James L Best

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/150394/publications.pdf

Version: 2024-02-01

203 papers 13,932 citations

19657 61 h-index 27406 106 g-index

247 all docs

247 docs citations

times ranked

247

6616 citing authors

#	Article	IF	CITATIONS
1	Anthropogenic stresses on the world's big rivers. Nature Geoscience, 2019, 12, 7-21.	12.9	703
2	The fluid dynamics of river dunes: A review and some future research directions. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	391
3	Sediment transport and bed morphology at river channel confluences. Sedimentology, 1988, 35, 481-498.	3.1	369
4	Mean flow and turbulence structure over fixed, two-dimensional dunes: implications for sediment transport and bedform stability. Sedimentology, 1995, 42, 491-513.	3.1	343
5	Time is running out for sand. Nature, 2019, 571, 29-31.	27.8	260
6	Separation Zone at Openâ€Channel Junctions. Journal of Hydraulic Engineering, 1984, 110, 1588-1594.	1.5	258
7	Morphological evolution and dynamics of a large, sand braid-bar, Jamuna River, Bangladesh. Sedimentology, 2000, 47, 533-555.	3.1	232
8	Scour in large braided rivers and the recognition of sequence stratigraphic boundaries. Nature, 1997, 387, 275-277.	27.8	225
9	Three-Dimensional Sedimentary Architecture of a Large, Mid-Channel Sand Braid Bar, Jamuna River, Bangladesh. Journal of Sedimentary Research, 2003, 73, 516-530.	1.6	222
10	Depositional processes, bedform development and hybrid bed formation in rapidly decelerated cohesive (mud–sand) sediment flows. Sedimentology, 2011, 58, 1953-1987.	3.1	198
11	Morphology and flow fields of three-dimensional dunes, Rio Paran $ ilde{A}_i$, Argentina: Results from simultaneous multibeam echo sounding and acoustic Doppler current profiling. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	196
12	Effects of Bed Discordance on Flow Dynamics at Open Channel Confluences. Journal of Hydraulic Engineering, 1996, 122, 676-682.	1.5	193
13	A Phase Diagram for Turbulent, Transitional, and Laminar Clay Suspension Flows. Journal of Sedimentary Research, 2009, 79, 162-183.	1.6	193
14	Flow, sediment transport and bedform dynamics over the transition from dunes to upper-stage plane beds: implications for the formation of planar laminae. Sedimentology, 1988, 35, 753-763.	3.1	190
15	Three-dimensional structure of flow at a confluence of river channels with discordant beds. Geomorphology, 1999, 26, 313-335.	2.6	190
16	Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity. Nature, 2016, 539, 276-279.	27.8	187
17	FLOW DYNAMICS AT RIVER CHANNEL CONFLUENCES: IMPLICATIONS FOR SEDIMENT TRANSPORT AND BED MORPHOLOGY. , 1987, , 27-35.		185
18	Mixing-layer distortion at the confluence of channels of different depth. Nature, 1991, 350, 411-413.	27.8	184

