Jared H Delcamp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/149826/publications.pdf

Version: 2024-02-01

		101543	144013
105	3,692	36	57
papers	citations	h-index	g-index
110	110	110	<i>1</i> 107
110	110	110	4187
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Cross-linking Poly(caprolactone)–Polyamidoamine Linear Dendritic Block Copolymers for Theranostic Nanomedicine. ACS Applied Polymer Materials, 2022, 4, 2972-2986.	4.4	4
2	Near-infrared unsymmetrical squaraine core-based sensitizers for co-sensitized high-photocurrent dye-sensitized solar cells. Cell Reports Physical Science, 2022, 3, 100701.	5.6	13
3	Sensitized and Selfâ€Sensitized Photocatalytic Carbon Dioxide Reduction Under Visible Light with Ruthenium Catalysts Shows Enhancements with More Conjugated Pincer Ligands. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	5
4	Lewis Acid–Lewis Base Interactions Promote Fast Interfacial Electron Transfers with a Pyridine-Based Donor Dye in Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2022, 5, 1516-1527.	5.1	6
5	An Efficient Copper-Based Redox Shuttle Bearing a Hexadentate Polypyridyl Ligand for DSCs under Low-Light Conditions. ACS Applied Energy Materials, 2022, 5, 5964-5973.	5.1	2
6	Photophysical Properties of Donor–Acceptorâ⁻'Ï€ Bridge–Acceptor Sensitizers with a Naphthobisthiadiazole Auxiliary Acceptor: Toward Longer-Wavelength Access in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2022, 126, 11875-11888.	3.1	8
7	Low-Valent Cobalt(I) CNC Pincer Complexes as Catalysts for Light-Driven Carbon Dioxide Reduction. ACS Catalysis, 2022, 12, 8718-8728.	11.2	8
8	Dye-Sensitized Solar Cells: A Brief Historical Perspective and Uses in Multijunction Devices. Challenges and Advances in Computational Chemistry and Physics, 2021, , 81-98.	0.6	1
9	SWIR emissive RosIndolizine dyes with nanoencapsulation in water soluble dendrimers. RSC Advances, 2021, 11, 27832-27836.	3.6	10
10	Probing the Effects of Electron Deficient Aryl Substituents and a Ï€â€System Extended NHC Ring on the Photocatalytic CO ₂ Reduction Reaction with Reâ€pyNHCâ€Aryl Complexes**. ChemPhotoChem, 2021, 5, 353-361.	3.0	4
11	Structural, optical, photocatalytic, and optoelectronic properties of Zn ₂ SnO ₄ nanocrystals prepared by hydrothermal method. Nanotechnology, 2021, 32, 145702.	2.6	4
12	Integrating GaAs, Si, and Dye-Sensitized Solar Cells in Multijunction Devices and Probing Harsh Condition Behavior. ACS Applied Electronic Materials, 2021, 3, 316-324.	4.3	4
13	Donor group influence on dye-sensitized solar cell device performances: Balancing dye loading and donor size. Dyes and Pigments, 2021, 187, 109074.	3.7	7
14	Accurate determination of the onset wavelength (<mml:math) (xml<="" 0="" 10="" 237="" 50="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>Ins:mml="l 2.3</td><td>'http://www.w 30</td></mml:math)>	Ins:mml="l 2.3	'http://www.w 30
15	spectroscopy. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 265, 107544. Iron Redox Shuttles with Wide Optical Gap Dyes for Highâ€Voltage Dyeâ€Sensitized Solar Cells. ChemSusChem, 2021, 14, 3084-3096.	6.8	8
