Mercedes Dosil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1494768/publications.pdf

Version: 2024-02-01

26 papers

894 citations

15 h-index 25 g-index

26 all docs 26 docs citations

26 times ranked 1033 citing authors

#	Article	IF	CITATIONS
1	A hotspot mutation targeting the R-RAS2 GTPase acts as a potent oncogenic driver in a wide spectrum of tumors. Cell Reports, 2022, 38, 110522.	6.4	7
2	The Rho guanosine nucleotide exchange factors Vav2 and Vav3 modulate epidermal stem cell function. Oncogene, 2022, 41, 3341-3354.	5.9	3
3	Efficient fractionation and analysis of ribosome assembly intermediates in human cells. RNA Biology, 2021, 18, 182-197.	3.1	5
4	New Functions of Vav Family Proteins in Cardiovascular Biology, Skeletal Muscle, and the Nervous System. Biology, 2021, 10, 857.	2.8	7
5	Identification of distinct maturation steps involved in human 40S ribosomal subunit biosynthesis. Nature Communications, 2020, 11, 156.	12.8	19
6	Vav2 pharmaco-mimetic mice reveal the therapeutic value and caveats of the catalytic inactivation of a Rho exchange factor. Oncogene, 2020, 39, 5098-5111.	5.9	10
7	Vav proteins maintain epithelial traits in breast cancer cells using miR-200c-dependent and independent mechanisms. Oncogene, 2019, 38, 209-227.	5.9	11
8	Pol5 is an essential ribosome biogenesis factor required for 60S ribosomal subunit maturation in <i>Saccharomyces cerevisiae</i> . Rna, 2019, 25, 1561-1575.	3.5	9
9	Ribosome biogenesis and cancer: basic and translational challenges. Current Opinion in Genetics and Development, 2018, 48, 22-29.	3.3	57
10	Focal accumulation of preribosomes outside the nucleolus during metaphase–anaphase in budding yeast. Rna, 2017, 23, 1432-1443.	3.5	1
11	Rrp12 and the Exportin Crm1 Participate in Late Assembly Events in the Nucleolus during 40S Ribosomal Subunit Biogenesis. PLoS Genetics, 2014, 10, e1004836.	3.5	17
12	Contribution of the R-Ras2 GTP-binding protein to primary breast tumorigenesis and late-stage metastatic disease. Nature Communications, 2014, 5, 3881.	12.8	28
13	Elucidation of the assembly events required for the recruitment of Utp20, Imp4 and Bms1 onto nascent pre-ribosomes. Nucleic Acids Research, 2011, 39, 8105-8121.	14.5	46
14	Ribosome Synthesis-Unrelated Functions of the Preribosomal Factor Rrp12 in Cell Cycle Progression and the DNA Damage Response. Molecular and Cellular Biology, 2011, 31, 2422-2438.	2.3	10
15	Strategies for Isolating Constitutively Active and Dominant-Negative Pheromone Receptor Mutants in Yeast. Methods in Enzymology, 2010, 485, 329-348.	1.0	3
16	The 90S Preribosome Is a Multimodular Structure That Is Assembled through a Hierarchical Mechanism. Molecular and Cellular Biology, 2007, 27, 5414-5429.	2.3	155
17	Control of lymphocyte shape and the chemotactic response by the GTP exchange factor Vav. Blood, 2005, 105, 3026-3034.	1.4	65
18	Functional Characterization of Pwp2, a WD Family Protein Essential for the Assembly of the 90 S Pre-ribosomal Particle. Journal of Biological Chemistry, 2004, 279, 37385-37397.	3.4	76

#	Article	IF	CITATION
19	Structural Determinants for the Biological Activity of Vav Proteins. Journal of Biological Chemistry, 2002, 277, 45377-45392.	3.4	112
20	Functional Assays for Mammalian G-Protein-Coupled Receptors in Yeast. Methods in Enzymology, 2002, 344, 92-111.	1.0	16
21	How Vav proteins discriminate the GTPases Rac1 and RhoA from Cdc42. Oncogene, 2001, 20, 8057-8065.	5.9	64
22	The C Terminus of the Saccharomyces cerevisiae α-Factor Receptor Contributes to the Formation of Preactivation Complexes with Its Cognate G Protein. Molecular and Cellular Biology, 2000, 20, 5321-5329.	2.3	65
23	Dominant-Negative Mutations in the G-Protein-Coupled α-Factor Receptor Map to the Extracellular Ends of the Transmembrane Segments. Molecular and Cellular Biology, 1998, 18, 5981-5991.	2.3	59
24	Differentiation-Linked Expression of Prothymosin \hat{l}_\pm Gene in Human Myeloid Leukemic Cells. Experimental Cell Research, 1993, 204, 94-101.	2.6	25
25	Tissue-specific and differential expression of prothymosin α gene during rat development. FEBS Letters, 1990, 269, 373-376.	2.8	22
26	The levels of cytochrome c oxidase subunit II mRNA change during the rat T-cell development. Biochimica Et Biophysica Acta - Bioenergetics, 1989, 977, 341-343.	1.0	2