#	Article	IF	Citations
19	The sedimentology and alluvial architecture of the sandy braided South Saskatchewan River, Canada. Sedimentology, 2006, 53, 413-434.	3.1	178
20	The morphology and dynamics of low amplitude bedwaves upon upper stage plane beds and the preservation of planar laminae. Sedimentology, 1992, 39, 737-752.	3.1	171
21	Meander-Bend Evolution, Alluvial Architecture, and the Role of Cohesion in Sinuous River Channels: A Flume Study. Journal of Sedimentary Research, 2007, 77, 197-212.	1.6	165
22	River bank instability from unsustainable sand mining in the lower Mekong River. Nature Sustainability, 2020, 3, 217-225.	23.7	153
23	On the entrainment of sediment and initiation of bed defects: insights from recent developments within turbulent boundary layer research. Sedimentology, 1992, 39, 797-811.	3.1	151
24	An experimental study of turbulent flow over a low-angle dune. Journal of Geophysical Research, 2002, 107, 18-1.	3.3	151
25	Velocity Mapping Toolbox (VMT): a processing and visualization suite for movingâ€vessel ADCP measurements. Earth Surface Processes and Landforms, 2013, 38, 1244-1260.	2.5	151
26	Turbulence Modulation and Particle Velocities over Flat Sand Beds at Low Transport Rates. Journal of Hydraulic Engineering, 1997, 123, 1118-1129.	1.5	150
27	Form roughness and the absence of secondary flow in a large confluence–diffluence, Rio Paraná, Argentina. Earth Surface Processes and Landforms, 2007, 32, 155-162.	2.5	144
28	Bed morphology and sedimentology at the confluence of unequal depth channels. Geomorphology, 1993, 8, 115-129.	2.6	141
29	Turbulence Modulation in Clay-Rich Sediment-Laden Flows and Some Implications for Sediment Deposition. Journal of Sedimentary Research, 2002, 72, 336-340.	1.6	137
30	Dynamics of a river channel confluence with discordant beds: Flow turbulence, bed load sediment transport, and bed morphology. Journal of Geophysical Research, 2006, 111, .	3.3	135
31	Measuring flow velocity and sediment transport with an acoustic Doppler current profiler. Geomorphology, 2005, 68, 25-37.	2.6	133
32	The morphology of river channel confluences. Progress in Physical Geography, 1986, 10, 157-174.	3.2	132
33	Morphology, flow structure, and suspended bed sediment transport at two large braidâ€bar confluences. Water Resources Research, 2009, 45, .	4.2	131
34	Turbulent flow structure at concordant and discordant open-channel confluences. Experiments in Fluids, 1996, 21, 437-446.	2.4	130
35	Predicting bedforms and primary current stratification in cohesive mixtures of mud and sand. Journal of the Geological Society, 2016, 173, 12-45.	2.1	127
36	Causes of rapid mixing at a junction of two large rivers: RÃo ParanÃ $_{\rm i}$ and RÃo Paraguay, Argentina. Journal of Geophysical Research, 2008, 113 , .	3.3	115

#	Article	IF	CITATIONS
37	Extreme sediment pulses generated by bend cutoffs along a large meandering river. Nature Geoscience, 2011, 4, 675-678.	12.9	115
38	Braided rivers: perspectives and problems. Geological Society Special Publication, 1993, 75, 1-11.	1.3	112
39	Fluid and sediment dynamics of upper stage plane beds. Journal of Geophysical Research, 1998, 103, 1239-1274.	3.3	110
40	Spatial variability in bank resistance to erosion on a large meandering, mixed bedrock-alluvial river. Geomorphology, 2016, 252, 80-97.	2.6	108
41	River piracy and drainage basin reorganization led by climate-driven glacier retreat. Nature Geoscience, 2017, 10, 370-375.	12.9	107
42	Whole flow field dynamics and velocity pulsing within natural sediment-laden underflows. Geology, 2005, 33, 765.	4.4	103
43	Flow structure in sinuous submarine channels: Velocity and turbulence structure of an experimental submarine channel. Marine Geology, 2006, 229, 241-257.	2.1	103
44	Coherent flow structures in a depthâ€limited flow over a gravel surface: The role of nearâ€bed turbulence and influence of Reynolds number. Journal of Geophysical Research, 2009, 114, .	3.3	102
45	Relationship between sediment supply and avulsion frequency in braided rivers. Geology, 2004, 32, 21.	4.4	100
46	Mitigating land loss in coastal Louisiana by controlled diversion of Mississippi River sand. Nature Geoscience, 2012, 5, 534-537.	12.9	100
47	Evolution and sedimentology of a channel fill in the sandy braided South Saskatchewan River and its comparison to the deposits of an adjacent compound bar. Sedimentology, 2011, 58, 1860-1883.	3.1	99
48	Comparison of Fixed- and Moving-Vessel Flow Measurements with an aDp in a Large River. Journal of Hydraulic Engineering, 2007, 133, 1299-1309.	1.5	96
49	Quantification of braided river channel change using archival digital image analysis. Earth Surface Processes and Landforms, 2010, 35, 971-985.	2.5	94
50	On experimental reflected density currents and the interpretation of certain turbidites. Sedimentology, 1994, 41, 437-461.	3.1	92
51	The orientation of helical flow in curved channels. Sedimentology, 2006, 53, 249-257.	3.1	92
52	Flow structure and channel morphodynamics of meander bend chute cutoffs: A case study of the Wabash River, USA. Journal of Geophysical Research F: Earth Surface, 2013, 118, 2468-2487.	2.8	91
53	Preservation of planar laminae due to migration of low-relief bed waves over aggrading upper-stage plane beds: comparison of experimental data with theory. Sedimentology, 1997, 44, 253-262.	3.1	88
54	Tributary, distributary and other fluvial patterns: What really represents the norm in the continental rock record?. Sedimentary Geology, 2012, 261-262, 15-32.	2.1	81

