
Jennifer E Mcdowell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1501714/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antisaccade error rates and gap effects in psychosis syndromes from bipolar-schizophrenia network for intermediate phenotypes 2 (B-SNIP2). Psychological Medicine, 2022, 52, 2692-2701.	4.5	7
2	Psychosis Biotypes: Replication and Validation from the B-SNIP Consortium. Schizophrenia Bulletin, 2022, 48, 56-68.	4.3	38
3	A group comparison in fMRI data using a semiparametric model under shape invariance. Computational Statistics and Data Analysis, 2022, 167, 107361.	1.2	Ο
4	Biotyping in psychosis: using multiple computational approaches with one data set. Neuropsychopharmacology, 2021, 46, 143-155.	5.4	25
5	White matter microstructure across brain-based biotypes for psychosis – findings from the bipolar-schizophrenia network for intermediate phenotypes. Psychiatry Research - Neuroimaging, 2021, 308, 111234.	1.8	14
6	Reduced white matter microstructure in bipolar disorder with and without psychosis. Bipolar Disorders, 2021, 23, 801-809.	1.9	3
7	Neural Processing of Repeated Emotional Scenes in Schizophrenia, Schizoaffective Disorder, and Bipolar Disorder. Schizophrenia Bulletin, 2021, 47, 1473-1481.	4.3	2
8	Joint Estimation and Regularized Aggregation of Brain Network in FMRI Data. Journal of Neuroscience Methods, 2021, 364, 109374.	2.5	2
9	Auditory Oddball Responses Across the Schizophrenia-Bipolar Spectrum and Their Relationship to Cognitive and Clinical Features. American Journal of Psychiatry, 2021, 178, 952-964.	7.2	15
10	Electrophysiological correlates of emotional scene processing in bipolar disorder. Journal of Psychiatric Research, 2020, 120, 83-90.	3.1	11
11	Smooth pursuit eye movement deficits as a biomarker for psychotic features in bipolar disorder—Findings from the PARDIP study. Bipolar Disorders, 2020, 22, 602-611.	1.9	12
12	No connectivity alterations for striatum, default mode, or salience network in association with self-reported antipsychotic medication dose in a large chronic patient group. Schizophrenia Research, 2020, 223, 359-360.	2.0	2
13	Distinguishing patterns of impairment on inhibitory control and general cognitive ability among bipolar with and without psychosis, schizophrenia, and schizoaffective disorder. Schizophrenia Research, 2020, 223, 148-157.	2.0	16
14	Testing Psychosis Phenotypes From Bipolar–Schizophrenia Network for Intermediate Phenotypes for Clinical Application: Biotype Characteristics and Targets. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, 5, 808-818.	1.5	27
15	Auditory steady-state EEG response across the schizo-bipolar spectrum. Schizophrenia Research, 2019, 209, 218-226.	2.0	39
16	Early and late auditory information processing show opposing deviations in aniridia. Brain Research, 2019, 1720, 146307.	2.2	7
17	Regularized aggregation of statistical parametric maps. Human Brain Mapping, 2019, 40, 65-79.	3.6	2
18	Alterations in intrinsic frontoâ€thalamoâ€parietal connectivity are associated with cognitive control deficits in psychotic disorders. Human Brain Mapping, 2019, 40, 163-174.	3.6	17

