Peter D Keightley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1499267/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolution of genes and genomes on the Drosophila phylogeny. Nature, 2007, 450, 203-218.	27.8	1,886
2	The distribution of fitness effects of new mutations. Nature Reviews Genetics, 2007, 8, 610-618.	16.3	1,234
3	Understanding quantitative genetic variation. Nature Reviews Genetics, 2002, 3, 11-21.	16.3	727
4	Estimating the Rate of Adaptive Molecular Evolution in the Presence of Slightly Deleterious Mutations and Population Size Change. Molecular Biology and Evolution, 2009, 26, 2097-2108.	8.9	413
5	High genomic deleterious mutation rates in hominids. Nature, 1999, 397, 344-347.	27.8	412
6	Spontaneous Mutation Accumulation Studies in Evolutionary Genetics. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 151-172.	8.3	396
7	Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature, 2007, 445, 82-85.	27.8	381
8	Analysis of the genome sequences of three <i>Drosophila melanogaster</i> spontaneous mutation accumulation lines. Genome Research, 2009, 19, 1195-1201.	5.5	343
9	Joint Inference of the Distribution of Fitness Effects of Deleterious Mutations and Population Demography Based on Nucleotide Polymorphism Frequencies. Genetics, 2007, 177, 2251-2261.	2.9	336
10	Interference among deleterious mutations favours sex and recombination in finite populations. Nature, 2006, 443, 89-92.	27.8	328
11	Enhanced CpG Mutability and Tumorigenesis in MBD4-Deficient Mice. Science, 2002, 297, 403-405.	12.6	294
12	Estimation of the Spontaneous Mutation Rate per Nucleotide Site in a <i>Drosophila melanogaster</i> Full-Sib Family. Genetics, 2014, 196, 313-320.	2.9	248
13	Direct Estimation of the Mitochondrial DNA Mutation Rate in Drosophila melanogaster. PLoS Biology, 2008, 6, e204.	5.6	239
14	Estimation of the Spontaneous Mutation Rate in Heliconius melpomene. Molecular Biology and Evolution, 2015, 32, 239-243.	8.9	220
15	Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison. Genome Research, 2006, 16, 875-884.	5.5	217
16	Quantifying the Slightly Deleterious Mutation Model of Molecular Evolution. Molecular Biology and Evolution, 2002, 19, 2142-2149.	8.9	191
17	Evidence for Widespread Degradation of Gene Control Regions in Hominid Genomes. PLoS Biology, 2005, 3, e42.	5.6	178
18	Rates and Fitness Consequences of New Mutations in Humans. Genetics, 2012, 190, 295-304.	2.9	174

#	Article	IF	CITATIONS
19	Nature of Deleterious Mutation Load in Drosophila. Genetics, 1996, 144, 1993-1999.	2.9	171
20	Current hypotheses for the evolution of sex and recombination. Integrative Zoology, 2012, 7, 192-209.	2.6	158
21	The Effect of Variation in the Effective Population Size on the Rate of Adaptive Molecular Evolution in Eukaryotes. Genome Biology and Evolution, 2012, 4, 658-667.	2.5	156
22	Terumi Mukai and the Riddle of Deleterious Mutation Rates. Genetics, 1999, 153, 515-523.	2.9	154
23	High Frequency of Cryptic Deleterious Mutations in <i>Caenorhabditis elegans</i> . Science, 1999, 285, 1748-1751.	12.6	153
24	TOWARD A REALISTIC MODEL OF MUTATIONS AFFECTING FITNESS. Evolution; International Journal of Organic Evolution, 2003, 57, 683-685.	2.3	129
25	Evidence for Pervasive Adaptive Protein Evolution in Wild Mice. PLoS Genetics, 2010, 6, e1000825.	3.5	123
26	Estimate of the Spontaneous Mutation Rate in <i>Chlamydomonas reinhardtii</i> . Genetics, 2012, 192, 1447-1454.	2.9	123
