Christine Hawkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1494906/publications.pdf Version: 2024-02-01

CHRISTINE HAWKING

#	Article	IF	CITATIONS
1	Recent and Ongoing Research into Metastatic Osteosarcoma Treatments. International Journal of Molecular Sciences, 2022, 23, 3817.	4.1	44
2	Reconstitution of Human Necrosome Interactions in Saccharomyces cerevisiae. Biomolecules, 2021, 11, 153.	4.0	4
3	Mutagenic Consequences of Sublethal Cell Death Signaling. International Journal of Molecular Sciences, 2021, 22, 6144.	4.1	7
4	Oral administration of bovine milk-derived extracellular vesicles induces senescence in the primary tumor but accelerates cancer metastasis. Nature Communications, 2021, 12, 3950.	12.8	70
5	The smac mimetic LCL161 targets established pulmonary osteosarcoma metastases in mice. Clinical and Experimental Metastasis, 2021, 38, 441-449.	3.3	3
6	Establishment and Characterisation of Metastatic Extraskeletal Ewing Sarcoma Mouse Models. In Vivo, 2021, 35, 3097-3106.	1.3	2
7	In vitro analysis reveals necroptotic signaling does not provoke DNA damage or HPRT mutations. Cell Death and Disease, 2020, 11, 680.	6.3	2
8	Tetrazolium reduction assays under-report cell death provoked by clinically relevant concentrations of proteasome inhibitors. Molecular Biology Reports, 2020, 47, 4849-4856.	2.3	1
9	Smac mimetics can provoke lytic cell death that is neither apoptotic nor necroptotic. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 500-518.	4.9	5
10	Transient NK Cell Depletion Facilitates Pulmonary Osteosarcoma Metastases After Intravenous Inoculation in Athymic Mice. Journal of Adolescent and Young Adult Oncology, 2020, 9, 667-671.	1.3	7
11	The Proteasome Inhibitor Ixazomib Inhibits the Formation and Growth of Pulmonary and Abdominal Osteosarcoma Metastases in Mice. Cancers, 2020, 12, 1207.	3.7	12
12	Plexin B2 Is a Regulator of Monocyte Apoptotic Cell Disassembly. Cell Reports, 2019, 29, 1821-1831.e3.	6.4	28
13	Smac mimetics LCL161 and GDC-0152 inhibit osteosarcoma growth and metastasis in mice. BMC Cancer, 2019, 19, 924.	2.6	24
14	CrmA orthologs from diverse poxviruses potently inhibit caspases-1 and -8, yet cleavage site mutagenesis frequently produces caspase-1-specific variants. Biochemical Journal, 2019, 476, 1335-1357.	3.7	13
15	Proteasome inhibitors trigger mutations via activation of caspases and CAD, but mutagenesis provoked by the HDAC inhibitors vorinostat and romidepsin is caspase/CAD-independent. Apoptosis: an International Journal on Programmed Cell Death, 2019, 24, 404-413.	4.9	6
16	Mutagenic assessment of chemotherapy and Smac mimetic drugs in cells with defective DNA damage response pathways. Scientific Reports, 2018, 8, 14421.	3.3	9
17	Preâ€clinical evaluation of proteasome inhibitors for canine and human osteosarcoma. Veterinary and Comparative Oncology, 2018, 16, 544-553.	1.8	14
18	Old and Novel Functions of Caspase-2. International Review of Cell and Molecular Biology, 2017, 332, 155-212.	3.2	30