16	Physicochemical properties and bioâ€interfacial interactions of surface modified PDLLAâ€PAMAM linear dendritic block copolymers. Journal of Polymer Science, 2021, 59, 2177-2192.	3.8	4
17	Probing Interfacial Halogen-Bonding Effects with Halogenated Organic Dyes and a Lewis Base-Decorated Transition Metal-Based Redox Shuttle at a Metal Oxide Interface in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2021, 125, 17647-17659.	3.1	13
18	Interface Passivation of Inverted Perovskite Solar Cells by Dye Molecules. ACS Applied Energy Materials, 2021, 4, 9525-9533.	5.1	10

#	Article	IF	CITATIONS
19	Dye-sensitized solar cells strike back. Chemical Society Reviews, 2021, 50, 12450-12550.	38.1	240
20	Shortwave Infrared Absorptive and Emissive Pentamethine-Bridged Indolizine Cyanine Dyes. Journal of Organic Chemistry, 2021, 86, 15376-15386.	3.2	16
21	Preferential Direction of Electron Transfers at a Dye–Metal Oxide Interface with an Insulating Fluorinated Self-Assembled Monolayer and MgO. Journal of Physical Chemistry C, 2021, 125, 25410-25421.	3.1	4
22	Robust, Scalable Synthesis of the Bulky Hagfeldt Donor for Dyeâ€Sensitized Solar Cells. ChemSusChem, 2020, 13, 283-286.	6.8	9
23	A 25 mA cm $<$ sup $>$ â 2 2 $<$ /sup $>$ dye-sensitized solar cell based on a near-infrared-absorbing organic dye and application of the device in SSM-DSCs. Chemical Communications, 2020, 56, 1741-1744.	4.1	29
24	Precious metal-free solar-to-fuel generation: SSM-DSCs powering water splitting with NanoCOT and NiMoZn electrocatalysts. Chemical Communications, 2020, 56, 1569-1572.	4.1	6
25	Copper-based redox shuttles supported by preorganized tetradentate ligands for dye-sensitized solar cells. Dalton Transactions, 2020, 49, 343-355.	3.3	19
26	Self-Assembling PCL–PAMAM Linear Dendritic Block Copolymers (LDBCs) for Bioimaging and Phototherapeutic Applications. ACS Applied Bio Materials, 2020, 3, 5664-5677.	4.6	21
27	Electrochemical Copolymerization of Isoindigoâ€Based Donorâ€Acceptor Polymers with Intrinsically Enhanced Conductivity and Nearâ€Infraredâ€II Activity. ChemElectroChem, 2020, 7, 3752-3760.	3.4	8
28	Photon management strategies in SSM-DSCs: Realization of a >11% PCE device with a 2.3ÂV output. Solar Energy, 2020, 208, 747-752.	6.1	11
29	Full Visible Spectrum Panchromatic Triple Donor Dye for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2020, 124, 25211-25220.	3.1	12
30	Pyridyl CO ₂ Fixation Enabled by a Secondary Hydrogen Bonding Coordination Sphere. ACS Omega, 2020, 5, 11687-11694.	3.5	6
31	Impact of the Dissolved Anion on the Electrocatalytic Reduction of CO 2 to CO with Ruthenium CNC Pincer Complexes. ChemCatChem, 2020, 12, 4879-4885.	3.7	7
32	Structure Function Relationships in Ruthenium Carbon Dioxide Reduction Catalysts with CNC Pincers Containing Donor Groups. European Journal of Inorganic Chemistry, 2020, 2020, 2709-2717.	2.0	10
33	Designing hierarchical structures of complex electronically conducting organic polymers <i>via</i> one-step electro-polymerization. Journal of Materials Chemistry C, 2020, 8, 5934-5940.	5.5	8
34	Photoinduced Generation of a Durable Thermal Proton Reduction Catalyst with in Situ Conversion of Mn(bpy)(CO) ₃ Br to Mn(bpy) ₂ Br ₂ . Inorganic Chemistry, 2020, 59, 11266-11272.	4.0	3
