
David Cahen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1494151/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Operando, Photovoltaic, and Microscopic Evaluation of Recombination Centers in Halide Perovskite-Based Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 34171-34179.	8.0	4
2	Prospect of making XPS a high-throughput analytical method illustrated for a Cu _{<i>x</i>} Ni _{1â^{^,}<i>x</i>} O _{<i>y</i>} combinatorial material library. RSC Advances, 2022, 12, 7996-8002.	3.6	5
3	2D Pbâ€Halide Perovskites Can Selfâ€Heal Photodamage Better than 3D Ones. Advanced Functional Materials, 2022, 32, .	14.9	11
4	Halide perovskite dynamics at work: Large cations at 2D-on-3D interfaces are mobile. Proceedings of the United States of America, 2022, 119, e2114740119.	7.1	19
5	New Pb-Free Stable Sn–Ge Solid Solution Halide Perovskites Fabricated by Spray Deposition. ACS Applied Energy Materials, 2022, 5, 3638-3646.	5.1	20
6	Light-induced beneficial ion accumulation for high-performance quasi-2D perovskite solar cells. Energy and Environmental Science, 2022, 15, 2499-2507.	30.8	18
7	Surface Interactions of Oxygen Suffice to Pâ€Đope the Halide Perovskites. Advanced Materials Interfaces, 2022, 9, .	3.7	2
8	Lead Sequestration from Halide Perovskite Solar Cells with a Low-Cost Thiol-Containing Encapsulant. ACS Applied Materials & Interfaces, 2022, 14, 29766-29772.	8.0	10
9	Conformation-dependent charge transport through short peptides. Nanoscale, 2021, 13, 3002-3009.	5.6	18
10	The pursuit of stability in halide perovskites: the monovalent cation and the key for surface and bulk self-healing. Materials Horizons, 2021, 8, 1570-1586.	12.2	29
11	Reply to â€~Ideal solar cell efficiencies'. Nature Photonics, 2021, 15, 165-166.	31.4	7
12	Direct Probing of Gap States and Their Passivation in Halide Perovskites by High-Sensitivity, Variable Energy Ultraviolet Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 5217-5225.	3.1	12
13	Inelastic Electron Tunneling Spectroscopic Analysis of Biasâ€Induced Structural Changes in a Solidâ€State Protein Junction. Small, 2021, 17, e2008218.	10.0	5
14	Response to Comment on "Eppur si Muove: Proton Diffusion in Halide Perovskite Single Crystalsâ€ Measure What is Measurable, and Make Measurable What is Not So: Discrepancies between Proton Diffusion in Halide Perovskite Single Crystals and Thin Films. Advanced Materials, 2021, 33, e2102822.	21.0	4
15	Electronic Transport Through Organophosphonate-Grafted Bacteriorhodopsin Films on Titanium Nitride. , 2021, , .		2
16	Are Defects in Lead-Halide Perovskites Healed, Tolerated, or Both?. ACS Energy Letters, 2021, 6, 4108-4114.	17.4	31
17	What Can We Learn from Protein-Based Electron Transport Junctions?. Journal of Physical Chemistry Letters, 2021, 12, 11598-11603.	4.6	18
18	Electrochemical reduction of CO ₂ : Two―or threeâ€electrode configuration. International Journal of Energy Research, 2020, 44, 548-559.	4.5	13

#	Article	IF	CITATIONS
19	FTO Darkening Rate as a Qualitative, High-Throughput Mapping Method for Screening Li-Ionic Conduction in Thin Solid Electrolytes. ACS Combinatorial Science, 2020, 22, 18-24.	3.8	4
20	Solid-State Electron Transport via the Protein Azurin is Temperature-Independent Down to 4 K. Journal of Physical Chemistry Letters, 2020, 11, 144-151.	4.6	28
21	Eppur si Muove: Proton Diffusion in Halide Perovskite Single Crystals. Advanced Materials, 2020, 32, e2002467.	21.0	50
22	Two-dimensional perovskite solar cells with high luminescence and ultra-low open-circuit voltage deficit. Journal of Materials Chemistry A, 2020, 8, 22175-22180.	10.3	9
23	Effect of Low Pressure on Tetragonal to Cubic Phase Transition of Methylammonium Lead Iodide Perovskite. Journal of Physical Chemistry Letters, 2020, 11, 1473-1476.	4.6	8
24	Protein Binding and Orientation Matter: Bias-Induced Conductance Switching in a Mutated Azurin Junction. Journal of the American Chemical Society, 2020, 142, 19217-19225.	13.7	18
25	Minimum doping densities for pâ \in "n junctions. Nature Energy, 2020, 5, 973-975.	39.5	18
26	Coherent Electron Transport across a 3 nm Bioelectronic Junction Made of Multi-Heme Proteins. Journal of Physical Chemistry Letters, 2020, 11, 9766-9774.	4.6	42
27	Single-Crystal Growth and Thermal Stability of (CH ₃ NH ₃) _{1–<i>x</i>} Cs _{<i>x</i>} PbBr ₃ . Crystal Growth and Design, 2020, 20, 4366-4374.	3.0	8
28	Solid-State Protein Junctions: Cross-Laboratory Study Shows Preservation of Mechanism at Varying Electronic Coupling. IScience, 2020, 23, 101099.	4.1	30
29	Defects in halide perovskites: The lattice as a boojum?. MRS Bulletin, 2020, 45, 478-484.	3.5	20
30	Pin-Hole-Free, Homogeneous, Pure CsPbBr3 Films on Flat Substrates by Simple Spin-Coating Modification. Frontiers in Energy Research, 2020, 8, .	2.3	5
31	Temperature-Dependent Optical Band Gap in CsPbBr ₃ , MAPbBr ₃ , and FAPbBr ₃ Single Crystals. Journal of Physical Chemistry Letters, 2020, 11, 2490-2496.	4.6	173
32	Pitfalls and prospects of optical spectroscopy to characterize perovskite-transport layer interfaces. Applied Physics Letters, 2020, 116, .	3.3	28
33	Origin of the anomalous Pb-Br bond dynamics in formamidinium lead bromide perovskites. Physical Review B, 2020, 101, .	3.2	14
34	Impact of SnF ₂ Addition on the Chemical and Electronic Surface Structure of CsSnBr ₃ . ACS Applied Materials & Interfaces, 2020, 12, 12353-12361.	8.0	35
35	Halide Diffusion in MAPbX ₃ : Limits to Topotaxy for Halide Exchange in Perovskites. Chemistry of Materials, 2020, 32, 4223-4231.	6.7	18
36	Probing electron-phonon couplings in halide perovskites crystals by temperature-dependent ultrafast two-dimensional electronic spectroscopy. , 2020, , .		0

David Cahen

#	Article	IF	CITATIONS
37	Innenrücktitelbild: A Solidâ€State Protein Junction Serves as a Biasâ€Induced Current Switch (Angew.) Tj ETQq	1 1.8.7843	314 rgBT /○
38	Guide for the perplexed to the Shockley–Queisser model for solar cells. Nature Photonics, 2019, 13, 501-505.	31.4	153
39	When defects become â€~dynamic': halide perovskites: a new window on materials?. Materials Horizons, 2019, 6, 1297-1305.	12.2	55
40	A Solid‣tate Protein Junction Serves as a Biasâ€Induced Current Switch. Angewandte Chemie, 2019, 131, 11978-11985.	2.0	1
41	Ultrafast Charge Carrier Relaxation in Inorganic Halide Perovskite Single Crystals Probed by Two-Dimensional Electronic Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 5414-5421.	4.6	16
42	A Solidâ€State Protein Junction Serves as a Biasâ€Induced Current Switch. Angewandte Chemie - International Edition, 2019, 58, 11852-11859.	13.8	26
43	Deep Defect States in Wide-Band-Gap ABX ₃ Halide Perovskites. ACS Energy Letters, 2019, 4, 1150-1157.	17.4	54
44	Photovoltaic solar cell technologies: analysing the state of the art. Nature Reviews Materials, 2019, 4, 269-285.	48.7	727
45	Halide Perovskites: Is It All about the Interfaces?. Chemical Reviews, 2019, 119, 3349-3417.	47.7	404
46	Unprecedented efficient electron transport across Au nanoparticles with up to 25-nm insulating SiO2-shells. Scientific Reports, 2019, 9, 18336.	3.3	9
47	Backbone-Constrained Peptides: Temperature and Secondary Structure Affect Solid-State Electron Transport. Journal of Physical Chemistry B, 2019, 123, 10951-10958.	2.6	5
48	What Limits the Open-Circuit Voltage of Bromide Perovskite-Based Solar Cells?. ACS Energy Letters, 2019, 4, 1-7.	17.4	71
49	How SnF ₂ Impacts the Material Properties of Lead-Free Tin Perovskites. Journal of Physical Chemistry C, 2018, 122, 13926-13936.	3.1	179
50	Synergistic Effect of Charge Generation and Separation in Epitaxially Grown BiOCl/Bi ₂ S ₃ Nano-Heterostructure. ACS Applied Materials & Interfaces, 2018, 10, 15304-15313.	8.0	95
51	Electronic structure of dipeptides in the gas-phase and as an adsorbed monolayer. Physical Chemistry Chemical Physics, 2018, 20, 6860-6867.	2.8	9
52	Effect of Internal Heteroatoms on Level Alignment at Metal/Molecular Monolayer/Si Interfaces. Journal of Physical Chemistry C, 2018, 122, 3312-3325.	3.1	7
53	Selfâ€Healing Inside APbBr ₃ Halide Perovskite Crystals. Advanced Materials, 2018, 30, 1706273.	21.0	149
54	Protein bioelectronics: a review of what we do and do not know. Reports on Progress in Physics, 2018, 81, 026601.	20.1	180