#	Article	IF	Citations
55	The planform mobility of river channel confluences: Insights from analysis of remotely sensed imagery. Earth-Science Reviews, 2018, 176, 1-18.	9.1	76
56	On the relationship between flow and suspended sediment transport over the crest of a sand dune, RÃfÂo ParanÃfÂ _i , Argentina. Sedimentology, 2010, 57, 252-272.	3.1	74
57	Flow fields, bed shear stresses, and suspended bed sediment dynamics in bifurcations of a large river. Water Resources Research, 2012, 48, .	4.2	73
58	Sedimentation in deep-sea lobe-elements: implications for the origin of thickening-upward sequences. Journal of the Geological Society, 2011, 168, 319-332.	2.1	72
59	Dunes in the world's big rivers are characterized by low-angle lee-side slopes and a complex shape. Nature Geoscience, 2020, 13, 156-162.	12.9	72
60	Measuring Velocity and Shear Stress over Dunes with Acoustic Doppler Profiler. Journal of Hydraulic Engineering, 2004, 130, 932-936.	1.5	65
61	Modulation of outer bank erosion by slump blocks: Disentangling the protective and destructive role of failed material on the threeâ€dimensional flow structure. Geophysical Research Letters, 2015, 42, 10,663.	4.0	65
62	The Sedimentology and Alluvial Architecture of a Large Braid Bar, Rio Parana, Argentina. Journal of Sedimentary Research, 2009, 79, 629-642.	1.6	64
63	Sedimentology and event timing of a catastrophic volcaniclastic mass flow, Volcan Hudson, Southern Chile. Bulletin of Volcanology, 1992, 54, 299-318.	3.0	63
64	Threeâ€dimensional flow structure and bed morphology in large elongate meander loops with different outer bank roughness characteristics. Water Resources Research, 2016, 52, 9621-9641.	4.2	60
65	Mean flow, turbulence structure, and bed form superimposition across the ripple-dune transition. Water Resources Research, 2006, 42, .	4.2	59
66	Can we distinguish flood frequency and magnitude in the sedimentological record of rivers?. Geology, 2010, 38, 579-582.	4.4	59
67	Sand, gravel, and UN Sustainable Development Goals: Conflicts, synergies, and pathways forward. One Earth, 2021, 4, 1095-1111.	6.8	59
68	Computational fluid dynamics and the physical modelling of an upland urban river. Geomorphology, 2002, 44, 375-391.	2.6	57
69	A New Phase Diagram for Combined-Flow Bedforms. Journal of Sedimentary Research, 2014, 84, 301-313.	1.6	57
70	The influence of scale, slope and channel geometry on the flow dynamics of submarine channels. Marine and Petroleum Geology, 2007, 24, 487-503.	3.3	56
71	The physical scale modelling of braided alluvial architecture and estimation of subsurface permeability. Basin Research, 2002, 14, 265-285.	2.7	54
72	The dynamics of turbulent, transitional and laminar clayâ€laden flow over a fixed current ripple. Sedimentology, 2008, 55, 635-666.	3.1	53