35	The Hagfeldt Donor and Use of Nextâ€Generation Bulky Donor Designs in Dyeâ€Sensitized Solar Cells. ChemSusChem, 2020, 13, 2503-2512.	6.8	27
36	Phosphate and Water Sensing with a Zincâ€Dipicolylamineâ€Based Chargeâ€Transfer Dye. ChemistrySelect, 2020, 5, 1945-1949.	1.5	2

#	Article	IF	CITATIONS
37	Water-Soluble NIR Absorbing and Emitting Indolizine Cyanine and Indolizine Squaraine Dyes for Biological Imaging. Journal of Organic Chemistry, 2020, 85, 4089-4095.	3.2	41
38	Molecular Au(I) complexes in the photosensitized photocatalytic CO2 reduction reaction. MRS Communications, 2020, 10, 252-258.	1.8	3
39	Effect of "X―Ligands on the Photocatalytic Reduction of CO ₂ to CO with Re(pyridylNHCâ€CF ₃)(CO) ₃ X Complexes. European Journal of Inorganic Chemistry, 2020, 2020, 1844-1851.	2.0	13
40	SnO ₂ Transparent Printing Pastes from Powders for Photon Conversion in SnO ₂ â€Based Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2019, 25, 14205-14213.	3.3	9
41	Thienopyrroledione-Based Photosensitizers as Strong Photoinduced Oxidants: Oxidation of Fe(bpy) ₃ ²⁺ in a >1.3 V Dye-Sensitized Solar Cell. ACS Applied Energy Materials, 2019, 2, 5547-5556.	5.1	16
42	Radically Accessing Dâ€"A Type Ambipolar Copolymeric Materials with Intrinsic Electrical Conductivity and Visibleâ€"Near Infrared Absorption Via Electroâ€Copolymerization. Macromolecular Chemistry and Physics, 2019, 220, 1900289.	2.2	5
43	Donor–Acceptor–Donor NIR II Emissive Rhodindolizine Dye Synthesized by C–H Bond Functionalization. Journal of Organic Chemistry, 2019, 84, 13186-13193.	3.2	45
44	Photochemical CO2 reduction with mononuclear and dinuclear rhenium catalysts bearing a pendant anthracene chromophore. Chemical Communications, 2019, 55, 993-996.	4.1	37
45	Characterization of Furan- and Thiophene-Containing Bispyridyl Oligomers via Spectroscopic, Electrochemical, and TD-DFT Methods. Journal of Physical Chemistry C, 2019, 123, 15176-15185.	3.1	11
46	Highly Active Ruthenium CNC Pincer Photocatalysts for Visible-Light-Driven Carbon Dioxide Reduction. Inorganic Chemistry, 2019, 58, 8012-8020.	4.0	49
47	Near-Infrared-Absorbing Indolizine-Porphyrin Push–Pull Dye for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 16474-16489.	8.0	48
48	Durable Solar-Powered Systems with Ni-Catalysts for Conversion of CO ₂ or CO to CH ₄ . Journal of the American Chemical Society, 2019, 141, 6617-6622.	13.7	94
49	The Role of Antireflective Coating CYTOP, Immersion Oil, and Sensitizer Selection in Fabricating a 2.3 V, 10% Power Conversion Efficiency SSMâ€DSC Device. Advanced Energy Materials, 2019, 9, 1900162.	19.5	17
50	Photocatalytic Reduction of CO2 to CO and Formate: Do Reaction Conditions or Ruthenium Catalysts Control Product Selectivity?. ACS Applied Energy Materials, 2019, 2, 37-46.	5.1	42
51	Indolizine-Cyanine Dyes: Near Infrared Emissive Cyanine Dyes with Increased Stokes Shifts. Journal of Organic Chemistry, 2019, 84, 687-697.	3.2	45
52	Engineering of Sequential-Series Multijunction Dye-Sensitized Solar Cells for Greater Than 10% Solar-to-Electric Efficiency and 2.0 V Photovoltage Output. ECS Meeting Abstracts, 2019, , .	0.0	0
