Jared H Delcamp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/149826/publications.pdf Version: 2024-02-01

IADED H DELCAMP

#	Article	IF	CITATIONS
1	Dye-sensitized solar cells strike back. Chemical Society Reviews, 2021, 50, 12450-12550.	38.1	240
2	Sequential Hydrocarbon Functionalization:Â Allylic Câ^'H Oxidation/Vinylic Câ^'H Arylation. Journal of the American Chemical Society, 2006, 128, 15076-15077.	13.7	204
3	A General and Highly Selective Chelate-Controlled Intermolecular Oxidative Heck Reaction. Journal of the American Chemical Society, 2008, 130, 11270-11271.	13.7	194
4	The Molecular Engineering of Organic Sensitizers for Solarâ€Cell Applications. Angewandte Chemie - International Edition, 2013, 52, 376-380.	13.8	145
5	Blue-Coloured Highly Efficient Dye-Sensitized Solar Cells by Implementing the Diketopyrrolopyrrole Chromophore. Scientific Reports, 2013, 3, 2446.	3.3	143
6	Nearâ€Infraredâ€Absorbing Metalâ€Free Organic, Porphyrin, and Phthalocyanine Sensitizers for Panchromatic Dyeâ€Sensitized Solar Cells. ChemSusChem, 2018, 11, 86-103.	6.8	135
7	Robust, Soluble Pentacene Ethers. Organic Letters, 2004, 6, 1609-1612.	4.6	103
8	Synthesis of Complex Allylic Esters via Câ´'H Oxidation vs Câ^'C Bond Formation. Journal of the American Chemical Society, 2010, 132, 11323-11328.	13.7	97
9	Durable Solar-Powered Systems with Ni-Catalysts for Conversion of CO ₂ or CO to CH ₄ . Journal of the American Chemical Society, 2019, 141, 6617-6622.	13.7	94
10	The Role of Ï€â€Bridges in Highâ€Efficiency DSCs Based on Unsymmetrical Squaraines. Chemistry - A European Journal, 2013, 19, 1819-1827.	3.3	92
11	Photocatalytic Reduction of CO ₂ with Re-Pyridyl-NHCs. Inorganic Chemistry, 2016, 55, 682-690.	4.0	88
12	Au ₃₆ (SPh) ₂₄ Nanomolecules: X-ray Crystal Structure, Optical Spectroscopy, Electrochemistry, and Theoretical Analysis. Journal of Physical Chemistry B, 2014, 118, 14157-14167.	2.6	74
13	Oxidative Heck Vinylation for the Synthesis of Complex Dienes and Polyenes. Journal of the American Chemical Society, 2013, 135, 8460-8463.	13.7	71
14	Indolizineâ€Based Donors as Organic Sensitizer Components for Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1401629.	19.5	71
15	Electrocatalytic Reduction of CO ₂ to CO With Re-Pyridyl-NHCs: Proton Source Influence on Rates and Product Selectivities. Inorganic Chemistry, 2016, 55, 6085-6094.	4.0	60
16	Ligand Structure Determines Nanoparticles' Atomic Structure, Metal-Ligand Interface and Properties. Frontiers in Chemistry, 2018, 6, 330.	3.6	58
17	Thieno[3,4- <i>b</i>]pyrazine as an Electron Deficient Ï€-Bridge in D–Aâ~'π– <i>A</i> DSCs. ACS Applied Materials & Interfaces, 2016, 8, 5376-5384.	8.0	57
18	Photophysical Properties of Dioxolane-Substituted Pentacene Derivatives Dispersed in Tris(quinolin-8-olato)aluminum(III). Journal of Physical Chemistry B, 2006, 110, 7928-7937.	2.6	55

#	Article	IF	CITATIONS
19	Au ₁₃₇ (SR) ₅₆ nanomolecules: composition, optical spectroscopy, electrochemistry and electrocatalytic reduction of CO ₂ . Chemical Communications, 2014, 50, 9895.	4.1	55
20	Electrocatalytic reduction of CO ₂ with CCC-NHC pincer nickel complexes. Chemical Communications, 2017, 53, 9442-9445.	4.1	53
21	Highly Active Ruthenium CNC Pincer Photocatalysts for Visible-Light-Driven Carbon Dioxide Reduction. Inorganic Chemistry, 2019, 58, 8012-8020.	4.0	49
22	Donor–Acceptor–Donor Thienopyrazines via Pd-Catalyzed C–H Activation as NIR Fluorescent Materials. Journal of Organic Chemistry, 2016, 81, 32-42.	3.2	48