#	Article	IF	CITATIONS
73	Suspended sediment transport and deposition over a dune: \tilde{RAo} Paran \tilde{A}_i , Argentina. Earth Surface Processes and Landforms, 2009, 34, 1605-1611.	2.5	53
74	An experimental study of discharge partitioning and flow structure at symmetrical bifurcations. Earth Surface Processes and Landforms, 2011, 36, 2069-2082.	2.5	52
75	The alluvial architecture of a suspended sediment dominated meandering river: the RÃo Bermejo, Argentina. Sedimentology, 2016, 63, 1187-1208.	3.1	52
76	Drag reduction in turbulent muddy seawater flows and some sedimentary consequences. Sedimentology, 1993, 40, 1129-1137.	3.1	51
77	Development and testing of a numerical code for treatment of complex river channel topography in three-dimensional CFD models with structured grids. Journal of Hydraulic Research/De Recherches Hydrauliques, 2005, 43, 468-480.	1.7	50
78	Particle-image velocimetry measurements of flow over interacting barchan dunes. Experiments in Fluids, 2012, 52, 809-829.	2.4	50
79	Effect of bed permeability and hyporheic flow on turbulent flow over bed forms. Geophysical Research Letters, 2014, 41, 6435-6442.	4.0	50
80	Extremes in dune preservation: Controls on the completeness of fluvial deposits. Earth-Science Reviews, 2015, 150, 652-665.	9.1	50
81	Turbulence and Secondary Flow over Sediment Stripes in Weakly Bimodal Bed Material. Journal of Hydraulic Engineering, 1999, 125, 463-473.	1.5	48
82	The relationship between channel avulsion, flow occupancy and aggradation in braided rivers: insights from an experimental model. Sedimentology, 2007, 54, 497-513.	3.1	48
83	Scales and causes of heterogeneity in bars in a large multiâ€channel river: RÃo Paraná, Argentina. Sedimentology, 2014, 61, 1055-1085.	3.1	48
84	An integrated processâ€based model of flutes and tool marks in deepâ€water environments: Implications for palaeohydraulics, the Bouma sequence and hybrid event beds. Sedimentology, 2020, 67, 1601-1666.	3.1	48
85	The Western Irish Namurian Basin reassessed. Basin Research, 2000, 12, 59-78.	2.7	47
86	Discrimination of bed form scales using robust spline filters and wavelet transforms: Methods and application to synthetic signals and bed forms of the RÃo ParanÃ _i , Argentina. Journal of Geophysical Research F: Earth Surface, 2013, 118, 1400-1418.	2.8	47
87	Response of sand dunes to variations in tidal flow: Fraser Estuary, Canada. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	46
88	The impact of significant input of fine sediment on benthic fauna at tributary junctions: a case study of the Bermejoâ€"Paraguay River confluence, Argentina. Ecohydrology, 2015, 8, 340-352.	2.4	46
89	The influence of tributary flow density differences on the hydrodynamic behavior of a confluent meander bend and implications for flow mixing. Geomorphology, 2018, 304, 99-112.	2.6	46
90	Response of riverâ€dominated delta channel networks to permanent changes in river discharge. Geophysical Research Letters, 2010, 37, .	4.0	44

#	Article	IF	Citations
91	Coherent flow structures in a depthâ€limited flow over a gravel surface: The influence of surface roughness. Journal of Geophysical Research, 2010, 115, .	3.3	43
92	A flume experiment on the effect of channel width on the perturbation and recovery of flow in straight pools and riffles with smooth boundaries. Journal of Geophysical Research F: Earth Surface, 2013, 118, 1850-1863.	2.8	43
93	A unified model for bedform development and equilibrium under unidirectional, oscillatory and combinedâ€flows. Sedimentology, 2014, 61, 2063-2085.	3.1	41
94	The influence of flow discharge variations on the morphodynamics of a diffluence–confluence unit on a large river. Earth Surface Processes and Landforms, 2018, 43, 349-362.	2.5	41
95	On the evolution and form of coherent flow structures over a gravel bed: Insights from whole flow field visualization and measurement. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1472-1493.	2.8	40
96	Length scales and statistical characteristics of outer bank roughness for large elongate meander bends: The influence of bank material properties, floodplain vegetation and flow inundation. Earth Surface Processes and Landforms, 2017, 42, 2024-2037.	2.5	40
97	Extreme floodâ€driven fluvial bank erosion and sediment loads: direct process measurements using integrated Mobile Laser Scanning (MLS) and hydroâ€acoustic techniques. Earth Surface Processes and Landforms, 2017, 42, 334-346.	2.5	39
98	Bar-top hollows: A new element in the architecture of sandy braided rivers. Sedimentary Geology, 2006, 190, 241-255.	2.1	38
99	Deposits of the sandy braided South Saskatchewan River: Implications for the use of modern analogs in reconstructing channel dimensions in reservoir characterization. AAPG Bulletin, 2013, 97, 553-576.	1.5	37
100	Observations and scaling of tidal mass transport across the lower Ganges–Brahmaputra delta plain: implications for delta management and sustainability. Earth Surface Dynamics, 2019, 7, 231-245.	2.4	37
101	The Pace of Human-Induced Change in Large Rivers: Stresses, Resilience, and Vulnerability to Extreme Events. One Earth, 2020, 2, 510-514.	6.8	37
102	Approaching the System-Scale Understanding of Braided River Behaviour., 0,, 107-135.		36
103	The role of discharge variability in determining alluvial stratigraphy. Geology, 2016, 44, 3-6.	4.4	36
104	Turbulence Links Momentum and Solute Exchange in Coarseâ€Grained Streambeds. Water Resources Research, 2018, 54, 3225-3242.	4.2	36
105	Hydrodynamic modelling of tidal-fluvial flows in a large river estuary. Estuarine, Coastal and Shelf Science, 2018, 212, 176-188.	2.1	36
106	Flow separationâ€"a physical process for the concentration of heavy minerals within alluvial channels. Journal of the Geological Society, 1985, 142, 747-755.	2.1	34
107	Large River Channel Confluences. , 2008, , 73-91.		34
108	Grain-Size Controls On the Morphology and Internal Geometry of River-Dominated Deltas. Journal of Sedimentary Research, 2015, 85, 699-714.	1.6	34