53	Ullazine Donor–π bridgeâ€Acceptor Organic Dyes for Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2018, 24, 5939-5949.	3.3	18
54	A Mononuclear Tungsten Photocatalyst for H ₂ Production. ACS Catalysis, 2018, 8, 4838-4847.	11.2	21

#	Article	IF	Citations
55	A Highâ€Voltage Molecularâ€Engineered Organic Sensitizer–Iron Redox Shuttle Pair: 1.4â€V DSSC and 3.3â€. SSMâ€DSSC Devices. Angewandte Chemie - International Edition, 2018, 57, 5472-5476.	. V 13.8	39
56	Panchromatic cross-conjugated π-bridge NIR dyes for DSCs. Physical Chemistry Chemical Physics, 2018, 20, 2438-2443.	2.8	3
57	A Highâ€Voltage Molecularâ€Engineered Organic Sensitizer–Iron Redox Shuttle Pair: 1.4â€V DSSC and 3.3â€. SSMâ€DSSC Devices. Angewandte Chemie, 2018, 130, 5570-5574.	. V 2.0	28
58	Nickel(<scp>ii</scp>) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction. Chemical Communications, 2018, 54, 3819-3822.	4.1	39
59	Nearâ€Infraredâ€Absorbing Metalâ€Free Organic, Porphyrin, and Phthalocyanine Sensitizers for Panchromatic Dyeâ€Sensitized Solar Cells. ChemSusChem, 2018, 11, 86-103.	6.8	135
60	Counter Anion Effect on the Photophysical Properties of Emissive Indolizine-Cyanine Dyes in Solution and Solid State. Molecules, 2018, 23, 3051.	3.8	34
61	A Robust Pyridyl-NHC-Ligated Rhenium Photocatalyst for CO2 Reduction in the Presence of Water and Oxygen. Inorganics, 2018, 6, 22.	2.7	18
62	Quinoxaline-Based Dual Donor, Dual Acceptor Organic Dyes for Dye-Sensitized Solar Cells. Applied Sciences (Switzerland), 2018, 8, 1421.	2.5	10
63	Ligand Structure Determines Nanoparticles' Atomic Structure, Metal-Ligand Interface and Properties. Frontiers in Chemistry, 2018, 6, 330.	3.6	58
64	lodine binding with thiophene and furan based dyes for DSCs. Physical Chemistry Chemical Physics, 2018, 20, 17859-17870.	2.8	15
65	High Photovoltage Sequential Series Multijunction Dye-Sensitized Solar Cells (SSM-DSCs). ECS Meeting Abstracts, 2018, , .	0.0	O
66	Near-Infrared Fluorescent Thienothiadiazole Dyes with Large Stokes Shifts and High Photostability. Journal of Organic Chemistry, 2017, 82, 5597-5606.	3.2	30
67	Effect of Donor Strength and Bulk on Thieno[3,4â€b]â€pyrazineâ€Based Panchromatic Dyes in Dyeâ€Sensitized Solar Cells. ChemSusChem, 2017, 10, 2635-2641.	6.8	13
68	A Stable Panchromatic Green Dual Acceptor, Dual Donor Organic Dye for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2017, 121, 8770-8780.	3.1	35
69	Harnessing Photovoltage: Effects of Film Thickness, TiO ₂ Nanoparticle Size, MgO and Surface Capping with DSCs. ACS Applied Materials & Surface Capping with DSCs.	8.0	15
70	Ruthenium(<scp>ii</scp>) complexes of pyridinol and N-heterocyclic carbene derived pincers as robust catalysts for selective carbon dioxide reduction. Chemical Communications, 2017, 53, 11217-11220.	4.1	40
71	Molecular Engineering of Near Infrared Absorbing Thienopyrazine Double Donor Double Acceptor Organic Dyes for Dye-Sensitized Solar Cells. Journal of Organic Chemistry, 2017, 82, 12038-12049.	3.2	22
72	Frontispiece: Indolizine–Squaraines: NIR Fluorescent Materials with Molecularly Engineered Stokes Shifts. Chemistry - A European Journal, 2017, 23, .	3.3	0