23	Near-Infrared-Absorbing Indolizine-Porphyrin Push–Pull Dye for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 16474-16489.	8.0	48
24	Near-infrared sensitization of solid-state dye-sensitized solar cells with a squaraine dye. Applied Physics Letters, 2012, 100, .	3.3	47
25	Synthesis, characterization and ab initio investigation of a panchromatic ullazine–porphyrin photosensitizer for dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 2332-2339.	10.3	47
26	A low recombination rate indolizine sensitizer for dye-sensitized solar cells. Chemical Communications, 2016, 52, 8424-8427.	4.1	45
27	Donor–Acceptor–Donor NIR II Emissive Rhodindolizine Dye Synthesized by C–H Bond Functionalization. Journal of Organic Chemistry, 2019, 84, 13186-13193.	3.2	45
28	Indolizine-Cyanine Dyes: Near Infrared Emissive Cyanine Dyes with Increased Stokes Shifts. Journal of Organic Chemistry, 2019, 84, 687-697.	3.2	45
29	Photocatalytic Reduction of CO2 to CO and Formate: Do Reaction Conditions or Ruthenium Catalysts Control Product Selectivity?. ACS Applied Energy Materials, 2019, 2, 37-46.	5.1	42
30	Dimers of Nineteenâ€Electron Sandwich Compounds: Crystal and Electronic Structures, and Comparison of Reducing Strengths. Chemistry - A European Journal, 2014, 20, 15385-15394.	3.3	41
31	Water-Soluble NIR Absorbing and Emitting Indolizine Cyanine and Indolizine Squaraine Dyes for Biological Imaging. Journal of Organic Chemistry, 2020, 85, 4089-4095.	3.2	41
32	Ruthenium(<scp>ii</scp>) complexes of pyridinol and N-heterocyclic carbene derived pincers as robust catalysts for selective carbon dioxide reduction. Chemical Communications, 2017, 53, 11217-11220.	4.1	40
33	Molecular Design Principles for Nearâ€Infrared Absorbing and Emitting Indolizine Dyes. Chemistry - A European Journal, 2016, 22, 15536-15542.	3.3	39
34	A Highâ€Voltage Molecularâ€Engineered Organic Sensitizer–Iron Redox Shuttle Pair: 1.4â€V DSSC and 3.3â€ SSMâ€ÐSSC Devices. Angewandte Chemie - International Edition, 2018, 57, 5472-5476.	€V 13.8	39
35	Nickel(<scp>ii</scp>) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction. Chemical Communications, 2018, 54, 3819-3822.	4.1	39
36	In situ identification of a luminescence quencher in an organic light-emitting device. Journal of Materials Chemistry, 2007, 17, 76-81.	6.7	38

#	Article	IF	CITATIONS
37	Photochemical CO2 reduction with mononuclear and dinuclear rhenium catalysts bearing a pendant anthracene chromophore. Chemical Communications, 2019, 55, 993-996.	4.1	37
38	Modulating dye E(S+/S*) with efficient heterocyclic nitrogen containing acceptors for DSCs. Chemical Communications, 2012, 48, 2295.	4.1	35
39	A Stable Panchromatic Green Dual Acceptor, Dual Donor Organic Dye for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2017, 121, 8770-8780.	3.1	35
40	A Computational and Experimental Study of Thieno[3,4â€b]thiophene as a Proaromatic Ï€â€Bridge in Dye‧ensitized Solar Cells. Chemistry - A European Journal, 2016, 22, 694-703.	3.3	34
41	Counter Anion Effect on the Photophysical Properties of Emissive Indolizine-Cyanine Dyes in Solution and Solid State. Molecules, 2018, 23, 3051.	3.8	34
42	Near-Infrared Fluorescent Thienothiadiazole Dyes with Large Stokes Shifts and High Photostability. Journal of Organic Chemistry, 2017, 82, 5597-5606.	3.2	30
43	Accurate determination of the onset wavelength (<mmi:math) 0.784314="" 1="" 10="" 11="" 50="" 517<="" etqq1="" ij="" overlock="" rgb1="" td=""><td>2.3</td><td>:mmi= http: 30</td></mmi:math)>	2.3	:mmi= http: 30