#	Article	IF	CITATIONS
109	The bubble bursts for cavitation in natural rivers: laboratory experiments reveal minor role in bedrock erosion. Earth Surface Processes and Landforms, 2017, 42, 1308-1316.	2.5	34
110	Experimental evidence of amplitude modulation in permeable-wall turbulence. Journal of Fluid Mechanics, 2020, 887, .	3.4	34
111	Mechanisms of anabranch avulsion within gravel-bed braided rivers: observations from a scaled physical model. Geological Society Special Publication, 1993, 75, 119-127.	1.3	33
112	Paragenetic sequences of carbonate and sulphide minerals of the Mamfe Basin (Cameroon): Indicators of palaeo-fluids, palaeo-oxygen levels and diagenetic zones. Journal of African Earth Sciences, 2013, 86, 25-44.	2.0	32
113	Quantitative visualization of flow fields associated with alluvial sand dunes: Results from the laboratory and field using ultrasonic and acoustic doppler anemometry. Journal of Visualization, 2001, 4, 373-381.	1.8	31
114	Quantifying the dynamics of flow within a permeable bed using time-resolved endoscopic particle imaging velocimetry (EPIV). Experiments in Fluids, 2012, 53, 51-76.	2.4	31
115	Source apportionment of soil heavy metals in fluvial islands, Anhui section of the lower Yangtze River: comparison of APCS–MLR and PMF. Journal of Soils and Sediments, 2020, 20, 3380-3393.	3.0	31
116	Modelling hydrodynamics in the Rio Paran \tilde{A}_i , Argentina: An evaluation and inter-comparison of reduced-complexity and physics based models applied to a large sand-bed river. Geomorphology, 2012, 169-170, 192-211.	2.6	30
117	Turbulent Flow Structure Associated With Collision Between Laterally Offset, Fixedâ€Bed Barchan Dunes. Journal of Geophysical Research F: Earth Surface, 2018, 123, 2157-2188.	2.8	29
118	The use and application of GPR in sandy fluvial environments: methodological considerations. Geological Society Special Publication, 2003, 211, 127-142.	1.3	28
119	Sedimentology and kinematics of a large, retrogressive growth-fault system in Upper Carboniferous deltaic sediments, western Ireland. Sedimentology, 2004, 51, 1343-1358.	3.1	28
120	Reply to Discussion of Imran <i>et al.</i> on "The orientation of helical flow in curved channels―by Corney <i>et al.</i> , Sedimentology, 53, 249–257. Sedimentology, 2008, 55, 241-247.	3.1	28
121	Bed forms in bimodal sand-gravel sediments: laboratory and field analysis. Sedimentology, 2006, 53, 631-654.	3.1	27
122	A numerical investigation into the importance of bed permeability on determining flow structures over river dunes. Water Resources Research, 2017, 53, 3067-3086.	4.2	27
123	Morphology and Facies Models of Channel Confluences. , 0, , 89-100.		27
124	Particle Size and Velocity Discrimination in a Sediment-Laden Turbulent Flow Using Phase Doppler Anemometry. Journal of Fluids Engineering, Transactions of the ASME, 1995, 117, 505-511.	1.5	26
125	Fluvial form in modern continental sedimentary basins: Distributive fluvial systems: COMMENT. Geology, 2010, 38, e230-e230.	4.4	26
126	Large eddy simulation of interacting barchan dunes in a steady, unidirectional flow. Journal of Geophysical Research F: Earth Surface, 2013, 118, 2089-2104.	2.8	26