#	Article	IF	CITATIONS
55	Tunneling explains efficient electron transport via protein junctions. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4577-E4583.	7.1	81
56	What Remains Unexplained about the Properties of Halide Perovskites?. Advanced Materials, 2018, 30, e1800691.	21.0	231
57	Transistor configuration yields energy level control in protein-based junctions. Nanoscale, 2018, 10, 21712-21720.	5.6	24
58	Plasmonics Yields Efficient Electron Transport via Assembly of Shell-Insulated Au Nanoparticles. IScience, 2018, 8, 213-221.	4.1	27
59	Interface Electrostatics Dictates the Electron Transport via Bioelectronic Junctions. ACS Applied Materials & Interfaces, 2018, 10, 41599-41607.	8.0	18
60	On the influence of multiple cations on the in-gap states and phototransport properties of iodide-based halide perovskites. Physical Chemistry Chemical Physics, 2018, 20, 24444-24452.	2.8	22
61	Can fluorine-doped tin Oxide, FTO, be more like indium-doped tin oxide, ITO? Reducing FTO surface roughness by introducing additional SnO2 coating. MRS Communications, 2018, 8, 1358-1362.	1.8	15
62	Protein Electronics: Chemical Modulation of Contacts Control Energy Level Alignment in Gold-Azurin-Gold Junctions. Journal of the American Chemical Society, 2018, 140, 13317-13326.	13.7	53
63	Can we use <i>time-resolved</i> measurements to get <i>steady-state</i> transport data for halide perovskites?. Journal of Applied Physics, 2018, 124, .	2.5	39
64	CsPbBr ₃ and CH ₃ NH ₃ PbBr ₃ promote visible-light photo-reactivity. Physical Chemistry Chemical Physics, 2018, 20, 16847-16852.	2.8	4
65	Direct evidence for heme-assisted solid-state electronic conduction in multi-heme <i>c</i> -type cytochromes. Chemical Science, 2018, 9, 7304-7310.	7.4	39
66	Revisiting Electrochemical Reduction of CO ₂ on Cu Electrode: Where Do We Stand about the Intermediates?. Journal of Physical Chemistry C, 2018, 122, 18528-18536.	3.1	32
67	Understanding how excess lead iodide precursor improves halide perovskite solar cell performance. Nature Communications, 2018, 9, 3301.	12.8	271
68	Control over Selfâ€Doping in High Band Gap Perovskite Films. Advanced Energy Materials, 2018, 8, 1800398.	19.5	23
69	Electronic structure of the CsPbBr3/polytriarylamine (PTAA) system. Journal of Applied Physics, 2017, 121, .	2.5	93
70	Type-inversion as a working mechanism of high voltage MAPbBr ₃ (Cl)-based halide perovskite solar cells. Physical Chemistry Chemical Physics, 2017, 19, 5753-5762.	2.8	23
71	Chemical Modification of Semiconductor Surfaces for Molecular Electronics. Chemical Reviews, 2017, 117, 4624-4666.	47.7	181
72	Large-Area, Ensemble Molecular Electronics: Motivation and Challenges. Chemical Reviews, 2017, 117, 4248-4286.	47.7	298

#	Article	IF	CITATIONS
73	Tetragonal CH ₃ NH ₃ PbI ₃ is ferroelectric. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5504-E5512.	7.1	240
74	New insights into the nanostructure of innovative thin film solar cells gained by positron annihilation spectroscopy. Journal of Physics: Conference Series, 2017, 791, 012021.	0.4	1
75	Self-Repairing Energy Materials: <i>Sine Qua Non</i> for a Sustainable Future. Accounts of Chemical Research, 2017, 50, 573-576.	15.6	18
76	Laplace current deep level transient spectroscopy measurements of defect states in methylammonium lead bromide single crystals. Journal of Applied Physics, 2017, 122, .	2.5	50
77	What Is the Mechanism of MAPbI ₃ p-Doping by I ₂ ? Insights from Optoelectronic Properties. ACS Energy Letters, 2017, 2, 2408-2414.	17.4	68
78	Metal to Halide Perovskite (HaP): An Alternative Route to HaP Coating, Directly from Pb ⁽⁰⁾ or Sn ⁽⁰⁾ Films. Chemistry of Materials, 2017, 29, 8620-8629.	6.7	12
79	Deleterious Effect of Negative Capacitance on the Performance of Halide Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 2007-2013.	17.4	65
80	Valence and Conduction Band Densities of States of Metal Halide Perovskites: A Combined Experimental–Theoretical Study. Journal of Physical Chemistry Letters, 2016, 7, 2722-2729.	4.6	333
81	CH3NH3PbBr3 is not pyroelectric, excluding ferroelectric-enhanced photovoltaic performance. APL Materials, 2016, 4, .	5.1	42
82	Mobility–Lifetime Products in MAPbI ₃ Films. Journal of Physical Chemistry Letters, 2016, 7, 5219-5226.	4.6	55
83	Electron transport via a soluble photochromic photoreceptor. Physical Chemistry Chemical Physics, 2016, 18, 25671-25675.	2.8	5
84	Making the science of interfaces work for semiconductor electronics. Journal Physics D: Applied Physics, 2016, 49, 391001.	2.8	2
85	Conversion of Single Crystalline Pbl ₂ to CH ₃ NH ₃ Pbl ₃ : Structural Relations and Transformation Dynamics. Chemistry of Materials, 2016, 28, 6501-6510.	6.7	76
86	Low-Temperature Solution-Grown CsPbBr ₃ Single Crystals and Their Characterization. Crystal Growth and Design, 2016, 16, 5717-5725.	3.0	329
87	Tuning electronic transport via hepta-alanine peptides junction by tryptophan doping. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10785-10790.	7.1	77
88	Advances in Perovskite Solar Cells. Advanced Science, 2016, 3, 1500324.	11.2	482
89	Interface-Dependent Ion Migration/Accumulation Controls Hysteresis in MAPbI ₃ Solar Cells. Journal of Physical Chemistry C, 2016, 120, 16399-16411.	3.1	118
90	High-Work-Function Molybdenum Oxide Hole Extraction Contacts in Hybrid Organic–Inorganic Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 31491-31499.	8.0	151