44	spectroscopy. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 205, 107544. Indolizine–Squaraines: NIR Fluorescent Materials with Molecularly Engineered Stokes Shifts. Chemistry - A European Journal, 2017, 23, 12494-12501.	3.3	29
45	A 25 mA cm ^{â^'2} dye-sensitized solar cell based on a near-infrared-absorbing organic dye and application of the device in SSM-DSCs. Chemical Communications, 2020, 56, 1741-1744.	4.1	29
46	A Highâ€Voltage Molecularâ€Engineered Organic Sensitizer–Iron Redox Shuttle Pair: 1.4â€V DSSC and 3.3â€. SSMâ€DSSC Devices. Angewandte Chemie, 2018, 130, 5570-5574.	V 2.0	28
47	The Hagfeldt Donor and Use of Nextâ€Generation Bulky Donor Designs in Dye‣ensitized Solar Cells. ChemSusChem, 2020, 13, 2503-2512.	6.8	27
48	Organometallic Dimers: Application to Work-Function Reduction of Conducting Oxides. ACS Applied Materials & amp; Interfaces, 2015, 7, 4320-4326.	8.0	25
49	Molecular Engineering of Near Infrared Absorbing Thienopyrazine Double Donor Double Acceptor Organic Dyes for Dye-Sensitized Solar Cells. Journal of Organic Chemistry, 2017, 82, 12038-12049.	3.2	22
50	A Mononuclear Tungsten Photocatalyst for H ₂ Production. ACS Catalysis, 2018, 8, 4838-4847.	11.2	21
51	Self-Assembling PCL–PAMAM Linear Dendritic Block Copolymers (LDBCs) for Bioimaging and Phototherapeutic Applications. ACS Applied Bio Materials, 2020, 3, 5664-5677.	4.6	21
52	Sequential series multijunction dye-sensitized solar cells (SSM-DSCs): 4.7 volts from a single illuminated area. Energy and Environmental Science, 2017, 10, 1764-1769.	30.8	19
53	Copper-based redox shuttles supported by preorganized tetradentate ligands for dye-sensitized solar cells. Dalton Transactions, 2020, 49, 343-355.	3.3	19
54	Ullazine Donor–π bridgeâ€Acceptor Organic Dyes for Dye‧ensitized Solar Cells. Chemistry - A European Journal, 2018, 24, 5939-5949.	3.3	18

#	Article	IF	CITATIONS
55	A Robust Pyridyl-NHC-Ligated Rhenium Photocatalyst for CO2 Reduction in the Presence of Water and Oxygen. Inorganics, 2018, 6, 22.	2.7	18
56	The Role of Antireflective Coating CYTOP, Immersion Oil, and Sensitizer Selection in Fabricating a 2.3 V, 10% Power Conversion Efficiency SSMâ€DSC Device. Advanced Energy Materials, 2019, 9, 1900162.	19.5	17
57	Thienopyrroledione-Based Photosensitizers as Strong Photoinduced Oxidants: Oxidation of Fe(bpy) ₃ ²⁺ in a >1.3 V Dye-Sensitized Solar Cell. ACS Applied Energy Materials, 2019, 2, 5547-5556.	5.1	16
58	Shortwave Infrared Absorptive and Emissive Pentamethine-Bridged Indolizine Cyanine Dyes. Journal of Organic Chemistry, 2021, 86, 15376-15386.	3.2	16
59	Harnessing Photovoltage: Effects of Film Thickness, TiO ₂ Nanoparticle Size, MgO and Surface Capping with DSCs. ACS Applied Materials & Interfaces, 2017, 9, 3050-3059.	8.0	15
60	lodine binding with thiophene and furan based dyes for DSCs. Physical Chemistry Chemical Physics, 2018, 20, 17859-17870.	2.8	15
61	Toward tightly bound carboxylic acid-based organic dyes for DSCs: relative TiO2 binding strengths of benzoic acid, cyanoacrylic acid, and conjugated double carboxylic acid anchoring dyes. Synthetic Metals, 2016, 222, 66-75.	3.9	13
62	Effect of Donor Strength and Bulk on Thieno[3,4â€b]â€pyrazineâ€Based Panchromatic Dyes in Dyeâ€Sensitized Solar Cells. ChemSusChem, 2017, 10, 2635-2641.	6.8	13
63	Effect of "X―Ligands on the Photocatalytic Reduction of CO ₂ to CO with Re(pyridylNHCâ€CF ₃)(CO) ₃ X Complexes. European Journal of Inorganic Chemistry, 2020, 2020, 1844-1851.	2.0	13