JENNIFER E MCDOWELL

#	Article	IF	CITATIONS
19	Saccades: Fundamentals and Neural Mechanisms. Studies in Neuroscience, Psychology and Behavioral Economics, 2019, , 11-71.	0.3	10
20	Multivariate Relationships Between Cognition and Brain Anatomy Across the Psychosis Spectrum. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2018, 3, 992-1002.	1.5	21
21	Psychosis subgroups differ in intrinsic neural activity but not task-specific processing. Schizophrenia Research, 2018, 195, 222-230.	2.0	10
22	Evaluating the Specificity of Cognitive Control Deficits in Schizophrenia Using Antisaccades, Functional Magnetic Resonance Imaging, and Healthy Individuals With Poor Cognitive Control. Frontiers in Psychiatry, 2018, 9, 107.	2.6	8
23	Estimating dynamic brain functional networks using multi-subject fMRI data. NeuroImage, 2018, 183, 635-649.	4.2	22
24	Intrinsic neural activity differences among psychotic illnesses. Psychophysiology, 2017, 54, 1223-1238.	2.4	15
25	Contextual effects on cognitive control and BOLD activation in single versus mixed saccade tasks. Brain and Cognition, 2017, 115, 12-20.	1.8	5
26	White matter fiber integrity of the saccadic eye movement network differs between schizophrenia and healthy groups. Psychophysiology, 2017, 54, 1967-1977.	2.4	3
27	Reduced Cognitive Control Demands after Practice of Saccade Tasks in a Trial Type Probability Manipulation. Journal of Cognitive Neuroscience, 2017, 29, 368-381.	2.3	4
28	Plasticity of prefrontal cortex connectivity in schizophrenia in response to antisaccade practice. Psychiatry Research - Neuroimaging, 2017, 265, 77-86.	1.8	5
29	The impact of acute stress on the neural processing of food cues in bulimia nervosa: Replication in two samples Journal of Abnormal Psychology, 2017, 126, 540-551.	1.9	18
30	Finding common taskâ€related regions in fMRI data from multiple subjects by periodogram clustering and clustering ensemble. Statistics in Medicine, 2016, 35, 2635-2651.	1.6	2
31	Modulation of cognitive control levels via manipulation of saccade trial-type probability assessed with event-related BOLD fMRI. Journal of Neurophysiology, 2016, 115, 763-772.	1.8	16
32	Effects of preparation time and trial type probability on performance of anti- and pro-saccades. Acta Psychologica, 2016, 164, 188-194.	1.5	8
33	Individual differences in working memory moderate the relationship between prosaccade latency and antisaccade error rate. Psychophysiology, 2015, 52, 605-608.	2.4	6
34	Pursuit eye movements as an intermediate phenotype across psychotic disorders: Evidence from the B-SNIP study. Schizophrenia Research, 2015, 169, 326-333.	2.0	56
35	White matter structural integrity differs between people with schizophrenia and healthy groups as a function of cognitive control. Schizophrenia Research, 2015, 169, 62-68.	2.0	9
36	Trial-type probability and task-switching effects on behavioral response characteristics in a mixed saccade task. Experimental Brain Research, 2015, 233, 959-969.	1.5	18