#	Article	IF	Citations
73	Sequential series multijunction dye-sensitized solar cells (SSM-DSCs): 4.7 volts from a single illuminated area. Energy and Environmental Science, 2017, 10, 1764-1769.	30.8	19
74	Indolizine–Squaraines: NIR Fluorescent Materials with Molecularly Engineered Stokes Shifts. Chemistry - A European Journal, 2017, 23, 12494-12501.	3.3	29
75	Lowâ€Recombination Thieno[3,4â€b]thiopheneâ€Based Photosensitizers for Dyeâ€Sensitized Solar Cells with Panchromatic Photoresponses. ChemSusChem, 2017, 10, 3624-3631.	6.8	10
76	Electrocatalytic reduction of CO ₂ with CCC-NHC pincer nickel complexes. Chemical Communications, 2017, 53, 9442-9445.	4.1	53
77	Photocatalytic Water Splitting and Carbon Dioxide Reduction. , 2017, , 2709-2756.		9
78	Toward tightly bound carboxylic acid-based organic dyes for DSCs: relative TiO2 binding strengths of benzoic acid, cyanoacrylic acid, and conjugated double carboxylic acid anchoring dyes. Synthetic Metals, 2016, 222, 66-75.	3.9	13
79	Molecular Design Principles for Nearâ€Infrared Absorbing and Emitting Indolizine Dyes. Chemistry - A European Journal, 2016, 22, 15536-15542.	3.3	39
80	A low recombination rate indolizine sensitizer for dye-sensitized solar cells. Chemical Communications, 2016, 52, 8424-8427.	4.1	45
81	Electrocatalytic Reduction of CO ₂ to CO With Re-Pyridyl-NHCs: Proton Source Influence on Rates and Product Selectivities. Inorganic Chemistry, 2016, 55, 6085-6094.	4.0	60
82	A Computational and Experimental Study of Thieno[3,4â€b]thiophene as a Proaromatic Ï€â€Bridge in Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2016, 22, 694-703.	3.3	34
83	Synthesis, characterization and ab initio investigation of a panchromatic ullazine–porphyrin photosensitizer for dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 2332-2339.	10.3	47
84	Thieno[3,4- <i>b</i>)pyrazine as an Electron Deficient Ï€-Bridge in D–Aâ^π– <i>A</i> DSCs. ACS Applied Materials & Dagge in D–Aâ^π— <i>A</i> DSCs. ACS Applied Materials & Dagge in D–Aâ^π— <i>A</i> DSCs. ACS Applied Materials & Dagge in D–Aâ^π— <i>A</i> DSCs. ACS Applied Materials & Dagge in D–Aâ^π— <i>A</i> DSCs. ACS Applied Materials & Dagge in D–Aâ^π— <i>A</i> DSCs. ACS Applied Materials & Dagge in D–Aâ^π— <i>A</i> DSCs. ACS Applied Materials & Dagge in D–Aâ^π— <i>A</i> DSCs. ACS Applied Materials & Dagge in D–Aâ^π— <i>A</i> DSCs. ACS Applied Materials & Dagge in D–Aâ^π— <i>A</i> DSCs. ACS Applied Materials & Dagge in D–Aâ^΀— <i>A</i> DSCs. ACS Applied Materials & Dagge in D–Aâ^΀— <i>A</i> DSCs. ACS Applied Materials & Dagge in D–Aâ^΀— <i>A</i> DSCs. ACS Applied Materials & Dagge in D–Aâ^΀—	8.0	57
85	Photocatalytic Reduction of CO ₂ with Re-Pyridyl-NHCs. Inorganic Chemistry, 2016, 55, 682-690.	4.0	88
86	Donor–Acceptor–Donor Thienopyrazines via Pd-Catalyzed C–H Activation as NIR Fluorescent Materials. Journal of Organic Chemistry, 2016, 81, 32-42.	3.2	48