CHRISTINE HAWKINS

#	Article	IF	CITATIONS
19	Vaccinia Virus Encodes a Novel Inhibitor of Apoptosis That Associates with the Apoptosome. Journal of Virology, 2017, 91, .	3.4	16
20	Executioner caspases and CAD are essential for mutagenesis induced by TRAIL or vincristine. Cell Death and Disease, 2017, 8, e3062-e3062.	6.3	29
21	The N Terminus of the Vaccinia Virus Protein F1L Is an Intrinsically Unstructured Region That Is Not Involved in Apoptosis Regulation. Journal of Biological Chemistry, 2016, 291, 14600-14608.	3.4	11
22	Modeling Metazoan Apoptotic Pathways in Yeast. Methods in Molecular Biology, 2016, 1419, 161-183.	0.9	5
23	Data on the DNA damaging and mutagenic potential of the BH3-mimetics ABT-263/Navitoclax and TW-37. Data in Brief, 2016, 6, 710-714.	1.0	3
24	TRAIL causes deletions at the HPRT and TK1 loci of clonogenically competent cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2016, 787, 15-31.	1.0	5
25	IAP antagonists sensitize murine osteosarcoma cells to killing by TNFα. Oncotarget, 2016, 7, 33866-33886.	1.8	17
26	Inhibition of Bcl-2 or IAP proteins does not provoke mutations in surviving cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 777, 23-32.	1.0	9
27	Analysis of the minimal specificity of caspase-2 and identification of Ac-VDTTD-AFC as a caspase-2-selective peptide substrate. Bioscience Reports, 2014, 34, .	2.4	8
28	SfDronc, an initiator caspase involved in apoptosis in the fall armyworm Spodoptera frugiperda. Insect Biochemistry and Molecular Biology, 2013, 43, 444-454.	2.7	31
29	Yeast techniques for modeling drugs targeting Bcl-2 and caspase family members. Cell Death and Disease, 2013, 4, e619-e619.	6.3	20
30	Caspase Inhibitors of the P35 Family Are More Active When Purified from Yeast than Bacteria. PLoS ONE, 2012, 7, e39248.	2.5	7
31	Functional and biochemical characterization of the baculovirus caspase inhibitor MaviP35. Cell Death and Disease, 2011, 2, e242-e242.	6.3	15
32	TRAIL treatment provokes mutations in surviving cells. Oncogene, 2010, 29, 5048-5060.	5.9	80
33	Caspase-2: controversial killer or checkpoint controller?. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 829-848.	4.9	43
34	In vitro sensitivity testing of minimally passaged and uncultured gliomas with TRAIL and/or chemotherapy drugs. British Journal of Cancer, 2008, 99, 294-304.	6.4	17
35	Analysis of the minimal specificity of CED-3 using a yeast transcriptional reporter system. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 448-454.	4.1	4
36	Apoptosis is triggered when prosurvival Bcl-2 proteins cannot restrain Bax. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18081-18087.	7.1	162

CHRISTINE HAWKINS

#	Article	IF	CITATIONS
37	TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1–TRAF2 complex to sensitize tumor cells to TNFα. Journal of Cell Biology, 2008, 182, 171-184.	5.2	226
38	Caspase-8 Cleaves Histone Deacetylase 7 and Abolishes Its Transcription Repressor Function. Journal of Biological Chemistry, 2008, 283, 19499-19510.	3.4	44
39	TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1–TRAF2 complex to sensitize tumor cells to TNFα. Journal of Experimental Medicine, 2008, 205, i18-i18.	8.5	Ο
40	Identification of mammalian mitochondrial proteins that interact with IAPs via N-terminal IAP binding motifs. Cell Death and Differentiation, 2007, 14, 348-357.	11.2	83
41	Human telomerase reverse transcriptase protects hematopoietic progenitor TF-1 cells from death and quiescence induced by cytokine withdrawal. Leukemia, 2006, 20, 1270-1278.	7.2	18
42	Human, insect and nematode caspases kill Saccharomyces cerevisiae independently of YCA1 and Aif1p. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 509-517.	4.9	22
43	Caspase-8 levels correlate with the expression of signal transducer and activator of transcription 1 in high-grade but not lower grade neuroblastoma. Cancer, 2006, 107, 824-831.	4.1	7
44	Human Bcl-2 cannot directly inhibit the Caenorhabditis elegans Apaf-1 homologue CED-4, but can interact with EGL-1. Journal of Cell Science, 2006, 119, 2572-2582.	2.0	23
45	Caspases; Modulators of Apoptosis and Cytokine Maturation — Targets for Novel Therapies. , 2005, , 79-106.		0
46	Caspase-2 is resistant to inhibition by inhibitor of apoptosis proteins (IAPs) and can activate caspase-7. FEBS Journal, 2005, 272, 1401-1414.	4.7	32
47	Mammalian initiator apoptotic caspases. FEBS Journal, 2005, 272, 5436-5453.	4.7	150
48	Caspase 8 is absent or low in many ex vivo gliomas. Cancer, 2005, 104, 1487-1496.	4.1	43
49	Mature DIABLO/Smac Is Produced by the IMP Protease Complex on the Mitochondrial Inner Membrane. Molecular Biology of the Cell, 2005, 16, 2926-2933.	2.1	89
50	TRAIL and Malignant Glioma. Vitamins and Hormones, 2004, 67, 427-452.	1.7	27
51	Hsp72 Inhibits Apoptosis Upstream of the Mitochondria and Not through Interactions with Apaf-1. Journal of Biological Chemistry, 2004, 279, 51490-51499.	3.4	118
52	Apaf-1 and caspase-9 accelerate apoptosis, but do not determine whether factor-deprived or drug-treated cells die. Journal of Cell Biology, 2004, 165, 835-842.	5.2	169
53	The Caenorhabditis elegans CED-9 protein does not directly inhibit the caspase CED-3, in vitro nor in yeast. Cell Death and Differentiation, 2004, 11, 1309-1316.	11.2	12
54	Caspase-8 levels affect necessity for mitochondrial amplification in death ligand-induced glioma cell apoptosis. Molecular Carcinogenesis, 2004, 39, 173-182.	2.7	14