27	Functional constraints and frequency of deleterious mutations in noncoding DNA of rodents. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13402-13406.	7.1	120
28	Global population divergence and admixture of the brown rat (<i>Rattus norvegicus</i>). Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161762.	2.6	119
29	A Comparison of Models to Infer the Distribution of Fitness Effects of New Mutations. Genetics, 2013, 193, 1197-1208.	2.9	114
30	A Method for Inferring the Rate of Occurrence and Fitness Effects of Advantageous Mutations. Genetics, 2011, 189, 1427-1437.	2.9	111
31	Quantitative genetic variability maintained by mutation-stabilizing selection balance in finite populations. Genetical Research, 1988, 52, 33-43.	0.9	108
32	Extensive de novo mutation rate variation between individuals and across the genome of <i>Chlamydomonas reinhardtii</i> . Genome Research, 2015, 25, 1739-1749.	5.5	107
33	Contributions of Protein-Coding and Regulatory Change to Adaptive Molecular Evolution in Murid Rodents. PLoS Genetics, 2013, 9, e1003995.	3.5	106
34	Intron Size and Exon Evolution in Drosophila. Genetics, 2005, 170, 481-485.	2.9	105
35	EMS-Induced Polygenic Mutation Rates for Nine Quantitative Characters in Drosophila melanogaster. Genetics, 1998, 148, 753-766.	2.9	100
36	Patterns of Evolutionary Constraints in Intronic and Intergenic DNA of Drosophila. Genome Research, 2004, 14, 273-279.	5.5	99

3

#	Article	IF	CITATIONS
37	A Genetic Map of Quantitative Trait Loci for Body Weight in the Mouse. Genetics, 1996, 142, 227-235.	2.9	99
38	Detecting positive selection in the genome. BMC Biology, 2017, 15, 98.	3.8	97
39	Dominance, Pleiotropy and Metabolic Structure. Genetics, 1987, 117, 319-329.	2.9	89
40	What can we learn about the distribution of fitness effects of new mutations from DNA sequence data?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1187-1193.	4.0	88
41	Distributions of Selectively Constrained Sites and Deleterious Mutation Rates in the Hominid and Murid Genomes. Molecular Biology and Evolution, 2010, 27, 177-192.	8.9	88
42	Inferring the Probability of the Derived <i>vs.</i> the Ancestral Allelic State at a Polymorphic Site. Genetics, 2018, 209, 897-906.	2.9	83
43	The scale of mutational variation in the murid genome. Genome Research, 2005, 15, 1086-1094.	5.5	75
44	Mapping of obesity QTLs in a cross between mouse lines divergently selected on fat content. Mammalian Genome, 2000, 11, 2-7.	2.2	74
45	Bottleneck Effect on Genetic Variance: A Theoretical Investigation of the Role of Dominance. Genetics, 1998, 150, 435-447.	2.9	70
46	Spontaneous Mutational Variation for Body Size in <i>Caenorhabditis elegans</i> . Genetics, 2002, 162, 755-765.	2.9	67
47	Properties of Ethylmethane Sulfonate-Induced Mutations Affecting Life-History Traits in <i>Caenorhabditis elegans</i> and Inferences About Bivariate Distributions of Mutation Effects. Genetics, 2000, 156, 143-154.	2.9	64
48	Inference of Genome-Wide Mutation Rates and Distributions of Mutation Effects for Fitness Traits: A Simulation Study. Genetics, 1998, 150, 1283-1293.	2.9	63
49	Faster-X Adaptive Protein Evolution in House Mice. Genetics, 2014, 196, 1131-1143.	2.9	62
50	Genomic Selective Constraints in Murid Noncoding DNA. PLoS Genetics, 2006, 2, e204.	3.5	60
51	Directional Selection and Variation in Finite Populations. Genetics, 1987, 117, 573-582.	2.9	60
52	Recommendations for improving statistical inference in population genomics. PLoS Biology, 2022, 20, e3001669.	5.6	60
