
Kazuhiro Wada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1503369/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Revised nomenclature for avian telencephalon and some related brainstem nuclei. Journal of Comparative Neurology, 2004, 473, 377-414.	1.6	1,054
2	Avian brains and a new understanding of vertebrate brain evolution. Nature Reviews Neuroscience, 2005, 6, 151-159.	10.2	930
3	<i>FoxP2</i> Expression in Avian Vocal Learners and Non-Learners. Journal of Neuroscience, 2004, 24, 3164-3175.	3.6	393
4	Molecular Mapping of Movement-Associated Areas in the Avian Brain: A Motor Theory for Vocal Learning Origin. PLoS ONE, 2008, 3, e1768.	2.5	246
5	Global view of the functional molecular organization of the avian cerebrum: Mirror images and functional columns. Journal of Comparative Neurology, 2013, 521, 3614-3665.	1.6	207
6	A molecular neuroethological approach for identifying and characterizing a cascade of behaviorally regulated genes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15212-15217.	7.1	176
7	Night-vision brain area in migratory songbirds. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8339-8344.	7.1	143
8	Differential expression of glutamate receptors in avian neural pathways for learned vocalization. Journal of Comparative Neurology, 2004, 476, 44-64.	1.6	136
9	Dopamine receptors in a songbird brain. Journal of Comparative Neurology, 2010, 518, 741-769.	1.6	119
10	Identification of methylated proteins by protein arginine N-methyltransferase 1, PRMT1, with a new expression cloning strategy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1591, 1-10.	4.1	69
11	Cloning of three Caenorhabditis elegans genes potentially encoding novel matrix metalloproteinases. Gene, 1998, 211, 57-62.	2.2	65
12	Lateralized activation of Cluster N in the brains of migratory songbirds. European Journal of Neuroscience, 2007, 25, 1166-1173.	2.6	65
13	Rudimentary substrates for vocal learning in a suboscine. Nature Communications, 2013, 4, 2082.	12.8	57
14	The dusp1 immediate early gene is regulated by natural stimuli predominantly in sensory input neurons. Journal of Comparative Neurology, 2010, 518, 2873-2901.	1.6	53
15	Novel RING Finger Proteins, Air1p and Air2p, Interact with Hmt1p and Inhibit the Arginine Methylation of Npl3p. Journal of Biological Chemistry, 2000, 275, 32793-32799.	3.4	49
16	Early onset of deafeningâ€induced song deterioration and differential requirements of the pallialâ€basal ganglia vocal pathway. European Journal of Neuroscience, 2008, 28, 2519-2532.	2.6	47
17	Specialized Motor-Driven dusp1 Expression in the Song Systems of Multiple Lineages of Vocal Learning Birds. PLoS ONE, 2012, 7, e42173.	2.5	41
18	The Avian Brain Nomenclature Forum: Terminology for a New Century in Comparative Neuroanatomy. Journal of Comparative Neurology, 2004, 473, E1-E6.	1.6	37