#	Article	IF	CITATIONS
127	Experimental study of turbulent flow over and within cubically packed walls of spheres: Effects of topography, permeability and wall thickness. International Journal of Heat and Fluid Flow, 2018, 73, 16-29.	2.4	26
128	Quantification of the relation between surface morphodynamics and subsurface sedimentological product in sandy braided rivers. Sedimentology, 2013, 60, 820-839.	3.1	25
129	Fluvio-deltaic avulsions during relative sea-level fall. Geology, 2015, 43, 719-722.	4.4	25
130	Effect of Orientation and Size of Helleyâ€Smith Sampler on Its Efficiency. Journal of Hydraulic Engineering, 1994, 120, 758-766.	1.5	24
131	Sedimentology of the Bengal shelf, Bangladesh: comparison of late Miocene sediments, Sitakund anticline, with the modern, tidally dominated shelf. Sedimentary Geology, 2003, 155, 271-300.	2.1	24
132	Describing fluvial systems: linking processes to deposits and stratigraphy. Geological Society Special Publication, 2019, 488, 152-166.	1.3	24
133	Quantification of bedform dynamics and bedload sediment flux in sandy braided rivers from airborne and satellite imagery. Earth Surface Processes and Landforms, 2019, 44, 953-972.	2.5	24
134	Discussion of " <i>Development of Bed Features</i> ―by Arved J. Raudkivi and Hansâ€H. Witte (September	,) Tj.ETQq(0 0 0 rgBT /O
135	Monitoring Suspended Sediment Dynamics Using MBES. Journal of Hydraulic Engineering, 2010, 136, 45-49.	1.5	23
136	A new methodology for the quantitative visualization of coherent flow structures in alluvial channels using multibeam echoâ€sounding (MBES). Geophysical Research Letters, 2010, 37, .	4.0	23
137	On the Causes of Pulsing in Continuous Turbidity Currents. Journal of Geophysical Research F: Earth Surface, 2018, 123, 2827-2843.	2.8	23
138	Spatial Scales of Turbulent Flow Structures Associated With Interacting Barchan Dunes. Journal of Geophysical Research F: Earth Surface, 2019, 124, 1175-1200.	2.8	22
139	Flow Structure and Transport of Sand-Grade Suspended Sediment around an Evolving Braid Bar, Jamuna River, Bangladesh., 0,, 43-57.		21
140	River temperature and the thermal-dynamic transport of sediment. Global and Planetary Change, 2019, 178, 168-183.	3.5	21
141	A scheme for resampling, filtering, and subsampling unevenly spaced laser Doppler anemometer data. Mathematical Geosciences, 1995, 27, 731-748.	0.9	20
142	Earthquakes, Rivers and Ice: Scientific Research at the Laguna San Rafael, Southern Chile, 1986. Geographical Journal, 1988, 154, 392.	3.1	19
143	Fluidization pipes in volcaniclastic mass flows, Volcan Hudson, Southern Chile. Terra Nova, 1989, 1, 203-208.	2.1	19
144	The sedimentology of river confluences. Sedimentology, 2019, 66, 391-407.	3.1	19

#	Article	IF	CITATIONS
145	Bed morphology, flow structure, and sediment transport at the outlet of Lake Huron and in the upper St. Clair River. Journal of Great Lakes Research, 2011, 37, 480-493.	1.9	18
146	Secondary Flows and Vortex Structure Associated With Isolated and Interacting Barchan Dunes. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005257.	2.8	18
147	Soft-sediment deformation structures as indicators of tectono-volcanic activity during evolution of a lacustrine basin: A case study from the Upper Triassic Ordos Basin, China. Marine and Petroleum Geology, 2020, 115, 104250.	3.3	18
148	Amplification of downstream flood stage due to damming of fine-grained rivers. Nature Communications, 2022, 13, .	12.8	18
149	Electrical Resistance Tomography for Suspended Sediment Measurements in Open Channel Flows Using a Novel Sensor Design. Particle and Particle Systems Characterization, 2006, 23, 313-320.	2.3	17
150	Monitoring the generation and evolution of the sediment plume behind towed fishing gears using a multibeam echosounder. ICES Journal of Marine Science, 2013, 70, 892-903.	2.5	16
151	Bedforms: views and new perspectives from the third international workshop on Marine and River Dune Dynamics (MARID3). Earth Surface Processes and Landforms, 2013, 38, 319-329.	2.5	16
152	The Impact of Nonequilibrium Flow on the Structure of Turbulence Over River Dunes. Water Resources Research, 2018, 54, 6566-6584.	4.2	16
153	Sedimentologic and palaeoenvironmental evolution of the Mamfe Cretaceous Basin (SW Cameroon): Evidence from lithofacies analysis, tectonics and evaporite minerals suite. Journal of African Earth Sciences, 2019, 149, 19-41.	2.0	16
154	The Influence of Aggradation Rate on Braided Alluvial Architecture: Field Study and Physical Scale-Modelling of the Ashburton River Gravels, Canterbury Plains, New Zealand., 0,, 331-346.		15
155	Threeâ€dimensional gravityâ€current flow within a subaqueous bend: Spatial evolution and force balance variations. Sedimentology, 2013, 60, 1668-1680.	3.1	15
156	Decimeterâ€scale in situ mapping of modern crossâ€bedded dune deposits using parametric echo sounding: A new method for linking river processes and their deposits. Geophysical Research Letters, 2013, 40, 3883-3887.	4.0	15
157	Application of a roughnessâ€length representation to parameterize energy loss in 3â€D numerical simulations of large rivers. Water Resources Research, 2012, 48, .	4.2	14
158	PIV measurements of turbulent flow overlying large, cubic- and hexagonally-packed hemisphere arrays. Journal of Hydraulic Research/De Recherches Hydrauliques, 2020, 58, 363-383.	1.7	13
159	Closure to "Separation Zone at Openâ€Channel Junctions―by James L. Best and Ian Reid (November, 1984). Journal of Hydraulic Engineering, 1987, 113, 545-548.	1.5	12
160	Bed form genesis from bed defects under unidirectional, oscillatory, and combined flows. Journal of Geophysical Research F: Earth Surface, 2014, 119, 2635-2652.	2.8	12
161	Comparing the transitional behaviour of kaolinite and bentonite suspension flows. Earth Surface Processes and Landforms, 2016, 41, 1911-1921.	2.5	12
162	An evaluation of the use of a multibeam echo-sounder for observations of suspended sediment. Applied Acoustics, 2017, 126, 81-90.	3.3	12