53	The Nature of Genetic Variation for Complex Traits Revealed by GWAS and Regional Heritability Mapping Analyses. Genetics, 2015, 201, 1601-1613.	2.9	58
54	A Metabolic Basis for Dominance and Recessivity. Genetics, 1996, 143, 621-625.	2.9	58

#	Article	IF	CITATIONS
55	Mitochondrial Mutation Rate, Spectrum and Heteroplasmy in <i>Caenorhabditis elegans</i> Spontaneous Mutation Accumulation Lines of Differing Population Size. Molecular Biology and Evolution, 2017, 34, msx051.	8.9	57
56	Multigeneration Maximum-Likelihood Analysis Applied to Mutation-Accumulation Experiments in Caenorhabditis elegans. Genetics, 2000, 154, 1193-1201.	2.9	55
57	Inferring the Frequency Spectrum of Derived Variants to Quantify Adaptive Molecular Evolution in Protein-Coding Genes of <i>Drosophila melanogaster</i> . Genetics, 2016, 203, 975-984.	2.9	53
58	A Test for Epistasis Among Induced Mutations in <i>Caenorhabditis elegans</i> . Genetics, 2000, 156, 1635-1647.	2.9	53
59	MCALIGN: Stochastic Alignment of Noncoding DNA Sequences Based on an Evolutionary Model of Sequence Evolution. Genome Research, 2004, 14, 442-450.	5.5	52
60	Evolutionary constraints in conserved nongenic sequences of mammals. Genome Research, 2005, 15, 1373-1378.	5.5	50
61	A Resolution of the Mutation Load Paradox in Humans. Genetics, 2012, 191, 1321-1330.	2.9	50
62	Detection of quantitative trait loci from frequency changes of marker alleles under selection. Genetical Research, 1993, 62, 195-203.	0.9	49
63	Regulatory Variation at Glypican-3 Underlies a Major Growth QTL in Mice. PLoS Biology, 2005, 3, e135.	5.6	47
64	PAPPA2, an Enzyme That Cleaves an Insulin-Like Growth-Factor-Binding Protein, Is a Candidate Gene for a Quantitative Trait Locus Affecting Body Size in Mice. Genetics, 2006, 173, 1547-1553.	2.9	47
65	Inferring the distribution of fitness effects of spontaneous mutations in Chlamydomonas reinhardtii. PLoS Biology, 2019, 17, e3000192.	5.6	47
66	Test of candidate gene–quantitative trait locus association applied to fatness in mice. Heredity, 1998, 81, 630-637.	2.6	46
67	Comparative genomics of <i>Chlamydomonas</i> . Plant Cell, 2021, 33, 1016-1041.	6.6	46
68	Metabolic Models of Selection Response. Journal of Theoretical Biology, 1996, 182, 311-316.	1.7	43
69	Analysis and implications of mutational variation. Genetica, 2009, 136, 359-369.	1.1	43
70	The Role of Advantageous Mutations in Enhancing the Evolution of a Recombination Modifier. Genetics, 2010, 184, 1153-1164.	2.9	42
71	Mapping quantitative trait loci for body weight on the X chromosome in mice. I. Analysis of a reciprocal F2 population. Genetical Research, 1997, 70, 117-124.	0.9	41
72	Microarray gene expression analysis of the Fob3b obesity QTL identifies positional candidate gene Sqle and perturbed cholesterol and glycolysis pathways. Physiological Genomics, 2005, 20, 224-232.	2.3	39

#	Article	IF	CITATIONS
73	Genetic Basis of Response to 50 Generations of Selection on Body Weight in Inbred Mice. Genetics, 1998, 148, 1931-1939.	2.9	39
74	DNA Sequence Error Rates in Genbank Records Estimated using the Mouse Genome as a Reference. DNA Sequence, 2004, 15, 362-364.	0.7	37
75	Genetic complexity of an obesity QTL (Fob3) revealedby detailed genetic mapping. Mammalian Genome, 2004, 15, 472-481.	2.2	37
76	Recent Evolution in <i>Rattus norvegicus</i> Is Shaped by Declining Effective Population Size. Molecular Biology and Evolution, 2015, 32, 2547-2558.	8.9	36