#	Article	IF	CITATIONS
91	Interface Modification by Simple Organic Salts Improves Performance of Planar Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600506.	3.7	6
92	CsSnBr ₃ , A Lead-Free Halide Perovskite for Long-Term Solar Cell Application: Insights on SnF ₂ Addition. ACS Energy Letters, 2016, 1, 1028-1033.	17.4	259
93	Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nature Reviews Materials, 2016, 1, .	48.7	1,173
94	Making the sustainable energy colloquy quantitative and accessible to all. MRS Energy & Sustainability, 2016, 3, 1.	3.0	0
95	The Big Picture–Accepting Diverse Views on Energy and Sustainability. MRS Energy & Sustainability, 2016, 3, 1.	3.0	1
96	Effects of Light and Electron Beam Irradiation on Halide Perovskites and Their Solar Cells. Accounts of Chemical Research, 2016, 49, 347-354.	15.6	150
97	Towards nanometer-spaced silicon contacts to proteins. Nanotechnology, 2016, 27, 115302.	2.6	12
98	Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 167-172.	4.6	833
99	Impedance Spectroscopic Indication for Solid State Electrochemical Reaction in (CH ₃ NH ₃)PbI ₃ Films. Journal of Physical Chemistry Letters, 2016, 7, 191-197.	4.6	81
100	Mechanical properties of APbX3 (A = Cs or CH3NH3; X= I or Br) perovskite single crystals. MRS Communications, 2015, 5, 623-629.	1.8	270
101	Protein Electronic Conductors: Hemin–Substrate Bonding Dictates Transport Mechanism and Efficiency across Myoglobin. Angewandte Chemie, 2015, 127, 12556-12560.	2.0	2
102	Hybrid Organic–Inorganic Perovskites (HOIPs): Opportunities and Challenges. Advanced Materials, 2015, 27, 5102-5112.	21.0	372
103	Protein Electronic Conductors: Hemin–Substrate Bonding Dictates Transport Mechanism and Efficiency across Myoglobin. Angewandte Chemie - International Edition, 2015, 54, 12379-12383.	13.8	13
104	Perovskite Solar Cells: Do We Know What We Do Not Know?. Journal of Physical Chemistry Letters, 2015, 6, 279-282.	4.6	71
105	Electronic Transport via Homopeptides: The Role of Side Chains and Secondary Structure. Journal of the American Chemical Society, 2015, 137, 9617-9626.	13.7	101
106	Light-Induced Increase of Electron Diffusion Length in a p–n Junction Type CH ₃ NH ₃ PbBr ₃ Perovskite Solar Cell. Journal of Physical Chemistry Letters, 2015, 6, 2469-2476.	4.6	91
107	How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr ₃ Cells. Journal of Physical Chemistry Letters, 2015, 6, 2452-2456.	4.6	938
108	Electron Transfer Proteins as Electronic Conductors: Significance of the Metal and Its Binding Site in the Blue Cu Protein, Azurin. Advanced Science, 2015, 2, 1400026.	11.2	39

#	Article	IF	CITATIONS
109	Rain on Methylammonium Lead Iodide Based Perovskites: Possible Environmental Effects of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 1543-1547.	4.6	428
110	Insights into Solid-State Electron Transport through Proteins from Inelastic Tunneling Spectroscopy: The Case of Azurin. ACS Nano, 2015, 9, 9955-9963.	14.6	54
111	Thiophene-modified perylenediimide as hole transporting material in hybrid lead bromide perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 20305-20312.	10.3	21
112	Mode-selective vibrational modulation of charge transport in organic electronic devices. Nature Communications, 2015, 6, 7880.	12.8	72
113	Conjugated Cofactor Enables Efficient Temperature-Independent Electronic Transport Across â^1⁄46 nm Long Halorhodopsin. Journal of the American Chemical Society, 2015, 137, 11226-11229.	13.7	26
114	Effect of binding group on hybridization across the silicon/aromatic-monolayer interface. Journal of Electron Spectroscopy and Related Phenomena, 2015, 204, 149-158.	1.7	8
115	Are Mobilities in Hybrid Organic–Inorganic Halide Perovskites Actually "High�. Journal of Physical Chemistry Letters, 2015, 6, 4754-4757.	4.6	197
116	The route towards low-cost solution-processed high Voc solar cells. , 2014, , .		0
117	Odd–Even Effect in Molecular Electronic Transport via an Aromatic Ring. Langmuir, 2014, 30, 13596-13605.	3.5	33
118	Effect of chemical treatments on nm-scale electrical characteristics of polycrystalline thin film Cu(In,Ga)Se2 surfaces. Solar Energy Materials and Solar Cells, 2014, 120, 500-505.	6.2	24
119	Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy and Environmental Science, 2014, 7, 1377.	30.8	624
120	Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3â^'xClx perovskite solar cells. Nature Communications, 2014, 5, 3461.	12.8	511
121	Updated Assessment of Possibilities and Limits for Solar Cells. Advanced Materials, 2014, 26, 1622-1628.	21.0	101
122	Perovskite cells roll forward. Nature Photonics, 2014, 8, 87-88.	31.4	142
123	Why Lead Methylammonium Tri-Iodide Perovskite-Based Solar Cells Require a Mesoporous Electron Transporting Scaffold (but Not Necessarily a Hole Conductor). Nano Letters, 2014, 14, 1000-1004.	9.1	533
124	Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open-Circuit Voltage Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 429-433.	4.6	342
125	Electronic Transport via Proteins. Advanced Materials, 2014, 26, 7142-7161.	21.0	175
126	Morphology-, synthesis- and doping-independent tuning of ZnO work function using phenylphosphonates. Physical Chemistry Chemical Physics, 2014, 16, 8310.	2.8	40

#	Article	IF	CITATIONS
127	Surface Photovoltage Spectroscopy Study of Organo-Lead Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 2408-2413.	4.6	90
128	Nanoscale Electron Transport and Photodynamics Enhancement in Lipid-Depleted Bacteriorhodopsin Monomers. ACS Nano, 2014, 8, 7714-7722.	14.6	24
129	Crystallization of Methyl Ammonium Lead Halide Perovskites: Implications for Photovoltaic Applications. Journal of the American Chemical Society, 2014, 136, 13249-13256.	13.7	388
130	Solid-state electron transport via cytochrome <i>c</i> depends on electronic coupling to electrodes and across the protein. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5556-5561.	7.1	55
131	Preparation of Single-Phase Films of CH ₃ NH ₃ Pb(I _{1–<i>x</i>} Br _{<i>x</i>}) ₃ with Sharp Optical Band Edges. Journal of Physical Chemistry Letters, 2014, 5, 2501-2505.	4.6	385
132	Enhancing the Tunability of the Open-Circuit Voltage of Hybrid Photovoltaics with Mixed Molecular Monolayers. ACS Applied Materials & Interfaces, 2014, 6, 2317-2324.	8.0	4
133	nâ€Si–Organic Inversion Layer Interfaces: A Low Temperature Deposition Method for Forming a p–n Homojunction in nâ€Si. Advanced Energy Materials, 2014, 4, 1301724.	19.5	61
134	Fabrication of Reproducible, Integration ompatible Hybrid Molecular/Si Electronics. Small, 2014, 10, 5151-5160.	10.0	20
135	Effect of Molecule–Surface Reaction Mechanism on the Electronic Characteristics and Photovoltaic Performance of Molecularly Modified Si. Journal of Physical Chemistry C, 2013, 117, 22351-22361.	3.1	25
136	Redox activity distinguishes solid-state electron transport from solution-based electron transfer in a natural and artificial protein: cytochrome C and hemin-doped human serum albumin. Physical Chemistry Chemical Physics, 2013, 15, 17142.	2.8	44
137	A New Route to Nondestructive Top-Contacts for Molecular Electronics on Si: Pb Evaporated on Organic Monolayers. Journal of Physical Chemistry Letters, 2013, 4, 426-430.	4.6	27
138	40 Years of Inversion Layer Solar Cells: From MOS to Conducting Polymer/Inorganic Hybrids. IEEE Journal of Photovoltaics, 2013, 3, 1443-1459.	2.5	30
139	Mono-Fluorinated Alkyne-Derived SAMs on Oxide-Free Si(111) Surfaces: Preparation, Characterization and Tuning of the Si Workfunction. Langmuir, 2013, 29, 570-580.	3.5	36
140	O2 and organic semiconductors: Electronic effects. Organic Electronics, 2013, 14, 966-972.	2.6	40
141	The effect of structural order on solar cell parameters, as illustrated in a SiC-organic junction model. Energy and Environmental Science, 2013, 6, 3272.	30.8	8
142	Electron Transport via Cytochrome C on Si–H Surfaces: Roles of Fe and Heme. Journal of the American Chemical Society, 2013, 135, 6300-6306.	13.7	35
143	High Open-Circuit Voltage Solar Cells Based on Organic–Inorganic Lead Bromide Perovskite. Journal of Physical Chemistry Letters, 2013, 4, 897-902.	4.6	486
144	Separating Charges at Organic Interfaces: Effects of Disorder, Hot States, and Electric Field. Journal of Physical Chemistry Letters, 2013, 4, 1707-1717.	4.6	63