64	Probing Interfacial Halogen-Bonding Effects with Halogenated Organic Dyes and a Lewis Base-Decorated Transition Metal-Based Redox Shuttle at a Metal Oxide Interface in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2021, 125, 17647-17659.	3.1	13
65	Near-infrared unsymmetrical squaraine core-based sensitizers for co-sensitized high-photocurrent dye-sensitized solar cells. Cell Reports Physical Science, 2022, 3, 100701.	5.6	13
66	Full Visible Spectrum Panchromatic Triple Donor Dye for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2020, 124, 25211-25220.	3.1	12
67	Characterization of Furan- and Thiophene-Containing Bispyridyl Oligomers via Spectroscopic, Electrochemical, and TD-DFT Methods. Journal of Physical Chemistry C, 2019, 123, 15176-15185.	3.1	11
68	Photon management strategies in SSM-DSCs: Realization of a >11% PCE device with a 2.3ÂV output. Solar Energy, 2020, 208, 747-752.	6.1	11
69	Lowâ€Recombination Thieno[3,4â€b]thiopheneâ€Based Photosensitizers for Dyeâ€Sensitized Solar Cells with Panchromatic Photoresponses. ChemSusChem, 2017, 10, 3624-3631.	6.8	10
70	Quinoxaline-Based Dual Donor, Dual Acceptor Organic Dyes for Dye-Sensitized Solar Cells. Applied Sciences (Switzerland), 2018, 8, 1421.	2.5	10
71	Structure Function Relationships in Ruthenium Carbon Dioxide Reduction Catalysts with CNC Pincers Containing Donor Groups. European Journal of Inorganic Chemistry, 2020, 2020, 2709-2717.	2.0	10
72	SWIR emissive RosIndolizine dyes with nanoencapsulation in water soluble dendrimers. RSC Advances, 2021, 11, 27832-27836.	3.6	10

#	Article	IF	CITATIONS
73	Interface Passivation of Inverted Perovskite Solar Cells by Dye Molecules. ACS Applied Energy Materials, 2021, 4, 9525-9533.	5.1	10
74	Photocatalytic Water Splitting and Carbon Dioxide Reduction. , 2017, , 2709-2756.		9
75	SnO ₂ Transparent Printing Pastes from Powders for Photon Conversion in SnO ₂ â€Based Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2019, 25, 14205-14213.	3.3	9
76	Robust, Scalable Synthesis of the Bulky Hagfeldt Donor for Dye‣ensitized Solar Cells. ChemSusChem, 2020, 13, 283-286.	6.8	9
77	Electrochemical Copolymerization of Isoindigoâ€Based Donorâ€Acceptor Polymers with Intrinsically Enhanced Conductivity and Nearâ€Infraredâ€II Activity. ChemElectroChem, 2020, 7, 3752-3760.	3.4	8
78	Designing hierarchical structures of complex electronically conducting organic polymers <i>via</i> one-step electro-polymerization. Journal of Materials Chemistry C, 2020, 8, 5934-5940.	5.5	8
79	Iron Redox Shuttles with Wide Optical Gap Dyes for Highâ€Voltage Dyeâ€ S ensitized Solar Cells. ChemSusChem, 2021, 14, 3084-3096.	6.8	8
80	Photophysical Properties of Donor–Acceptorâ^"i€ Bridge–Acceptor Sensitizers with a Naphthobisthiadiazole Auxiliary Acceptor: Toward Longer-Wavelength Access in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2022, 126, 11875-11888.	3.1	8
81	Low-Valent Cobalt(I) CNC Pincer Complexes as Catalysts for Light-Driven Carbon Dioxide Reduction. ACS Catalysis, 2022, 12, 8718-8728.	11.2	8
82	Impact of the Dissolved Anion on the Electrocatalytic Reduction of CO 2 to CO with Ruthenium CNC Pincer Complexes. ChemCatChem, 2020, 12, 4879-4885.	3.7	7
83	Donor group influence on dye-sensitized solar cell device performances: Balancing dye loading and donor size. Dyes and Pigments, 2021, 187, 109074.	3.7	7
84	Precious metal-free solar-to-fuel generation: SSM-DSCs powering water splitting with NanoCOT and NiMoZn electrocatalysts. Chemical Communications, 2020, 56, 1569-1572.	4.1	6
85	Pyridyl CO ₂ Fixation Enabled by a Secondary Hydrogen Bonding Coordination Sphere. ACS Omega, 2020, 5, 11687-11694.	3.5	6