87	Organometallic Dimers: Application to Work-Function Reduction of Conducting Oxides. ACS Applied Materials & Dimers: Application to Work-Function Reduction of Conducting Oxides. ACS Applied Materials & Dimers: Application to Work-Function Reduction of Conducting Oxides. ACS Applied Materials & Dimers: Application to Work-Function Reduction of Conducting Oxides. ACS Applied Materials & Dimers: Application to Work-Function Reduction of Conducting Oxides. ACS Applied Materials & Dimers: Application to Work-Function Reduction of Conducting Oxides.	8.0	25
88	Indolizineâ€Based Donors as Organic Sensitizer Components for Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1401629.	19.5	71
89	Photocatalytic Water Splitting and Carbon Dioxide Reduction. , 2015, , 1-39.		2
90	Au ₃₆ (SPh) ₂₄ Nanomolecules: X-ray Crystal Structure, Optical Spectroscopy, Electrochemistry, and Theoretical Analysis. Journal of Physical Chemistry B, 2014, 118, 14157-14167.	2.6	74

#	Article	IF	CITATIONS
91	Dimers of Nineteenâ€Electron Sandwich Compounds: Crystal and Electronic Structures, and Comparison of Reducing Strengths. Chemistry - A European Journal, 2014, 20, 15385-15394.	3.3	41
92	Au ₁₃₇ (SR) ₅₆ nanomolecules: composition, optical spectroscopy, electrochemistry and electrocatalytic reduction of CO ₂ . Chemical Communications, 2014, 50, 9895.	4.1	55
93	Blue-Coloured Highly Efficient Dye-Sensitized Solar Cells by Implementing the Diketopyrrolopyrrole Chromophore. Scientific Reports, 2013, 3, 2446.	3.3	143
94	The Role of Ï€â€Bridges in Highâ€Efficiency DSCs Based on Unsymmetrical Squaraines. Chemistry - A European Journal, 2013, 19, 1819-1827.	3.3	92
95	Oxidative Heck Vinylation for the Synthesis of Complex Dienes and Polyenes. Journal of the American Chemical Society, 2013, 135, 8460-8463.	13.7	71
96	The Molecular Engineering of Organic Sensitizers for Solarâ€Cell Applications. Angewandte Chemie - International Edition, 2013, 52, 376-380.	13.8	145
97	Near-infrared sensitization of solid-state dye-sensitized solar cells with a squaraine dye. Applied Physics Letters, 2012, 100, .	3. 3	47
98	Modulating dye $E(S+/S^*)$ with efficient heterocyclic nitrogen containing acceptors for DSCs. Chemical Communications, 2012, 48, 2295.	4.1	35
99	Synthesis of Complex Allylic Esters via Câ^'H Oxidation vs Câ^'C Bond Formation. Journal of the American Chemical Society, 2010, 132, 11323-11328.	13.7	97
100	A General and Highly Selective Chelate-Controlled Intermolecular Oxidative Heck Reaction. Journal of the American Chemical Society, 2008, 130, 11270-11271.	13.7	194
101	In situ identification of a luminescence quencher in an organic light-emitting device. Journal of Materials Chemistry, 2007, 17, 76-81.	6.7	38
102	Photophysical Properties of Dioxolane-Substituted Pentacene Derivatives Dispersed in Tris(quinolin-8-olato)aluminum(III). Journal of Physical Chemistry B, 2006, 110, 7928-7937.	2.6	55
103	Sequential Hydrocarbon Functionalization:Â Allylic Câ^'H Oxidation/Vinylic Câ^'H Arylation. Journal of the American Chemical Society, 2006, 128, 15076-15077.	13.7	204
104	Robust, Soluble Pentacene Ethers. Organic Letters, 2004, 6, 1609-1612.	4.6	103
105	Designing Self-Assembled Dye–Redox Shuttle Systems via Interfacial π-Stacking in Dye-Sensitized Solar Cells for Enhanced Low Light Power Conversion. Energy & Fuels, 0, , .	5.1	O