#	Article	IF	CITATIONS
145	Effect of Doping Density on the Charge Rearrangement and Interface Dipole at the Molecule–Silicon Interface. Journal of Physical Chemistry C, 2013, 117, 22422-22427.	3.1	13
146	Rethinking Transition Voltage Spectroscopy within a Generic Taylor Expansion View. ACS Nano, 2013, 7, 695-706.	14.6	58
147	Photocontrol of Electrical Conductance with a Nonsymmetrical Azobenzene Dithiol. Synlett, 2013, 24, 2370-2374.	1.8	11
148	Substituent Variation Drives Metal/Monolayer/Semiconductor Junctions from Strongly Rectifying to Ohmic Behavior. Advanced Materials, 2013, 25, 702-706.	21.0	33
149	Marked changes in electron transport through the blue copper protein azurin in the solid state upon deuteration. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 507-512.	7.1	51
150	Molecular field effect passivation: Quinhydrone/methanol treatment of n-Si(100). Journal of Applied Physics, 2013, 113, .	2.5	19
151	Proteins as "dopable" bio-electronic materials. AIP Conference Proceedings, 2013, , .	0.4	2
152	Charge transport across metal/molecular (alkyl) monolayer-Si junctions is dominated by the LUMO level. Physical Review B, 2012, 85, .	3.2	51
153	Energy limitations on materials availability. MRS Bulletin, 2012, 37, 412-416.	3.5	6
154	Ga Composition Dictates Macroscopic Photovoltaic and Nanoscopic Electrical Characteristics of Cu(In \$_{1-X}\$Ga\$_X\$)Se \$_2\$ Thin Films via Grain-Boundary-Type Inversion. IEEE Journal of Photovoltaics, 2012, 2, 191-195.	2.5	23
155	Hybrids of Organic Molecules and Flat, Oxide-Free Silicon: High-Density Monolayers, Electronic Properties, and Functionalization. Langmuir, 2012, 28, 9920-9929.	3.5	105
156	Structure Matters: Correlating temperature dependent electrical transport through alkyl monolayers with vibrational and photoelectron spectroscopies. Chemical Science, 2012, 3, 851-862.	7.4	43
157	A novel method for investigating electrical breakdown enhancement by nm-sized features. Nanoscale, 2012, 4, 3128.	5.6	5
158	Molecular Length, Monolayer Density, and Charge Transport: Lessons from Al–AlOx/Alkyl–Phosphonate/Hg Junctions. Langmuir, 2012, 28, 404-415.	3.5	64
159	Doping Human Serum Albumin with Retinoate Markedly Enhances Electron Transport across the Protein. Journal of the American Chemical Society, 2012, 134, 18221-18224.	13.7	31
160	Controlling Space Charge of Oxide-Free Si by in Situ Modification of Dipolar Alkyl Monolayers. Journal of Physical Chemistry C, 2012, 116, 11434-11443.	3.1	22
161	Temperature and Force Dependence of Nanoscale Electron Transport <i>via</i> the Cu Protein Azurin. ACS Nano, 2012, 6, 10816-10824.	14.6	63
162	All-Solid-State, Semiconductor-Sensitized Nanoporous Solar Cells. Accounts of Chemical Research, 2012, 45, 705-713.	15.6	99

#	Article	IF	CITATIONS
163	Aluminum oxide–n-Si field effect inversion layer solar cells with organic top contact. Applied Physics Letters, 2012, 101, 233901.	3.3	29
164	Temperature-Dependent Solid-State Electron Transport through Bacteriorhodopsin: Experimental Evidence for Multiple Transport Paths through Proteins. Journal of the American Chemical Society, 2012, 134, 4169-4176.	13.7	59
165	Ambient organic molecular passivation of Si yields near-ideal, Schottky-Mott limited, junctions. AIP Advances, 2012, 2, .	1.3	40
166	Photovoltaic efficiency limits and material disorder. Energy and Environmental Science, 2012, 5, 6022.	30.8	166
167	Chemical compositional non-uniformity and its effects on CIGS solar cell performance at the nm-scale. Solar Energy Materials and Solar Cells, 2012, 98, 78-82.	6.2	10
168	Solid-State Electron Transport across Azurin: From a Temperature-Independent to a Temperature-Activated Mechanism. Journal of the American Chemical Society, 2011, 133, 2421-2423.	13.7	78
169	Energetics of CdSe Quantum Dots Adsorbed on TiO ₂ . Journal of Physical Chemistry C, 2011, 115, 13236-13241.	3.1	32
170	Hybrid, chemically passivated n-type silicon/PEDOT:PSS semiconductor-insulator-semiconductor solar cell. , 2011, , .		0
171	Si–C-bound alkyl chains on oxide-free Si: towards versatile solution preparation of electronic transport quality monolayers. Physical Chemistry Chemical Physics, 2011, 13, 1293-1296.	2.8	15
172	Energy Quarterly: News and analysis on materials solutions to energy challenges. MRS Bulletin, 2011, 36, 677-677.	3.5	1
173	Nanometer-scale electronic and microstructural properties of grain boundaries in Cu(In,Ga)Se2. Thin Solid Films, 2011, 519, 7341-7346.	1.8	46
174	Filled and empty states of alkanethiol monolayer on Au (111): Fermi level asymmetry and implications for electron transport. Chemical Physics Letters, 2011, 511, 344-347.	2.6	46
175	Assessing Possibilities and Limits for Solar Cells. Advanced Materials, 2011, 23, 2870-2876.	21.0	122
176	Electronic Contact Deposition onto Organic Molecular Monolayers: Can We Detect Metal Penetration?. Advanced Functional Materials, 2010, 20, 2181-2188.	14.9	20
177	Molecules on Si: Electronics with Chemistry. Advanced Materials, 2010, 22, 140-159.	21.0	207
178	Assessing possibilities & limits for thin film solar cells. , 2010, , .		0
179	Proteins as Solid-State Electronic Conductors. Accounts of Chemical Research, 2010, 43, 945-953.	15.6	118
180	Nondestructive Contact Deposition for Molecular Electronics: Si-Alkyl//Au Junctions. Journal of Physical Chemistry C, 2010, 114, 12769-12776.	3.1	26

#	Article	IF	CITATIONS
181	Hg/Molecular Monolayerâ^'Si Junctions: Electrical Interplay between Monolayer Properties and Semiconductor Doping Density. Journal of Physical Chemistry C, 2010, 114, 10270-10279.	3.1	56
182	Enhanced Electronic Conductance across Bacteriorhodopsin, Induced by Coupling to Pt Nanoparticles. Journal of Physical Chemistry Letters, 2010, 1, 3072-3077.	4.6	7
183	Proteins as Electronic Materials: Electron Transport through Solid-State Protein Monolayer Junctions. Journal of the American Chemical Society, 2010, 132, 4131-4140.	13.7	156
184	Electronic band structure and ensemble effect in monolayers of linear molecules investigated by photoelectron spectroscopy. Physical Review B, 2009, 79, .	3.2	16
185	A two junction, four terminal photovoltaic device for enhanced light to electric power conversion using a low-cost dichroic mirror. Journal of Renewable and Sustainable Energy, 2009, 1, 013106.	2.0	33
186	Electrical Transport and Photoemission Experiments of Alkylphosphonate Monolayers on GaAs. Journal of Physical Chemistry C, 2009, 113, 3313-3321.	3.1	27
187	Hydrolysis Improves Packing Density of Bromine-Terminated Alkyl-Chain, Siliconâ^'Carbon Monolayers Linked to Silicon. Journal of Physical Chemistry C, 2009, 113, 6174-6181.	3.1	20
188	Copper sulfide as a light absorber in wet-chemical synthesized extremely thin absorber (ETA) solar cells. Energy and Environmental Science, 2009, 2, 220-223.	30.8	111
189	Molecular Electronics at Metal/Semiconductor Junctions. Si Inversion by Sub-Nanometer Molecular Films. Nano Letters, 2009, 9, 2390-2394.	9.1	86
190	Toward metal-organic insulator-semiconductor solar cells, based on molecular monolayer self-assembly on n-Si. Applied Physics Letters, 2009, 94, 043308.	3.3	59
191	Can up- and down-conversion and multi-exciton generation improve photovoltaics?. Solar Energy Materials and Solar Cells, 2008, 92, 1541-1546.	6.2	80
192	Materials research and the â€~energy crisis'. Materials Today, 2008, 11, 64.	14.2	3
193	Energy, the global challenge, and materials. Materials Today, 2008, 11, 16-20.	14.2	87
194	Selective Electroless Deposition of Metal Clusters on Solid‣upported Bacteriorhodopsin: Applications to Orientation Labeling and Electrical Contacts. Small, 2008, 4, 2271-2278.	10.0	12
195	Doping Molecular Monolayers: Effects on Electrical Transport Through Alkyl Chains on Silicon. Advanced Functional Materials, 2008, 18, 2102-2113.	14.9	31
196	Electronic Current Transport through Molecular Monolayers: Comparison between Hg/Alkoxy and Alkyl Monolayer/Si(100) Junctions. Advanced Materials, 2008, 20, 3931-3936.	21.0	43
197	Making contact: Connecting molecules electrically to the macroscopic world. Progress in Surface Science, 2008, 83, 217-261.	8.3	179
198	Covalent Attachment of Bacteriorhodopsin Monolayer to Bromoâ€ŧerminated Solid Supports: Preparation, Characterization, and Protein Stability. Chemistry - an Asian Journal, 2008, 3, 1146-1155.	3.3	2