KAZUHIRO WADA

#	Article	IF	CITATIONS
19	Song-Induced Phosphorylation of cAMP Response Element-Binding Protein in the Songbird Brain. Journal of Neuroscience, 1999, 19, 3973-3981.	3.6	34
20	Audition-Independent Vocal Crystallization Associated with Intrinsic Developmental Gene Expression Dynamics. Journal of Neuroscience, 2015, 35, 878-889.	3.6	32
21	Vocal practice regulates singing activity–dependent genes underlying age-independent vocal learning in songbirds. PLoS Biology, 2018, 16, e2006537.	5.6	29
22	Variable Food Begging Calls Are Harbingers of Vocal Learning. PLoS ONE, 2009, 4, e5929.	2.5	25
23	Transcriptional regulatory divergence underpinning species-specific learned vocalization in songbirds. PLoS Biology, 2019, 17, e3000476.	5.6	24
24	Differential androgen receptor expression and <scp>DNA</scp> methylation state in striatum song nucleus Area X between wild and domesticated songbird strains. European Journal of Neuroscience, 2013, 38, 2600-2610.	2.6	22
25	Radioactive in situ Hybridization for Detecting Diverse Gene Expression Patterns in Tissue. Journal of Visualized Experiments, 2012, , .	0.3	19
26	Corticobasal ganglia projecting neurons are required for juvenile vocal learning but not for adult vocal plasticity in songbirds. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22833-22843.	7.1	16
27	Sex Differences in Brain Thyroid Hormone Levels during Early Post-Hatching Development in Zebra Finch (Taeniopygia guttata). PLoS ONE, 2017, 12, e0169643.	2.5	16
28	Recurrent development of song idiosyncrasy without auditory inputs in the canary, an open-ended vocal learner. Scientific Reports, 2018, 8, 8732.	3.3	15
29	Statistical learning for vocal sequence acquisition in a songbird. Scientific Reports, 2020, 10, 2248.	3.3	14
30	Diurnal oscillation of vocal development associated with clustered singing by juvenile songbirds. Journal of Experimental Biology, 2015, 218, 2260-8.	1.7	11
31	Inter―and intraâ€specific differences in muscarinic acetylcholine receptor expression in the neural pathways for vocal learning in songbirds. Journal of Comparative Neurology, 2018, 526, 2856-2869.	1.6	10
32	Singing activityâ€driven Arc expression associated with vocal acoustic plasticity in juvenile songbird. European Journal of Neuroscience, 2018, 48, 1728-1742.	2.6	10
33	Manipulations of sensory experiences during development reveal mechanisms underlying vocal learning biases in zebra finches. Developmental Neurobiology, 2020, 80, 132-146.	3.0	9
34	Songbird: a unique animal model for studying the molecular basis of disorders of vocal development and communication. Experimental Animals, 2015, 64, 221-230.	1,1	8
35	A quantitative method for analyzing species-specific vocal sequence pattern and its developmental dynamics. Journal of Neuroscience Methods, 2016, 271, 25-33.	2.5	8
36	Familial bias and auditory feedback regulation of vocal babbling patterns during early song development. Scientific Reports, 2016, 6, 30323.	3.3	5

KAZUHIRO WADA

#	Article	IF	CITATIONS
37	Auditory-Motor Matching in Vocal Recognition and Imitative Learning. Neuroscience, 2019, 409, 222-234.	2.3	5
38	Phylogeny and mechanisms of shared hierarchical patterns in birdsong. Current Biology, 2021, 31, 2796-2808.e9.	3.9	4
39	Seasonal regulation of singing-driven gene expression associated with song plasticity in the canary, an open-ended vocal learner. Molecular Brain, 2021, 14, 160.	2.6	4
40	Nicotinic acetylcholine receptors in a songbird brain. Journal of Comparative Neurology, 2022, 530, 1966-1991.	1.6	4
41	Molecular Profiling Reveals Insight into Avian Brain Organization and Functional Columnar Commonalities with Mammals. Diversity and Commonality in Animals, 2017, , 273-289.	0.7	3
42	Global view of the functional molecular organization of the avian cerebrum: mirror images and functional columns. Journal of Comparative Neurology, 2013, 521, Spc1-Spc1.	1.6	2
43	Neurotensin and neurotensin receptor 1 mRNA expression in songâ€control regions changes during development in male zebra finches. Developmental Neurobiology, 2018, 78, 671-686.	3.0	2
44	Detecting Neural Activity-Dependent Immediate Early Gene Expression in the Brain. , 2013, , 133-149.		1
45	Dopamine Receptors in a Songbird Brain. Journal of Comparative Neurology, 2010, 518, spc1-spc1.	1.6	0
46	Differential Regulation of Androgen Receptor and DNA Methylation in Songbirds. Epigenetics and Human Health, 2016, , 233-241.	0.2	0
47	Title is missing!. , 2019, 17, e3000476.		0
48	Title is missing!. , 2019, 17, e3000476.		0
49	Title is missing!. , 2019, 17, e3000476.		0
50	Title is missing!. , 2019, 17, e3000476.		0