Jennifer E Mcdowell

#	Article	IF	CITATIONS
37	Stimulus train duration but not attention moderates Î ³ -band entrainment abnormalities in schizophrenia. Schizophrenia Research, 2015, 165, 97-102.	2.0	42
38	Antisaccade-related brain activation in children with attention-deficit/hyperactivity disorder – A pilot study. Psychiatry Research - Neuroimaging, 2015, 234, 272-279.	1.8	3
39	Increased functional connectivity in intrinsic neural networks in individuals with aniridia. Frontiers in Human Neuroscience, 2014, 8, 1013.	2.0	11
40	Improved Frontoparietal White Matter Integrity in Overweight Children Is Associated with Attendance at an After-School Exercise Program. Developmental Neuroscience, 2014, 36, 1-9.	2.0	90
41	Incorporating spatial dependence into Bayesian multiple testing of statistical parametric maps in functional neuroimaging. Neurolmage, 2014, 84, 97-112.	4.2	17
42	An 8â€month randomized controlled exercise trial alters brain activation during cognitive tasks in overweight children. Obesity, 2014, 22, 232-242.	3.0	140
43	Practice-related changes in neural activation patterns investigated via wavelet-based clustering analysis. Human Brain Mapping, 2013, 34, 2276-2291.	3.6	14
44	Neural correlates of behavioral variation in healthy adults' antisaccade performance. Psychophysiology, 2013, 50, 325-333.	2.4	18
45	Pre-Cue Fronto-Occipital Alpha Phase and Distributed Cortical Oscillations Predict Failures of Cognitive Control. Journal of Neuroscience, 2012, 32, 7034-7041.	3.6	43
46	Evidence from cluster analysis for differentiation of antisaccade performance groups based on speed/accuracy trade-offs. International Journal of Psychophysiology, 2012, 85, 274-277.	1.0	6
47	Exercise improves executive function and achievement and alters brain activation in overweight children: A randomized, controlled trial Health Psychology, 2011, 30, 91-98.	1.6	636
48	Top-down control of visual sensory processing during an ocular motor response inhibition task. Psychophysiology, 2010, 47, no-no.	2.4	8
49	Preparatory Activations across a Distributed Cortical Network Determine Production of Express Saccades in Humans. Journal of Neuroscience, 2010, 30, 7350-7357.	3.6	40
50	Consider the context: Blocked versus interleaved presentation of antisaccade trials. Psychophysiology, 2009, 46, 1100-1107.	2.4	25
51	Common Neural Circuitry Supporting Volitional Saccades and Its Disruption in Schizophrenia Patients and Relatives. Biological Psychiatry, 2008, 64, 1042-1050.	1.3	68
52	Neurophysiology and neuroanatomy of reflexive and volitional saccades: Evidence from studies of humans. Brain and Cognition, 2008, 68, 255-270.	1.8	311
53	fMRI studies of eye movement control: Investigating the interaction of cognitive and sensorimotor brain systems. NeuroImage, 2007, 36, T54-T60.	4.2	73
54	An effect of context on saccade-related behavior and brain activity. NeuroImage, 2007, 36, 774-784.	4.2	81

Jennifer E Mcdowell

#	Article	IF	CITATIONS
55	When Does the Brain Inform the Eyes Whether and Where to Move? an EEG Study in Humans. Cerebral Cortex, 2007, 17, 2634-2643.	2.9	35
56	Basal Ganglia-Thalamocortical Circuitry Disruptions in Schizophrenia During Delayed Response Tasks. Biological Psychiatry, 2006, 60, 235-241.	1.3	75
57	The neural correlates of habituation of response to startling tactile stimuli presented in a functional magnetic resonance imaging environment. Psychiatry Research - Neuroimaging, 2006, 148, 1-10.	1.8	14
58	Electroencephalography/magnetoencephalography study of cortical activities preceding prosaccades and antisaccades. NeuroReport, 2005, 16, 663-668.	1.2	63
59	Behavioral plasticity of antisaccade performance following daily practice. Experimental Brain Research, 2005, 162, 63-69.	1.5	55
60	Neural correlates of refixation saccades and antisaccades in normal and schizophrenia subjects. Biological Psychiatry, 2002, 51, 216-223.	1.3	158
61	Timing and magnitude of frontal activity differentiates refixation and anti-saccade performance. NeuroReport, 2001, 12, 1863-1868.	1.2	14
62	Ocular motor delayed-response task performance among patients with schizophrenia and their biological relatives. Psychophysiology, 2001, 38, 153-156.	2.4	36
63	Saccadic inhibition among schizotypal personality disorder subjects. Psychophysiology, 2001, 38, 399-403.	2.4	30
64	Measuring liability for schizophrenia using optimized antisaccade stimulus parameters. Psychophysiology, 1999, 36, 138-141.	2.4	98
65	Linkage of a composite inhibitory phenotype to a chromosome 22q locus in eight Utah families. , 1999, 88, 544-550.		81
66	Timing and amplitude of saccades during predictive saccadic tracking in schizophrenia. Psychophysiology, 1996, 33, 93-101.	2.4	29
67	Abnormality of smooth pursuit eye movement initiation: Specificity to the schizophrenia spectrum?. Psychophysiology, 1995, 32, 130-134.	2.4	41
68	Smooth pursuit in schizophrenia: Abnormalities of open- and closed-loop responses. Psychophysiology, 1994, 31, 79-86.	2.4	103
69	Saccadic system functioning among schizophrenia patients and their first-degree biological relatives Journal of Abnormal Psychology, 1994, 103, 277-287.	1.9	216