#	Article	IF	CITATIONS
199	Human resources for future alternative-energy research. Nature Materials, 2008, 7, 93-93.	27.5	2
200	Bacteriorhodopsin as an electronic conduction medium for biomolecular electronics. Chemical Society Reviews, 2008, 37, 2422.	38.1	93
201	Temperature-Dependent Electronic Transport through Alkyl Chain Monolayers:  Evidence for a Molecular Signature. Journal of Physical Chemistry C, 2008, 112, 3969-3974.	3.1	29
202	Effect of Metalâ^'Molecule Contact Roughness on Electronic Transport: Bacteriorhodopsin-Based, Metal–Insulator–Metal Planar Junctions. Langmuir, 2008, 24, 5622-5626.	3.5	17
203	Contacting Organic Molecules by Soft Methods: Towards Molecule-Based Electronic Devices. Accounts of Chemical Research, 2008, 41, 359-366.	15.6	126
204	Hybrid photovoltaic junctions: metal/molecular organic insulator/semiconductor MOIS solar cells. Proceedings of SPIE, 2008, , .	0.8	3
205	Thiol-Terminated Monolayers on Oxide-Free Si:Â Assembly of Semiconductorâ^'Alkylâ^'Sâ^'Metal Junctions. Langmuir, 2007, 23, 3236-3241.	3.5	52
206	Effect of Chemical Bond Type on Electron Transport in GaAsâ^'Chemical Bondâ^'Alkyl/Hg Junctions. Journal of the American Chemical Society, 2007, 129, 734-735.	13.7	25
207	Effect of Doping on Electronic Transport through Molecular Monolayer Junctions. Journal of the American Chemical Society, 2007, 129, 7494-7495.	13.7	27
208	Electrical Contacts to Organic Molecular Films by Metal Evaporation:  Effect of Contacting Details. Journal of Physical Chemistry C, 2007, 111, 2318-2329.	3.1	70
209	Cadmium Mixed Chalcogenides and Layers of Cadmium (Mixed) Chalcogenides on Metallic Substrates. Inorganic Syntheses, 2007, , 80-85.	0.3	5
210	Bacteriorhodopsin-Monolayer-Based Planar Metal-Insulator-Metal Junctions via Biomimetic Vesicle Fusion: Preparation, Characterization, and Bio-optoelectronic Characteristics. Advanced Functional Materials, 2007, 17, 1417-1428.	14.9	40
211	What is the Barrier for Tunneling Through Alkyl Monolayers? Results from n- and p-Si–Alkyl/Hg Junctions. Advanced Materials, 2007, 19, 445-450.	21.0	122
212	Current routes in polycrystalline CuInSe2 and Cu(In,Ga)Se2 films. Solar Energy Materials and Solar Cells, 2007, 91, 85-90.	6.2	104
213	Chemically induced enhancement of the opto-electronic response of Halobacterium purple membrane monolayer. Chemical Communications, 2006, , 1310.	4.1	7
214	How Important Is the Interfacial Chemical Bond for Electron Transport through Alkyl Chain Monolayers?. Nano Letters, 2006, 6, 2873-2876.	9.1	68
215	Radiation Damage to Alkyl Chain Monolayers on Semiconductor Substrates Investigated by Electron Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 21826-21832.	2.6	34
216	Importance of Monolayer Quality for Interpreting Current Transport through Organic Molecules:Â Alkyls on Oxide-Free Si. Langmuir, 2006, 22, 6915-6922.	3.5	136

#	Article	IF	CITATIONS
217	Electronic structure of Si(111)-bound alkyl monolayers: Theory and experiment. Physical Review B, 2006, 74, .	3.2	103
218	Energy Level and Band Alignment for GaAsâ `Alkylthiol Monolayerâ `Hg Junctions from Electrical Transport and Photoemission Experiments. Journal of Physical Chemistry B, 2006, 110, 14363-14371.	2.6	66
219	Controlling Au/n-GaAs junctions by partial molecular monolayers. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3438-3451.	1.8	26
220	Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181, 306-313.	3.9	368
221	Controlling Semiconductor/Metal Junction Barriers by Incomplete, Nonideal Molecular Monolayers. Journal of the American Chemical Society, 2006, 128, 6854-6869.	13.7	102
222	Gold-Nanoparticle-Enhanced Current Transport through Nanometer-Scale Insulating Layers. Angewandte Chemie - International Edition, 2006, 45, 6325-6328.	13.8	11
223	Understanding the Beneficial Role of Grain Boundaries in Polycrystalline Solar Cells from Single-Grain-Boundary Scanning Probe Microscopy. Advanced Functional Materials, 2006, 16, 649-660.	14.9	165
224	Bacteriorhodopsin (bR) as an electronic conduction medium: Current transport through bR-containing monolayers. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8601-8606.	7.1	91
225	Molecular Adsorption-Mediated Control over the Electrical Characteristics of Polycrystalline CdTe/CdS Solar Cells. ChemPhysChem, 2005, 6, 277-285.	2.1	21
226	The Cooperative Molecular Field Effect. Advanced Functional Materials, 2005, 15, 1571-1578.	14.9	164
227	Bacteriorhodopsin Monolayers for Optoelectronics: Orientation and Photoelectric Response on Solid Supports. Advanced Materials, 2005, 17, 1023-1027.	21.0	27
228	Energetics of molecular interfaces. Materials Today, 2005, 8, 32-41.	14.2	312
229	How Do Electronic Carriers Cross Si-Bound Alkyl Monolayers?. Physical Review Letters, 2005, 95, 266807.	7.8	124
230	Pd versus Au as evaporated metal contacts to molecules. Applied Physics Letters, 2005, 86, 042113.	3.3	56
231	Effect of Molecular Binding to a Semiconductor on Metal/Molecule/Semiconductor Junction Behavior. Journal of Physical Chemistry B, 2005, 109, 9622-9630.	2.6	34
232	Molecular Adjustment of the Electronic Properties of Nanoporous Electrodes in Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2005, 109, 18907-18913.	2.6	327
233	Contact-free photovoltage measurements of photoabsorbers using a Kelvin probe. Journal of Applied Physics, 2004, 96, 1556-1562.	2.5	15
234	How Polycrystalline Devices Can Outperform Single-Crystal Ones: Thin Film CdTe/CdS Solar Cells. Advanced Materials, 2004, 16, 879-883.	21.0	176