CHRISTINE HAWKINS

#	Article	IF	CITATIONS
55	The p35 Family of Apoptosis Inhibitors. Current Genomics, 2004, 5, 215-229.	1.6	4
56	The anti-apoptotic activity of XIAP is retained upon mutation of both the caspase 3– and caspase 9–interacting sites. Journal of Cell Biology, 2002, 157, 115-124.	5.2	124
57	The p35 relative, p49, inhibits mammalian and Drosophila caspases including DRONC and protects against apoptosis. Cell Death and Differentiation, 2002, 9, 1311-1320.	11.2	46
58	Analysis of candidate antagonists of IAP-mediated caspase inhibition using yeast reconstituted with the mammalian Apaf-1-activated apoptosis mechanism. Apoptosis: an International Journal on Programmed Cell Death, 2001, 6, 331-338.	4.9	34
59	Direct inhibition of caspase 3 is dispensable for the anti-apoptotic activity of XIAP. EMBO Journal, 2001, 20, 3114-3123.	7.8	101
60	Analysis of FasL and TRAIL induced apoptosis pathways in glioma cells. Oncogene, 2001, 20, 5789-5798.	5.9	95
61	Diablo Promotes Apoptosis by Removing Miha/Xiap from Processed Caspase 9. Journal of Cell Biology, 2001, 152, 483-490.	5.2	188
62	Ex vivo pediatric brain tumors express Fas (CD95) and FasL (CD95L) and are resistant to apoptosis induction. Neuro-Oncology, 2001, 3, 229-240.	1.2	10
63	The Drosophila caspase DRONC is a glutamate/aspartate protease whose activity is regulated by DIAP1, HID and GRIM. Journal of Biological Chemistry, 2000, 275, 27084-93.	3.4	111
64	Monitoring Activity of Caspases and Their Regulators in Yeast Saccharomyces cerevisiae. Methods in Enzymology, 2000, 322, 162-174.	1.0	15
65	The Drosophila Caspase DRONC Cleaves following Glutamate or Aspartate and Is Regulated by DIAP1, HID, and GRIM. Journal of Biological Chemistry, 2000, 275, 27084-27093.	3.4	184
66	A cloning method to identify caspases and their regulators in yeast: Identification of Drosophila IAP1 as an inhibitor of the Drosophila caspase DCP-1. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 2885-2890.	7.1	155
67	The Drosophila Caspase Inhibitor DIAP1 Is Essential for Cell Survival and Is Negatively Regulated by HID. Cell, 1999, 98, 453-463.	28.9	477
68	Anti-apoptotic potential of insect cellular and viral IAPs in mammalian cells. Cell Death and Differentiation, 1998, 5, 569-576.	11.2	40
69	The role of the Bcl-2 family of apoptosis regulatory proteins in the immune system. Seminars in Immunology, 1997, 9, 25-33.	5.6	52
70	Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor-associated factors Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 4974-4978.	7.1	489
71	Inhibition of interleukin 1Â-converting enzyme-mediated apoptosis of mammalian cells by baculovirus IAP. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 13786-13790.	7.1	107
72	Analysis of the Role of bcl-2 in Apoptosis. Immunological Reviews, 1994, 142, 127-139.	6.0	83