3â€butylthiophene) via Controlled Solvent Evaporation. Macromolecular Chemistry and Physics, 2018, 219, 1800204.	2.2	9
27	Cavitation Enables Switchable and Rapid Block Polymer Exchange under High-χN Conditions. Macromolecules, 2018, 51, 6967-6975.	4.8	10
28	Ordered Nanostructures of Carbon Nanotube–Polymer Composites from Lyotropic Liquid Crystal Templating. Macromolecular Chemistry and Physics, 2018, 219, 1800197.	2.2	9
29	Deciphering magnesium stearate thermotropic behavior. International Journal of Pharmaceutics, 2018, 548, 314-324.	5.2	15
30	Multi-Scale Assembly of Polythiophene-Surfactant Supramolecular Complexes for Charge Transport Anisotropy. Macromolecules, 2017, 50, 1047-1055.	4.8	18
31	Effect of Nanodiamond (ND) Surface Functionalization on the Properties of ND/PEEK Composites. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, , 1-13.	2.5	5
32	Robust porous polymers enabled by a fast trifluoroacetic acid etch with improved selectivity for polylactide. Materials Chemistry Frontiers, 2017, 1, 1526-1533.	5.9	9
33	How to make persistent micelle templates in 24 hours and know it using X-ray scattering. Journal of Materials Chemistry A, 2017, 5, 11840-11853.	10.3	26
34	Cavitation-enabled rapid and tunable evolution of high-χN micelles as templates for ordered mesoporous oxides. Nanoscale, 2017, 9, 1393-1397.	5.6	15
35	Hydrogen-Bonding-Directed Ordered Assembly of Carboxylated Poly(3-Alkylthiophene)s. ACS Omega, 2017, 2, 8526-8535.	3.5	19
36	Atomic Layer Deposition of Bismuth Vanadates for Solar Energy Materials. ChemSusChem, 2016, 9, 1727-1735.	6.8	17

#	Article	IF	CITATIONS
37	Nanostructured Antimonyâ€Doped Tin Oxide Layers with Tunable Pore Architectures as Versatile Transparent Current Collectors for Biophotovoltaics. Advanced Functional Materials, 2016, 26, 6682-6692.	14.9	28
38	Ordered Mesoporous to Macroporous Oxides with Tunable Isomorphic Architectures: Solution Criteria for Persistent Micelle Templates. Chemistry of Materials, 2016, 28, 1653-1667.	6.7	57
39	Controlling the coassembly of highly amphiphilic block copolymers with a hydrolytic sol by solvent exchange. RSC Advances, 2015, 5, 22499-22502.	3.6	4
40	Block copolymer self-assembly for nanophotonics. Chemical Society Reviews, 2015, 44, 5076-5091.	38.1	328
41	Ordered mesoporous titania from highly amphiphilic block copolymers: tuned solution conditions enable highly ordered morphologies and ultra-large mesopores. Journal of Materials Chemistry A, 2015, 3, 11478-11492.	10.3	35
42	Sustainable thermoplastic elastomers derived from plant oil and their "click-coupling―via TAD chemistry. Green Chemistry, 2015, 17, 3806-3818.	9.0	79
43	Highâ€Surfaceâ€Area Porous Platinum Electrodes for Enhanced Charge Transfer. Advanced Energy Materials, 2014, 4, 1400510.	19.5	26
44	Improved Nonaqueous Synthesis of TiO ₂ for Dye-Sensitized Solar Cells. ACS Nano, 2013, 7, 8981-8989.	14.6	52
45	Better biomolecule thermodynamics from kinetics. Journal of Chemical Physics, 2011, 135, 015102.	3.0	27
46	Solving the low dimensional Smoluchowski equation with a singular value basis set. Journal of Computational Chemistry, 2010, 31, 2428-2433.	3.3	4
47	Direct Visualization of Two-State Dynamics on Metallic Glass Surfaces Well Below <i>T</i> _g . Journal of Physical Chemistry Letters, 2010, 1, 1941-1945.	4.6	42
48	A natural missing link between activated and downhill protein folding scenarios. Physical Chemistry Chemical Physics, 2010, 12, 3542.	2.8	4
49	Direct Imaging of Room Temperature Optical Absorption with Subnanometer Spatial Resolution. Nano Letters, 2010, 10, 4897-4900.	9.1	14
50	Amorphization of Pseudocapacitive Tâ^'Nb $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 5 $<$ /sub $>$ Accelerates Lithium Diffusivity as Revealed Using Tunable Isomorphic Architectures. Batteries and Supercaps, 0, , .	4.7	3
51	Faster Intercalation Pseudocapacitance Enabled by Adjustable Amorphous Titania where Tunable Isomorphic Architectures Reveal Accelerated Lithium Diffusivity. Batteries and Supercaps, 0, , .	4.7	4