77	The Recombination Landscape in Wild House Mice Inferred Using Population Genomic Data. Genetics, 2017, 207, 297-309.	2.9	36
78	Inference of Site Frequency Spectra From High-Throughput Sequence Data: Quantification of Selection on Nonsynonymous and Synonymous Sites in Humans. Genetics, 2011, 188, 931-940.	2.9	35
79	Quantitative genetic variability maintained by mutation-stabilizing selection balance: sampling variation and response to subsequent directional selection. Genetical Research, 1989, 54, 45-58.	0.9	34
80	Estimating the Rate of Adaptive Molecular Evolution When the Evolutionary Divergence Between Species is Small. Journal of Molecular Evolution, 2012, 74, 61-68.	1.8	34
81	SPONTANEOUS MUTATION ACCUMULATION IN MULTIPLE STRAINS OF THE GREEN ALGA, <i>CHLAMYDOMONAS REINHARDTII</i> . Evolution; International Journal of Organic Evolution, 2014, 68, 2589-2602.	2.3	34
82	Understanding the factors that shape patterns of nucleotide diversity in the house mouse genome. Molecular Biology and Evolution, 2018, 35, 2971-2988.	8.9	34
83	TOWARD A REALISTIC MODEL OF MUTATIONS AFFECTING FITNESS. Evolution; International Journal of Organic Evolution, 2003, 57, 683.	2.3	33
84	Direct Estimate of the Spontaneous Mutation Rate Uncovers the Effects of Drift and Recombination in the <i>Chlamydomonas reinhardtii</i> Plastid Genome. Molecular Biology and Evolution, 2016, 33, 800-808.	8.9	33
85	Mapping quantitative trait loci affecting sternopleural bristle number in Drosophila melanogaster using changes of marker allele frequencies in divergently selected lines. Genetical Research, 1998, 72, 79-91.	0.9	32
86	Positive and Negative Selection in Murine Ultraconserved Noncoding Elements. Molecular Biology and Evolution, 2011, 28, 2651-2660.	8.9	32
87	Population genetics: Surviving under mutation pressure. Current Biology, 1998, 8, R235-R237.	3.9	31
88	Positive and Negative Selection on Noncoding DNA Close to Protein-Coding Genes in Wild House Mice. Molecular Biology and Evolution, 2011, 28, 1183-1191.	8.9	31
89	Average Dominance for Polygenes: Drawbacks of Regression Estimates. Genetics, 1997, 147, 1487-1490.	2.9	29
90	Fine mapping of a murine growth locus to a 1.4-cM region and resolution of linked QTL. Mammalian Genome, 2004, 15, 482-491.	2.2	28

#	Article	IF	CITATIONS
91	Mapping quantitative trait loci for body weight on the X chromosome in mice. II. Analysis of congenic backcrosses. Genetical Research, 1997, 70, 125-133.	0.9	27
92	Accumulation of mutations affecting body weight in inbred mouse lines. Genetical Research, 1995, 65, 145-149.	0.9	24
93	Patterns of population structure and complex haplotype sharing among field isolates of the green algaChlamydomonas reinhardtii. Molecular Ecology, 2019, 28, 3977-3993.	3.9	23
94	Testing the correspondence between map positions of quantitative trait loci. Genetical Research, 1999, 74, 323-328.	0.9	22
95	High-resolution quantitative trait locus mapping for body weight in mice by recombinant progeny testing. Genetical Research, 2001, 77, 191-197.	0.9	22
96	Characterization of a QTL affecting skeletal size in mice. Mammalian Genome, 2003, 14, 175-183.	2.2	22
97	Unexpected conserved non-coding DNA blocks in mammals. Trends in Genetics, 2004, 20, 332-337.	6.7	22
98	Effect of Divergence Time and Recombination Rate on Molecular Evolution of Drosophila INE-1 Transposable Elements and Other Candidates for Neutrally Evolving Sites. Journal of Molecular Evolution, 2007, 65, 627-639.	1.8	21