#	Article	IF	CITATIONS
235	Discontinuous Molecular Films Can Control Metal/Semiconductor Junctions. Advanced Materials, 2004, 16, 2145-2151.	21.0	56
236	Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous Dye-Sensitized Solar Cells. ChemInform, 2004, 35, no.	0.0	1
237	Contacting organic molecules by metal evaporation. Physical Chemistry Chemical Physics, 2004, 6, 4538.	2.8	62
238	Effect of Moleculeâ^'Molecule Interaction on the Electronic Properties of Molecularly Modified Si/SiOxSurfaces. Journal of Physical Chemistry B, 2004, 108, 664-672.	2.6	39
239	Stable Room-Temperature Molecular Negative Differential Resistance Based on Moleculeâ ^{~•} Electrode Interface Chemistry. Journal of the American Chemical Society, 2004, 126, 11648-11657.	13.7	65
240	Electron Tunneling at the TiO2/Substrate Interface Can Determine Dye-Sensitized Solar Cell Performance. Journal of Physical Chemistry B, 2004, 108, 17946-17951.	2.6	103
241	Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2004, 108, 8106-8118.	2.6	584
242	Extended stable junction regions in CuInSe2 thin films by electric field application. Thin Solid Films, 2003, 431-432, 284-288.	1.8	1
243	Factors Affecting the Stability of CdTe/CdS Solar Cells Deduced from Stress Tests at Elevated Temperature. Advanced Functional Materials, 2003, 13, 289-299.	14.9	77
244	Comparison of Electronic Transport Measurements on Organic Molecules. Advanced Materials, 2003, 15, 1881-1890.	21.0	823
245	Electron Energetics at Surfaces and Interfaces: Concepts and Experiments. Advanced Materials, 2003, 15, 271-277.	21.0	637
246	Molecular Monolayer-Mediated Control over Semiconductor Surfaces:  Evidence for Molecular Depolarization of Silane Monolayers on Si/SiOx. Journal of the American Chemical Society, 2003, 125, 4730-4731.	13.7	44
247	Moleculeâ^'Metal Polarization at Rectifying GaAs Interfaces. Journal of Physical Chemistry B, 2003, 107, 6360-6376.	2.6	83
248	Molecular modification of an ionic semiconductor–metal interface: ZnO/molecule/Au diodes. Applied Physics Letters, 2003, 82, 1051-1053.	3.3	61
249	Direct evidence for grain-boundary depletion in polycrystalline CdTe from nanoscale-resolved measurements. Applied Physics Letters, 2003, 82, 556-558.	3.3	98
250	Electronically active layers and interfaces in polycrystalline devices: Cross-section mapping of CdS/CdTe solar cells. Applied Physics Letters, 2003, 83, 4924-4926.	3.3	43
251	Na effects on CuInSe2: Distinguishing bulk from surface phenomena. Journal of Applied Physics, 2002, 91, 4205-4212.	2.5	36
252	Effect of Moleculeâ^'Metal Electronic Coupling on Through-Bond Hole Tunneling across Metalâ^'Organic Monolayerâ^'Semiconductor Junctions. Journal of the American Chemical Society, 2002, 124, 2886-2887.	13.7	104

#	Article	IF	CITATIONS
253	The Importance of Chemical Bonding to the Contact for Tunneling through Alkyl Chains. Journal of Physical Chemistry B, 2002, 106, 10432-10439.	2.6	169
254	Molecular Engineering of Semiconductor Surfaces and Devices. Accounts of Chemical Research, 2002, 35, 121-128.	15.6	304
255	How organic molecules can control electronic devices. Trends in Biotechnology, 2002, 20, 22-29. Voltage-Driven Changes in Molecular Dipoles Yield Negative Differential Resistance at Room	9.3	106
256	Temperature We thank Prof. D. Mandler (HU Jerusalem) for making the hanging Hg drop electrode available to us, Prof. A. Shanzer and Ms. R. Lazar for synthesizing and providing the cyclic disulfide molecules, and Prof. J. M. L. Martin (all from the Organic Chemistry department, WIS), for guidance with the dipole moment calculations. We thank the Israel Science Foundation for partial support. Y.S.	13.8	59
257	thanks the Clor fund f. Angewandte Chemie - International Edition, 2002, 41, 827. Molecules and Electronic Materials. Advanced Materials, 2002, 14, 789.	21.0	148
258	Tuning Electronic Properties of Semiconductors by Adsorption of [60]Fullerene Carboxylic Acid Derivatives. Advanced Materials, 2002, 14, 802-805.	21.0	31
259	Soft Contact Deposition onto Molecularly Modified GaAs. Thin Metal Film Flotation: Principles and Electrical Effects. Advanced Functional Materials, 2002, 12, 795-807.	14.9	101
260	Electric signal transfer through nm-thick molecular bilayers. Materials Science and Engineering C, 2002, 19, 339-343.	7.3	10
261	Monitoring electron redistribution in molecules during adsorption. Chemical Physics Letters, 2002, 354, 349-353.	2.6	8
262	Surface Photovoltage Spectroscopy of Dye-Sensitized Solar Cells with TiO2, Nb2O5, and SrTiO3Nanocrystalline Photoanodes:Â Indication for Electron Injection from Higher Excited Dye States. Journal of Physical Chemistry B, 2001, 105, 6347-6352.	2.6	332
263	Tuning of Au/n-GaAs Diodes with Highly Conjugated Molecules. Journal of Physical Chemistry B, 2001, 105, 12011-12018.	2.6	39
264	When, Why and Where are CdTe/CdS Solar Cells Stable?. Materials Research Society Symposia Proceedings, 2001, 668, 1.	0.1	7
265	Electric field-induced fabrication of microscopic Si-based optoelectronic devices for 1.55 and 1.16 μm IR electroluminescence. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 81, 113-115.	3.5	0
266	Direct Detection of Low-Concentration NO in Physiological Solutions by a New GaAs-Based Sensor. Chemistry - A European Journal, 2001, 7, 1743-1749.	3.3	96
267	Fine Tuning of Au/SiO2/Si Diodes by Varying Interfacial Dipoles Using Molecular Monolayers. Advanced Materials, 2001, 13, 508-511.	21.0	86
268	Stabilizing CdTe/CdS Solar Cells with Cu ontaining Contacts to p dTe. Advanced Materials, 2001, 13, 1495-1499.	21.0	50
269	Controlled Ion Migration Tuning of Semiconductor Electrical Properties. Defect and Diffusion Forum, 2001, 191, 61-98.	0.4	1
270	Electric field-induced junctions in epitaxial layers of CuInSe2. Applied Physics Letters, 2001, 79, 2919-2921.	3.3	5

#	Article	IF	CITATIONS
271	Chalcopyrite Single Crystals: Growth. , 2001, , 1131-1136.		Ο
272	Frontier Orbital Model of Semiconductor Surface Passivation: Dicarboxylic Acids on n- and p-GaAs. Advanced Materials, 2000, 12, 33-37.	21.0	46
273	Synchrotron X-ray Diffraction Evidence for Native Defects in the Photovoltaic Semiconductor CuInSe2. Advanced Materials, 2000, 12, 366-370.	21.0	13
274	Novel NO Biosensor Based on the Surface Derivatization of GaAs by "Hinged―Iron porphyrins. Angewandte Chemie - International Edition, 2000, 39, 4496-4500.	13.8	44
275	n- And p-type post-growth self-doping of CdTe single crystals. Journal of Crystal Growth, 2000, 214-215, 1155-1157.	1.5	15
276	Stability of CdTe/CdS thin-film solar cells. Solar Energy Materials and Solar Cells, 2000, 62, 295-325.	6.2	315
277	Molecular control over Au/GaAs diodes. Nature, 2000, 404, 166-168.	27.8	331
278	Interface redox engineering of Cu(In,Ga)Se 2 – based solar cells: oxygen, sodium, and chemical bath effects. Thin Solid Films, 2000, 361-362, 353-359.	1.8	96
279	Calculation and experimental characterization of the defect physics in CuInSe 2. Thin Solid Films, 2000, 361-362, 446-449.	1.8	7
280	Nature of Photovoltaic Action in Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2000, 104, 2053-2059.	2.6	688
281	Low temperature, postgrowth self-doping of CdTe single crystals due to controlled deviation from stoichiometry. Journal of Applied Physics, 2000, 88, 3976.	2.5	9
282	Stability Issues of Cu(In,Ga)Se2-Based Solar Cells. Journal of Physical Chemistry B, 2000, 104, 4849-4862.	2.6	235
283	Assemblies of "Hinged―Ironâ^'Porphyrins as Potential Oxygen Sensors. Journal of the American Chemical Society, 2000, 122, 1116-1122.	13.7	51
284	Frontier Orbital Model of Semiconductor Surface Passivation: Dicarboxylic Acids on n- and p-GaAs. Advanced Materials, 2000, 12, 33-37.	21.0	1
285	MOLECULAR CONTROLLED SEMICONDUCTOR RESISTOR AS A SENSOR FOR METAL IONS. , 2000, , .		0
286	Ultra-low concentration phase separation in solids: Ag in (Cd, Hg)Te. Europhysics Letters, 1999, 45, 201-207.	2.0	2
287	Surface photovoltage measurements in liquids. Review of Scientific Instruments, 1999, 70, 4032-4036.	1.3	21
288	Bulk changes in semiconductors using scanning probe microscopy: nm-size fabricated structures. Physical Review B, 1999, 59, 10877-10884.	3.2	8