#	Article	IF	Citations
163	Using multibeam backscatter strength to analyze the distribution of manganese nodules: A case study of seamounts in the Western Pacific Ocean. Applied Acoustics, 2021, 173, 107729.	3.3	12
164	On determining the geometric and kinematic characteristics of coherent flow structures over a gravel bed: a new approach using combined PLIFâ€PIV. Earth Surface Processes and Landforms, 2011, 36, 279-284.	2.5	11
165	Small- and large- scale soft-sediment deformations in a Triassic lacustrine delta caused by overloading and seismicity in the Ordos Basin, central China. Marine and Petroleum Geology, 2019, 103, 126-149.	3.3	10
166	Influence of Dunes on Channelâ€6cale Flow and Sediment Transport in a Sand Bed Braided River. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2020JF005571.	2.8	10
167	Sediment mobility and bed armoring in the St Clair River: insights from hydrodynamic modeling. Earth Surface Processes and Landforms, 2012, 37, 957-970.	2.5	9
168	Dune-scale cross-strata across the fluvial-deltaic backwater regime: Preservation potential of an autogenic stratigraphic signature. Geology, 2020, 48, 1144-1148.	4.4	9
169	Novel Environment Enables PIV Measurements of Turbulent Flow around and within Complex Topographies. Journal of Hydraulic Engineering, 2020, 146, 04020033.	1.5	9
170	The sedimentary architecture of hyperpycnites produced by transient turbulent flows in a shallow lacustrine environment. Sedimentary Geology, 2021, 411, 105804.	2.1	9
171	Bedform genesis in bedrock substrates: Insights into formative processes from a new experimental approach and the importance of suspension-dominated abrasion. Geomorphology, 2016, 255, 26-38.	2.6	7
172	Early burial mud diapirism and its impact on stratigraphic architecture in the Carboniferous of the Shannon Basin, County Clare, Ireland. Sedimentology, 2019, 66, 329-361.	3.1	7
173	The Influence of Threeâ€Dimensional Topography on Turbulent Flow Structures Over Dunes in Unidirectional Flows. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006121.	2.8	7
174	On the turbulence dynamics induced by a surrogate seagrass canopy. Journal of Fluid Mechanics, 2022, 934, .	3.4	7
175	Beyond just floodwater. Nature Sustainability, 2022, 5, 811-813.	23.7	7
176	Sand mining impact on Poyang Lake: a case study based on high-resolution bathymetry and sub-bottom data. Journal of Oceanology and Limnology, 0, , 1.	1.3	6
177	How Do Vulnerable People in Bangladesh Experience Environmental Stress From Sedimentation in the Haor Wetlands? An Exploratory Study. Water Resources Research, 2022, 58, .	4.2	6
178	The influence of dunes on mixing in a migrating saltâ€wedge: Fraser River estuary, Canada. Earth Surface Processes and Landforms, 2010, 35, 460-465.	2.5	5
179	Why do large, deep rivers have low-angle dune beds?: COMMENT. Geology, 2020, 48, e505-e505.	4.4	5
180	Drainage and erosion of Cambodia's great lake in the middle-late Holocene: The combined role of climatic drying, base-level fall and river capture. Quaternary Science Reviews, 2020, 236, 106265.	3.0	5

