Xing Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1501603/publications.pdf

Version: 2024-02-01

		186265	189892
56	2,766 citations	28	50
papers	citations	h-index	g-index
59	59	59	3876
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Epidermis-Intrinsic Transcription Factor Ovol1 Coordinately Regulates Barrier Maintenance and Neutrophil Accumulation in Psoriasis-Like Inflammation. Journal of Investigative Dermatology, 2022, 142, 583-593.e5.	0.7	10
2	Coordinate control of basal epithelial cell fate and stem cell maintenance by core EMT transcription factor Zeb1. Cell Reports, 2022, 38, 110240.	6.4	24
3	Defining mammary basal cell transcriptional states using single-cell RNA-sequencing. Scientific Reports, 2022, 12, 4893.	3.3	7
4	Dormant Nfatc1 reporter-marked basal stem/progenitor cells contribute to mammary lobuloalveoli formation. IScience, 2022, 25, 103982.	4.1	2
5	IL-17A Promotes Psoriasis-Associated Keratinocyte Proliferation through ACT1-Dependent Activation of YAP–AREG Axis. Journal of Investigative Dermatology, 2022, 142, 2343-2352.	0.7	15
6	OVOL1 Regulates Psoriasis-Like Skin Inflammation and Epidermal Hyperplasia. Journal of Investigative Dermatology, 2021, 141, 1542-1552.	0.7	13
7	Altered Epithelial-mesenchymal Plasticity as a Result of Ovol2 Deletion Minimally Impacts the Self-renewal of Adult Mammary Basal Epithelial Cells. Journal of Mammary Gland Biology and Neoplasia, 2021, 26, 377-386.	2.7	1
8	Nfatc1's Role in Mammary Epithelial Morphogenesis and Basal Stem/progenitor Cell Self-renewal. Journal of Mammary Gland Biology and Neoplasia, 2021, 26, 357-365.	2.7	1
9	Integrated Single-Cell Transcriptomics and Chromatin Accessibility Analysis Reveals Regulators of Mammary Epithelial Cell Identity. Cell Reports, 2020, 33, 108273.	6.4	36
10	Defining Epidermal Basal Cell States during Skin Homeostasis and Wound Healing Using Single-Cell Transcriptomics. Cell Reports, 2020, 30, 3932-3947.e6.	6.4	139
11	Lgr4 Deletion Delays the Hair Cycle and Inhibits the Activation of Hair Follicle Stem Cells. Journal of Investigative Dermatology, 2020, 140, 1706-1712.e4.	0.7	14
12	The Msi1-mTOR pathway drives the pathogenesis of mammary and extramammary Paget's disease. Cell Research, 2020, 30, 854-872.	12.0	17
13	Intermediate cell states in epithelial-to-mesenchymal transition. Physical Biology, 2019, 16, 021001.	1.8	78
14	An Ovol2â€Zeb1 transcriptional circuit regulates epithelial directional migration and proliferation. EMBO Reports, 2019, 20, .	4.5	32
15	Ex Vivo Imaging and Genetic Manipulation of Mouse Hair Follicle Bulge Stem Cells. Methods in Molecular Biology, 2018, 1879, 15-29.	0.9	2
16	Epithelialâ€toâ€mesenchymal transition in cutaneous wound healing: Where we are and where we are heading. Developmental Dynamics, 2018, 247, 473-480.	1.8	153
17	Multiscale modeling of layer formation in epidermis. PLoS Computational Biology, 2018, 14, e1006006.	3.2	21
18	Overexpression of Transcription Factor Ovol2 in Epidermal Progenitor Cells Results in Skin Blistering. Journal of Investigative Dermatology, 2017, 137, 1805-1808.	0.7	7

#	Article	IF	Citations
19	Memory beyond immunity. Nature, 2017, 550, 460-461.	27.8	15
20	MiR-31 promotes mammary stem cell expansion and breast tumorigenesis by suppressing Wnt signaling antagonists. Nature Communications, 2017, 8, 1036.	12.8	143
21	Lgr4 is crucial for skin carcinogenesis by regulating MEK/ERK and Wnt/ \hat{l}^2 -catenin signaling pathways. Cancer Letters, 2016, 383, 161-170.	7.2	25
22	Immunogenicity difference between two hepatitis E vaccines derived from genotype 1 and 4. Antiviral Research, 2016, 128, 36-42.	4.1	27
23	Akt Phosphorylates Wnt Coactivator and Chromatin Effector Pygo2 at Serine 48 to Antagonize Its Ubiquitin/Proteasome-mediated Degradation. Journal of Biological Chemistry, 2015, 290, 21553-21567.	3.4	10
24	An Ovol2-Zeb1 Mutual Inhibitory Circuit Governs Bidirectional and Multi-step Transition between Epithelial and Mesenchymal States. PLoS Computational Biology, 2015, 11, e1004569.	3.2	245
25	Integrative ChIP-seq/Microarray Analysis Identifies a CTNNB1 Target Signature Enriched in Intestinal Stem Cells and Colon Cancer. PLoS ONE, 2014, 9, e92317.	2.5	41
26	The Co-factor of LIM Domains (CLIM/LDB/NLI) Maintains Basal Mammary Epithelial Stem Cells and Promotes Breast Tumorigenesis. PLoS Genetics, 2014, 10, e1004520.	3.5	13
27	Computational modelling of epidermal stratification highlights the importance of asymmetric cell division for predictable and robust layer formation. Journal of the Royal Society Interface, 2014, 11, 20140631.	3.4	25
28	Mammary Morphogenesis and Regeneration Require the Inhibition of EMT at Terminal End Buds by Ovol2 Transcriptional Repressor. Developmental Cell, 2014, 29, 59-74.	7.0	175
29	Pygo2 regulates β-catenin–induced activation of hair follicle stem/progenitor cells and skin hyperplasia. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10215-10220.	7.1	21
30	Identification of specific antigenic epitope at N-terminal segment of enterovirus 71 (EV-71) VP1 protein and characterization of its use in recombinant form for early diagnosis of EV-71 infection. Virus Research, 2014, 189, 248-253.	2.2	8
31	Transcriptional Mechanisms Link Epithelial Plasticity to Adhesion and Differentiation of Epidermal Progenitor Cells. Developmental Cell, 2014, 29, 47-58.	7.0	110
32	Transcriptional Control of Epidermal Stem Cells. Advances in Experimental Medicine and Biology, 2013, 786, 157-173.	1.6	4
33	Chromatin Effector Pygo2 Mediates Wnt-Notch Crosstalk to Suppress Luminal/Alveolar Potential of Mammary Stem and Basal Cells. Cell Stem Cell, 2013, 13, 48-61.	11.1	75
34	Pygo2 regulates histone gene expression and H3 K56 acetylation in human mammary epithelial cells. Cell Cycle, 2012, 11, 79-87.	2.6	25
35	A WNTer Revisit: New Faces of \hat{I}^2 -Catenin and TCFs in Pluripotency. Science Signaling, 2011, 4, pe41.	3.6	20
36	Cytokeratin expression during mouse embryonic and early postnatal mammary gland development. Histochemistry and Cell Biology, 2010, 133, 213-221.	1.7	77