#	Article	IF	CITATIONS
289	Can percolation control doping, diffusion and phase segregation in (Hg,Cd)Te?. Journal of Crystal Growth, 1999, 197, 537-541.	1.5	1
290	Growth of single CulnSe2 crystals by the traveling heater method and their characterization. Journal of Crystal Growth, 1999, 197, 177-185.	1.5	11
291	Post-growth, In doping of CdTe single crystals via vapor phase. Journal of Crystal Growth, 1999, 197, 106-112.	1.5	7
292	Cu(In,Ga)Se2 Solar Cells: Device Stability Based on Chemical Flexibility. Advanced Materials, 1999, 11, 957-961.	21.0	103
293	Nanocrystalline Mesoporous Strontium Titanate as Photoelectrode Material for Photosensitized Solar Devices:  Increasing Photovoltage through Flatband Potential Engineering. Journal of Physical Chemistry B, 1999, 103, 9328-9332.	2.6	258
294	Molecular Control over Semiconductor Surface Electronic Properties:Â Dicarboxylic Acids on CdTe, CdSe, GaAs, and InP. Journal of the American Chemical Society, 1999, 121, 10545-10553.	13.7	185
295	Oxygenation and air-annealing effects on the electronic properties of Cu(In,Ga)Se2 films and devices. Journal of Applied Physics, 1999, 86, 497-505.	2.5	174
296	Phase segregation, Cu migration and junction formation in Cu(In,ÂGa)Se2. EPJ Applied Physics, 1999, 6, 131-139.	0.7	121
297	Chemical Limit to Semiconductor Device Miniaturization. Electrochemical and Solid-State Letters, 1999, 2, 154.	2.2	4
298	Cu(In,Ga)Se2 Solar Cells: Device Stability Based on Chemical Flexibility. Advanced Materials, 1999, 11, 957-961.	21.0	5
299	Molecular control of a GaAs transistor. Chemical Physics Letters, 1998, 283, 301-306.	2.6	60
300	Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance. Advanced Materials, 1998, 10, 31-36.	21.0	319
301	Controlling surfaces and interfaces of semiconductors using organic molecules. Optical Materials, 1998, 9, 394-400.	3.6	27
302	Space charge effects on dopant diffusion coefficient measurements in semiconductors. Journal of Applied Physics, 1998, 83, 4678-4682.	2.5	26
303	Percolation-Controlled Semiconductor Doping. Chemistry of Materials, 1998, 10, 2596-2598.	6.7	7
304	Real-Time Electronic Monitoring of Adsorption Kinetics:Â Evidence for Two-Site Adsorption Mechanism of Dicarboxylic Acids on GaAs(100). Journal of Physical Chemistry B, 1998, 102, 3307-3309.	2.6	53
305	Ion Potential Diagrams for Electrochromic Devices. Journal of the Electrochemical Society, 1998, 145, 4212-4218.	2.9	8
306	Fabrication of sub-μm bipolar transistor structures by scanning probe microscopy. Applied Physics Letters, 1998, 73, 1868-1870.	3.3	13

#	Article	IF	CITATIONS
307	Tuning the Electronic Properties of Silicon via Molecular Self-Assembly. ACS Symposium Series, 1998, , 57-66.	0.5	6
308	Lateral Thermal Diffusion Effects on Photothermal Signals from Photovoltaic Cells. Israel Journal of Chemistry, 1998, 38, 223-229.	2.3	3
309	Light Emitting Electrochemical Cells as Mixed Ionic Electronic Conductors. Materials Research Society Symposia Proceedings, 1998, 548, 687.	0.1	1
310	Analysis of light emitting polymer electrochemical cells. Journal of Applied Physics, 1997, 82, 3147-3151.	2.5	42
311	Direct evidence for diffusion and electromigration of Cu in CulnSe2. Journal of Applied Physics, 1997, 82, 4282-4285.	2.5	96
312	Dopant accumulation during substitutional–interstitial diffusion in semiconductors. Applied Physics Letters, 1997, 70, 613-615.	3.3	13
313	Room-temperature detection of mobile impurities in compound semiconductors by transient ion drift. Journal of Applied Physics, 1997, 81, 6684-6691.	2.5	91
314	Controlling the Work Function of GaAs by Chemisorption of Benzoic Acid Derivatives. Journal of Physical Chemistry B, 1997, 101, 2678-2684.	2.6	82
315	Simultaneous Control of Surface Potential and Wetting of Solids with Chemisorbed Multifunctional Ligands. Journal of the American Chemical Society, 1997, 119, 5720-5728.	13.7	89
316	Characterization of Molecular Modified Surface States by Wavelength- and Time-Dependent Two-Photon Photoemission Spectroscopy. Journal of Physical Chemistry B, 1997, 101, 4085-4089.	2.6	4
317	Ion potential diagrams as guidelines for stability and performance of electrochromic devices. Ionics, 1997, 3, 420-426.	2.4	2
318	Engineering the interface energetics of solar cells by grafting molecular properties onto semiconductors. Journal of Chemical Sciences, 1997, 109, 487-496.	1.5	20
319	Substitutional-interstitial silver diffusion and drift in bulk (cadmium,mercury) telluride: Results and mechanistic implications. Journal of Electronic Materials, 1997, 26, 97-105.	2.2	18
320	Low Resistance Contacts to p-CulnSe2 and p-CdTe Crystals. Journal of Electronic Materials, 1997, 26, 893-897.	2.2	11
321	Controlling electronic properties of CdTe by adsorption of dicarboxylic acid derivatives: Relating molecular parameters to band bending and electron affinity changes. Advanced Materials, 1997, 9, 746-749.	21.0	56
322	Dopant Electromigration in Semiconductors. Advanced Materials, 1997, 9, 861-876.	21.0	40
323	Molecular electronic tuning of Si surfaces. Chemical Physics Letters, 1997, 279, 270-274.	2.6	84
324	Band diagram and band line-up of the polycrystalline CdS/Cu(In,Ga)Se2 heterojunction and its response to air annealing. AlP Conference Proceedings, 1996, , .	0.4	9

