Joshua Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/149903/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards accurate and reliable resolution of structural variants for clinical diagnosis. Genome Biology, 2022, 23, 68.	8.8	34
2	Ultra-deep sequencing data from a liquid biopsy proficiency study demonstrating analytic validity. Scientific Data, 2022, 9, 170.	5.3	4
3	Ultra-deep multi-oncopanel sequencing of benchmarking samples with a wide range of variant allele frequencies. Scientific Data, 2022, 9, .	5.3	0
4	Deep oncopanel sequencing reveals within block position-dependent quality degradation in FFPE processed samples. Genome Biology, 2022, 23, .	8.8	8
5	Evaluating the analytical validity of circulating tumor DNA sequencing assays for precision oncology. Nature Biotechnology, 2021, 39, 1115-1128.	17.5	126
6	Cross-oncopanel study reveals high sensitivity and accuracy with overall analytical performance depending on genomic regions. Genome Biology, 2021, 22, 109.	8.8	20
7	Optimized imaging methods for species-level identification of food-contaminating beetles. Scientific Reports, 2021, 11, 7957.	3.3	1
8	A verified genomic reference sample for assessing performance of cancer panels detecting small variants of low allele frequency. Genome Biology, 2021, 22, 111.	8.8	29
9	The Sequencing Quality Control 2 study: establishing community standards for sequencing in precision medicine. Genome Biology, 2021, 22, 306.	8.8	7
10	Advancing NGS quality control to enable measurement of actionable mutations in circulating tumor DNA. Cell Reports Methods, 2021, 1, 100106.	2.9	9
11	FDA-led consortium studies advance quality control of targeted next generation sequencing assays for precision oncology. Precision Cancer Medicine, 2021, 4, 32-32.	1.8	4
12	FDALabel for drug repurposing studies and beyond. Nature Biotechnology, 2020, 38, 1378-1379.	17.5	8
13	Study of pharmacogenomic information in FDA-approved drug labeling to facilitate application of precision medicine. Drug Discovery Today, 2020, 25, 813-820.	6.4	29
14	DLI-IT: a deep learning approach to drug label identification through image and text embedding. BMC Medical Informatics and Decision Making, 2020, 20, 68.	3.0	10
15	HetEnc: a deep learning predictive model for multi-type biological dataset. BMC Genomics, 2019, 20, 638.	2.8	4
16	A deep learning model to recognize food contaminating beetle species based on elytra fragments. Computers and Electronics in Agriculture, 2019, 166, 105002.	7.7	28
17	Estimating Bacterial Concentrations in Fibrous Substrates Through a Combination of Scanning Electron Microscopy and ImageJ. Analytical Chemistry, 2019, 91, 4405-4412.	6.5	7
18	Technical advance in targeted NGS analysis enables identification of lung cancer risk-associated low frequency TP53, PIK3CA, and BRAF mutations in airway epithelial cells. BMC Cancer, 2019, 19, 1081.	2.6	12

Јозниа Хи

#	Article	IF	CITATIONS
19	Advancing Genomics for Drug Development and Safety Evaluation. International Journal of Genomics, 2018, 2018, 1-2.	1.6	0
20	Comparing SVM and ANN based Machine Learning Methods for Species Identification of Food Contaminating Beetles. Scientific Reports, 2018, 8, 6532.	3.3	72
21	Comprehensive Assessments of RNA-seq by the SEQC Consortium: FDA-Led Efforts Advance Precision Medicine. Pharmaceutics, 2016, 8, 8.	4.5	53
22	FDA drug labeling: rich resources to facilitate precision medicine, drug safety, and regulatory science. Drug Discovery Today, 2016, 21, 1566-1570.	6.4	38
23	Species Identification of Food Contaminating Beetles by Recognizing Patterns in Microscopic Images of Elytra Fragments. PLoS ONE, 2016, 11, e0157940.	2.5	11
24	NETBAGs: a network-based clustering approach with gene signatures for cancer subtyping analysis. Biomarkers in Medicine, 2015, 9, 1053-1065.	1.4	9
25	Comparison of RNA-seq and microarray-based models for clinical endpoint prediction. Genome Biology, 2015, 16, 133.	8.8	325
26	An investigation of biomarkers derived from legacy microarray data for their utility in the RNA-seq era. Genome Biology, 2014, 15, 523.	8.8	147
27	Transcriptomic profiling of rat liver samples in a comprehensive study design by RNA-Seq. Scientific Data, 2014, 1, 140021.	5.3	30
28	ATP-Binding Cassette Genes Genotype and Expression: A Potential Association with Pancreatic Cancer Development and Chemoresistance?. Gastroenterology Research and Practice, 2014, 2014, 1-9.	1.5	15
29	Assessing technical performance in differential gene expression experiments with external spike-in RNA control ratio mixtures. Nature Communications, 2014, 5, 5125.	12.8	122
30	The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance. Nature Biotechnology, 2014, 32, 926-932.	17.5	420
31	Cross-platform ultradeep transcriptomic profiling of human reference RNA samples by RNA-Seq. Scientific Data, 2014, 1, 140020.	5.3	21
32	SNPTrackTM: an integrated bioinformatics system for genetic association studies. Human Genomics, 2012, 6, 5.	2.9	2
33	ArrayTrack: a free FDA bioinformatics tool to support emerging biomedical research an update. Human Genomics, 2010, 4, 428-34.	2.9	19
34	An FDA bioinformatics tool for microbial genomics research on molecular characterization of bacterial foodborne pathogens using microarrays. BMC Bioinformatics, 2010, 11, S4.	2.6	53
35	Two new ArrayTrack libraries for personalized biomedical research. BMC Bioinformatics, 2010, 11, S6.	2.6	12
36	The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nature Biotechnology, 2010, 28, 827-838.	17.5	795