99	Nuclear Gene Variation in Wild Brown Rats. G3: Genes, Genomes, Genetics, 2012, 2, 1661-1664.	1.8	21
100	Fitness change in relation to mutation number in spontaneous mutation accumulation lines of <i>Chlamydomonas reinhardtii</i> . Evolution; International Journal of Organic Evolution, 2017, 71, 2918-2929.	2.3	21
101	Inference of Mutation Parameters and Selective Constraint in Mammalian Coding Sequences by Approximate Bayesian Computation. Genetics, 2011, 187, 1153-1161.	2.9	20
102	Fitness decline under osmotic stress in <i>Caenorhabditis elegans</i> populations subjected to spontaneous mutation accumulation at varying population sizes. Evolution; International Journal of Organic Evolution, 2018, 72, 1000-1008.	2.3	20
103	Inbred lab mice are not isogenic: genetic variation within inbred strains used to infer the mutation rate per nucleotide site. Heredity, 2021, 126, 107-116.	2.6	20
104	Genetic instability of C. elegans comes naturally. Trends in Genetics, 2005, 21, 67-70.	6.7	19
105	De Novo Mutation Rate Variation and Its Determinants in <i>Chlamydomonas</i> . Molecular Biology and Evolution, 2021, 38, 3709-3723.	8.9	19
106	Effect of the assignment of ancestral CpG state on the estimation of nucleotide substitution rates in mammals. BMC Evolutionary Biology, 2008, 8, 265.	3.2	15
107	The use of retrotransposons as markers for mapping genes responsible for fitness differences between related Drosophila melanogaster strains. Genetical Research, 1993, 62, 125-131.	0.9	13
108	Estimating numbers of EMS-induced mutations affecting life history traits in Caenorhabditis elegans in crosses between inbred sublines. Genetical Research, 2003, 82, 191-205.	0.9	13

#	Article	IF	CITATIONS
109	How many lethal alleles?. Trends in Genetics, 2003, 19, 57-59.	6.7	12
110	Patterns of DNA-Sequence Divergence Between Drosophila miranda and D. pseudoobscura. Journal of Molecular Evolution, 2009, 69, 601-611.	1.8	12
111	Assessing Recent Selection and Functionality at Long Noncoding RNA Loci in the Mouse Genome. Genome Biology and Evolution, 2015, 7, 2432-2444.	2.5	12
112	Quantitative Genetics: Loci with large effects. Current Biology, 1995, 5, 485-487.	3.9	11
113	Response to Kondrashov. Trends in Genetics, 2001, 17, 77-78.	6.7	11
114	Comparing Analysis Methods for Mutation-Accumulation Data. Genetics, 2004, 167, 551-553.	2.9	10
115	Genetic variance and fixation probabilities at quantitative trait loci in mutation-selection balance. Genetical Research, 1991, 58, 139-144.	0.9	9
116	Analysis of mutation accumulation experiments: response to Deng, Li and Li. Genetical Research, 1999, 74, 87-91.	0.9	9
117	The distribution of fitness effects of spontaneous mutations in Chlamydomonas reinhardtii inferred using frequency changes under experimental evolution. PLoS Genetics, 2022, 18, e1009840.	3.5	9
118	Genetic Architecture: Dissecting the Genetic Basis of Phenotypic Variation. Current Biology, 2002, 12, R415-R416.	3.9	6
119	Chewing the fat. Nature Genetics, 1995, 10, 125-126.	21.4	4
120	Quantitative genetics: Resolving wing shape genes. Current Biology, 2000, 10, R113-R115.	3.9	3
121	Behavioural Genetics: Finding Genes that Cause Complex Trait Variation. Current Biology, 2005, 15, R19-R21.	3.9	1
122	Low rates of proviral integration in SWR/J–RF/J hybrid mice. Genetical Research, 1995, 66, 45-52.	0.9	0
123	William G. Hill (1940–2021). Nature Ecology and Evolution, 2022, 6, 344-345.	7.8	0