86	Lewis Acid–Lewis Base Interactions Promote Fast Interfacial Electron Transfers with a Pyridine-Based Donor Dye in Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2022, 5, 1516-1527.	5.1	6
87	Radically Accessing D–A Type Ambipolar Copolymeric Materials with Intrinsic Electrical Conductivity and Visible–Near Infrared Absorption Via Electroâ€Copolymerization. Macromolecular Chemistry and Physics, 2019, 220, 1900289.	2.2	5
88	Sensitized and Self‣ensitized Photocatalytic Carbon Dioxide Reduction Under Visible Light with Ruthenium Catalysts Shows Enhancements with More Conjugated Pincer Ligands. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	5
89	Probing the Effects of Electron Deficient Aryl Substituents and a Ï€â€System Extended NHC Ring on the Photocatalytic CO ₂ Reduction Reaction with Reâ€pyNHCâ€Aryl Complexes**. ChemPhotoChem, 2021, 5, 353-361.	3.0	4
90	Structural, optical, photocatalytic, and optoelectronic properties of Zn ₂ SnO ₄ nanocrystals prepared by hydrothermal method. Nanotechnology, 2021, 32, 145702.	2.6	4

#	Article	IF	CITATIONS
91	Integrating GaAs, Si, and Dye-Sensitized Solar Cells in Multijunction Devices and Probing Harsh Condition Behavior. ACS Applied Electronic Materials, 2021, 3, 316-324.	4.3	4
92	Physicochemical properties and bioâ€interfacial interactions of surface modified PDLLAâ€PAMAM linear dendritic block copolymers. Journal of Polymer Science, 2021, 59, 2177-2192.	3.8	4
93	Preferential Direction of Electron Transfers at a Dye–Metal Oxide Interface with an Insulating Fluorinated Self-Assembled Monolayer and MgO. Journal of Physical Chemistry C, 2021, 125, 25410-25421.	3.1	4
94	Cross-linking Poly(caprolactone)–Polyamidoamine Linear Dendritic Block Copolymers for Theranostic Nanomedicine. ACS Applied Polymer Materials, 2022, 4, 2972-2986.	4.4	4
95	Panchromatic cross-conjugated π-bridge NIR dyes for DSCs. Physical Chemistry Chemical Physics, 2018, 20, 2438-2443.	2.8	3
96	Photoinduced Generation of a Durable Thermal Proton Reduction Catalyst with in Situ Conversion of Mn(bpy)(CO) ₃ Br to Mn(bpy) ₂ Br ₂ . Inorganic Chemistry, 2020, 59, 11266-11272.	4.0	3
97	Molecular Au(I) complexes in the photosensitized photocatalytic CO2 reduction reaction. MRS Communications, 2020, 10, 252-258.	1.8	3
98	Phosphate and Water Sensing with a Zincâ€Dipicolylamineâ€Based Chargeâ€Transfer Dye. ChemistrySelect, 2020, 5, 1945-1949.	1.5	2
99	Photocatalytic Water Splitting and Carbon Dioxide Reduction. , 2015, , 1-39.		2
100	An Efficient Copper-Based Redox Shuttle Bearing a Hexadentate Polypyridyl Ligand for DSCs under Low-Light Conditions. ACS Applied Energy Materials, 2022, 5, 5964-5973.	5.1	2
101	Dye-Sensitized Solar Cells: A Brief Historical Perspective and Uses in Multijunction Devices. Challenges and Advances in Computational Chemistry and Physics, 2021, , 81-98.	0.6	1
102	Frontispiece: Indolizine–Squaraines: NIR Fluorescent Materials with Molecularly Engineered Stokes Shifts. Chemistry - A European Journal, 2017, 23, .	3.3	0
103	High Photovoltage Sequential Series Multijunction Dye-Sensitized Solar Cells (SSM-DSCs). ECS Meeting Abstracts, 2018, , .	0.0	0
104	Engineering of Sequential-Series Multijunction Dye-Sensitized Solar Cells for Greater Than 10% Solar-to-Electric Efficiency and 2.0 V Photovoltage Output. ECS Meeting Abstracts, 2019, , .	0.0	0
105	Designing Self-Assembled Dye–Redox Shuttle Systems via Interfacial π-Stacking in Dye-Sensitized Solar Cells for Enhanced Low Light Power Conversion. Energy & Fuels, 0, , .	5.1	О