#	Article	IF	Citations
181	Rapid gravity flow transformation revealed in a single climbing ripple. Geology, 2021, 49, 493-497.	4.4	5
182	Interpreting pre-vegetation landscape dynamics: The Cambrian Lower Mount Simon Sandstone, Illinois, U.S.A Journal of Sedimentary Research, 2020, 90, 1614-1641.	1.6	5
183	<title>Use of GPR in developing a facies model for a large sandy braided river, Brahmaputra River, Bangladesh</title> ., 2000, , .		4
184	A pilot study of the efficacy of residuum lodges for managing sediment delivery to impoundment reservoirs. Water and Environment Journal, 2009, 23, 52-62.	2.2	4
185	The Effect of Biofilms on Turbulent Flow Over Permeable Beds. Water Resources Research, 2021, 57, e2019WR026032.	4.2	4
186	Unsteady dynamics of turbulent flow in the wakes of barchan dunes modulated by overlying boundary-layer structure. Journal of Fluid Mechanics, 2021, 920, .	3.4	4
187	Three-Dimensional Flow Structure at Open-Channel Diversions. Journal of Hydraulic Engineering, 1995, 121, 87-90.	1.5	3
188	Discussion and Closure: Bed-Load Motion at High Shear Stress: Dune Washout and Plane-Bed Flow. Journal of Hydraulic Engineering, 1997, 123, 375-377.	1.5	3
189	Ripple formation induced by biogenic mounds—comment. Marine Geology, 2000, 168, 145-151.	2.1	3
190	Linking the local vertical variability of permeability and porosity to newly-interpreted lithofacies in the lower Mt. Simon CO2 reservoir. International Journal of Greenhouse Gas Control, 2018, 68, 26-41.	4.6	3
191	Alluvial architecture of midâ€channel fluvial–tidal barforms: The mesotidal Lower Columbia River, Oregon/Washington, USA. Sedimentology, 2020, 67, 3533-3566.	3.1	3
192	Topographic perturbation of turbulent boundary layers by lowâ€angle, earlyâ€stage aeolian dunes. Earth Surface Processes and Landforms, 2022, 47, 1439-1454.	2.5	3
193	Sedimentary pyrite in carbonaceous shales of the Mamfe Cretaceous basin, SW Cameroon: Morphologies, composition, pyrite framboid size frequency distribution, and formation pathways. Journal of African Earth Sciences, 2022, 188, 104465.	2.0	3
194	On the submerged low-Cauchy-number canopy dynamics under unidirectional flows. Journal of Fluids and Structures, 2022, 113, 103646.	3.4	3
195	Evolving Depocentre and Slope. , 2016, , 174-239.		2
196	†Boundary': mapping and visualizing climatically changed landscapes at Kaskawulsh Glacier and Kluane Lake, Yukon. Journal of Maps, 2019, 15, 19-30.	2.0	2
197	Subaqueous and Subaerial Depositional Bedforms. , 2021, , 771-786.		2
198	The mysterious grooves of Volcán Bárcena: a review of the role of streamwise counter-rotating vortices during erosion by dilute pyroclastic density currents. Bulletin of Volcanology, 2021, 83, 1.	3.0	2

#	Article	IF	CITATIONS
199	The morphology of fluvialâ€tidal dunes: Lower Columbia River, Oregon/Washington, USA. Earth Surface Processes and Landforms, 2022, 47, 2079-2106.	2.5	2
200	Preface to Decadal Issue. Sedimentology, 2011, 58, 1-1.	3.1	1
201	Discussion of "Transition from Ripples to Dunes―by Arved J. Raudkivi. Journal of Hydraulic Engineering, 2008, 134, 1778-1780.	1.5	O
202	Wavelets Application to Study the Bedforms of Parana River. , 2011, , .		0
203	Late Triassic tectono-volcanic activity and resulting soft-sediment deformation structures in the Yanchang Formation (Ordos Basin, China)., 2022,, 371-393.		0