#	Article	IF	CITATIONS
37	Integrative multicellular biological modeling: a case study of 3D epidermal development using GPU algorithms. BMC Systems Biology, 2010, 4, 107.	3.0	58
38	Epithelial stem cells: An epigenetic and wntâ€centric perspective. Journal of Cellular Biochemistry, 2010, 110, 1279-1287.	2.6	27
39	Pygo2 Associates with MLL2 Histone Methyltransferase and GCN5 Histone Acetyltransferase Complexes To Augment Wnt Target Gene Expression and Breast Cancer Stem-Like Cell Expansion. Molecular and Cellular Biology, 2010, 30, 5621-5635.	2.3	73
40	Pygo2 expands mammary progenitor cells by facilitating histone H3 K4 methylation. Journal of Cell Biology, 2009, 185, 811-826.	5.2	113
41	Ovol2 Suppresses Cell Cycling and Terminal Differentiation of Keratinocytes by Directly Repressing c-Myc and Notch1. Journal of Biological Chemistry, 2009, 284, 29125-29135.	3.4	53
42	Pygopus and the Wnt signaling pathway: A diverse set of connections. BioEssays, 2008, 30, 448-456.	2.5	53
43	Analysis of mPygo2 mutant mice suggests a requirement for mesenchymal Wnt signaling in pancreatic growth and differentiation. Developmental Biology, 2008, 318, 224-235.	2.0	24
44	Nuclear regulator Pygo2 controls spermiogenesis and histone H3 acetylation. Developmental Biology, 2008, 320, 446-455.	2.0	72
45	Ovol 1 represses its own transcription by competing with transcription activator c-Myb and by recruiting histone deacetylase activity. Nucleic Acids Research, 2007, 35, 1687-1697.	14.5	37
46	Strain-dependent perinatal lethality of Ovol1-deficient mice and identification of Ovol2 as a downstream target of Ovol1 in skin epidermis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 89-95.	3.8	57
47	Synthetic and Isolation Studies Related to the Marine Natural Products (+)-Elisabethadione and (+)-Elisabethamine. Journal of Organic Chemistry, 2007, 72, 1895-1900.	3.2	35
48	Developmental phenotypes and reduced Wnt signaling in mice deficient forpygopus 2. Genesis, 2007, 45, 318-325.	1.6	54
49	The mouse Ovol2 gene is required for cranial neural tube development. Developmental Biology, 2006, 291, 38-52.	2.0	58
50	Formal Enantioselective [4+3] Cycloaddition by a Tandem Diels–Alder Reaction/Ring Expansion. Advanced Synthesis and Catalysis, 2006, 348, 2449-2456.	4.3	29
51	Ovol1 regulates the growth arrest of embryonic epidermal progenitor cells and represses c-myc transcription. Journal of Cell Biology, 2006, 173, 253-264.	5.2	117
52	Ovol1 regulates meiotic pachytene progression during spermatogenesis by repressing Id2 expression. Development (Cambridge), 2005, 132, 1463-1473.	2.5	60
53	Transcriptional control of epidermal specification and differentiation. Current Opinion in Genetics and Development, 2004, 14, 485-491.	3.3	83
54	Cloning and developmental expression of mouse pygopus 2, a putative Wnt signaling componentâ [†] t. Genomics, 2004, 84, 398-405.	2.9	26

XING DAI

#	Article	IF	CITATION
55	The LEF1/ \hat{A} -catenin complex activates movo1, a mouse homolog of Drosophila ovo required for epidermal appendage differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6064-6069.	7.1	53
56	Ovol2, a Mammalian Homolog of Drosophila ovo: Gene Structure, Chromosomal Mapping, and Aberrant Expression in Blind-Sterile Mice. Genomics, 2002, 80, 319-325.	2.9	50