#	Article	IF	CITATIONS
325	Electron transfer in hybrid molecular solid-state devices. Synthetic Metals, 1996, 76, 245-248.	3.9	21
326	Qualitative modelling of mixed ionic/electronic devices with ion potential level diagrams. Ionics, 1996, 2, 143-154.	2.4	5
327	Voltage-driven doping of mixed ionic electronic semiconductors. Solid State Ionics, 1996, 83, 29-33.	2.7	2
328	Effect of air annealing on the electronic properties of CdSCu(In,Ga)Se2 solar cells. Solar Energy Materials and Solar Cells, 1996, 43, 73-78.	6.2	24
329	Evidence for thermodynamically stable p/n junction, formed by Ag doping of (Hg,Cd)Te. Journal of Crystal Growth, 1996, 161, 90-93.	1.5	5
330	Diffusion of Ag in Cd-rich mercury, cadmium telluride Cd Hg1â^'Te (x = 0.55–0.8). Journal of Crystal Growth, 1996, 159, 1148-1151.	1.5	12
331	Junction sharpness in fieldâ€induced transistor structures in CuxAg1â^'xInSe2. Journal of Applied Physics, 1996, 79, 7370-7372.	2.5	9
332	Electronic effects of ion mobility in semiconductors: Mixed electronic–ionic behavior and device creation in Si:Li. Journal of Applied Physics, 1996, 80, 2749-2762.	2.5	12
333	Evidence for thermodynamically stable p/n junction, formed by Ag doping of (Hg,Cd) Te. , 1996, , 90-93.		0
334	Junction electroluminescence from microscopic diode structures in CuInSe2, prepared by electric field-assisted doping. Advanced Materials, 1995, 7, 45-48.	21.0	12
335	Electronic effects of ion mobility in semiconductors: Semionic behaviour of CuInSe2. Journal of Physics and Chemistry of Solids, 1995, 56, 1165-1191.	4.0	53
336	Low temperature device creation in Si via fast Li electromigration. Applied Physics Letters, 1995, 66, 709-711.	3.3	10
337	Band diagram of the polycrystalline CdS/Cu(In,Ga)Se2 heterojunction. Applied Physics Letters, 1995, 67, 1405-1407.	3.3	58
338	Selfâ€restoration of pâ€n junctions in (Hg,Cd)Te. Applied Physics Letters, 1995, 67, 3132-3134.	3.3	8
339	Thermodynamic Stability of p/n Junctions. The Journal of Physical Chemistry, 1995, 99, 14486-14493.	2.9	18
340	Controlling the Work Function of CdSe by Chemisorption of Benzoic Acid Derivatives and Chemical Etching. The Journal of Physical Chemistry, 1995, 99, 8368-8373.	2.9	73
341	Room Temperature Tailoring of Electrical Properties of Semi- and Superconductors via Controlled Ion Migration. Materials Science Forum, 1994, 152-153, 187-192.	0.3	0
342	Determination of undoped CdTe(111) surface polarity by surface photovoltage spectroscopy. Applied Surface Science, 1994, 74, 201-206.	6.1	11

#	Article	IF	CITATIONS
343	The Dependence of Electron Transfer Efficiency on the Conformational Order in Organic Monolayers. Science, 1994, 263, 948-950.	12.6	100
344	Local temperature increases during electricâ€fieldâ€induced transistor formation in CuInSe2. Applied Physics Letters, 1994, 65, 427-429.	3.3	21
345	Polar Ligand Adsorption Controls Semiconductor Surface Potentials. Journal of the American Chemical Society, 1994, 116, 2972-2977.	13.7	98
346	Ionic Displacements and Piezoelectric Constants of AgGaS2 from X-Ray Diffraction of a Crystal in an External Electric Field. Journal of Solid State Chemistry, 1993, 105, 520-527.	2.9	16
347	A model for the successful growth of polycrystalline films of CuInSe2 by multisource physical vacuum evaporation. Advanced Materials, 1993, 5, 114-119.	21.0	254
348	Electrochemical room temperature reduction and reoxydation of thin films and pellets of YBa2Cu3O7â ^{~'} x. Physica C: Superconductivity and Its Applications, 1993, 209, 305-306.	1.2	2
349	Ohmic contacts to p-CulnSe2 crystals. Journal of Electronic Materials, 1993, 22, 275-280.	2.2	27
350	Band edge shifts ofpâ€ŧype copper indium diselenide electrodes in aqueous electrolytes. Applied Physics Letters, 1993, 62, 519-521.	3.3	11
351	Ion Mobility in Chalcogenide Semiconductors; Room Temperature Creation of Bipolar Junction Transistor. , 1993, , 121-141.		5
352	Room Temperature Tailoring of Electrical Properties of Ternary and Multinary Chalcogenide Semiconductors. Japanese Journal of Applied Physics, 1993, 32, 660.	1.5	6
353	Molecular Approach to Surface Control of Chalcogenide Semiconductors. Japanese Journal of Applied Physics, 1993, 32, 730.	1.5	4
354	Electrochemical, Room Temperature Reduction, Oxidation and Microscopic Patterning of Multinary Cuprate Superconductors. Japanese Journal of Applied Physics, 1993, 32, 683.	1.5	2
355	Ion migration in chalcopyrite semiconductors. The Journal of Physical Chemistry, 1992, 96, 11009-11017.	2.9	67
356	Room temperature, local tailoring of electronic properties of Hg0.3Cd0.7Te by applying an external electric field. Applied Physics Letters, 1992, 61, 2428-2430.	3.3	20
357	Room-Temperature, Electric Field-Induced Creation of Stable Devices in CulnSe2 Crystals. Science, 1992, 258, 271-274.	12.6	52
358	Free energies and enthalpies of possible gas phase and surface reactions for preparation of. Journal of Physics and Chemistry of Solids, 1992, 53, 991-1005.	4.0	74
359	Electric-field-induced room-temperature doping in CuInSe2. Advanced Materials, 1992, 4, 741-745.	21.0	11
360	Low Frequency, Photothermal Measurement of Transport Properties of Crystalline Solar Cells. Springer Series in Optical Sciences, 1992, , 403-405.	0.7	1

#	Article	IF	CITATIONS
361	Room-temperature electrochemical reduction of YBa2Cu3O7 –x. Solid-state and solution chemical results. Journal of Materials Chemistry, 1991, 1, 339-346.	6.7	10
362	Surface passivation of polycrystalline, chalcogenide based photovoltaic cells. Solar Cells, 1991, 30, 53-59.	0.6	54
363	Chemical diffusion coefficient of oxygen in polycrystalline YBa2Cu3O7â^'x at room temperature. Physica C: Superconductivity and Its Applications, 1991, 174, 273-279.	1.2	12
364	Free energies and enthalpies of possible gas phase and surface reactions for preparation of CulnSe2. Journal of Physics and Chemistry of Solids, 1991, 52, 947-961.	4.0	20
365	The use of photothermal radiometry in assessing leaf photosynthesis: I. General properties and correlation of energy storage to P700 redox state. Photosynthesis Research, 1991, 29, 87-96.	2.9	15
366	Aggregate Structure and Adhesion Problems in Culn(Ga)Se2 Films. Springer Proceedings in Physics, 1991, , 451-456.	0.2	1
367	Optimizing Thin Film Chalcogenide-Based Solar Cells via Chemical Surface Treatments. , 1991, , 927-930.		5
368	Photothermal Measurement of Minority Carrier Diffusion in Devices. , 1991, , 653-656.		0
369	Energy balance analysis of photovoltaic cells by voltage-dependent modulation photocalorimetry. IEEE Transactions on Electron Devices, 1990, 37, 498-508.	3.0	16
370	Photoelectrochemical characterization of CuGaSe2 and Cu(Ga, In)Se2 films. Solar Cells, 1990, 28, 57-67.	0.6	10
371	Electrothermal measurements: A calorimetric method to examine power dissipation in photovoltaic devices. Journal of Applied Physics, 1990, 67, 4338-4344.	2.5	6
372	Defect level identification in copper indium selenide (CuInSe2) from photoluminescence studies. Chemistry of Materials, 1990, 2, 286-293.	6.7	89
373	Photothermal Energy Balance Analysis of Photvoltaic Cells. Springer Series in Optical Sciences, 1990, , 389-396.	0.7	0
374	Electron stimulated desorption of oxygen from, and subsequent type conversion of, thinâ€film pâ€CuInSe2. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 230-233.	2.1	12
375	Aggregate structure in CuBSe2/Mo films (B=In,Ga): Its relation to their electrical activity. Journal of Applied Physics, 1989, 66, 3554-3559.	2.5	15
376	Quantitative separation of mechanisms for power dissipation in solar cells by photoacoustic and photovoltaic measurements. Journal of Applied Physics, 1989, 66, 1832-1841.	2.5	21
377	Effects of chemical and electrochemical etching on polycrystalline thin films of CuGaSe2. Journal of Electronic Materials, 1989, 18, 531-536.	2.2	7
378	Quantitative analyses of power loss mechanisms in semiconductor devices by thermal wave calorimetry. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 122, 127-131.	5.6	3

#	Article	IF	CITATIONS
379	Heat flow measurements for solar cell analysis. Solar Cells, 1989, 27, 247-258.	0.6	5
380	Research and demonstration activities in photovoltaics in Israel. Solar Cells, 1989, 26, 61-72.	0.6	0
381	Quantitatively controlled, room temperature reduction of YBa2Cu3O7â^'x by electrochemical methods. Solid State Ionics, 1989, 32-33, 1137-1142.	2.7	15
382	Controlled room-temperature reduction of YBa2Cu3O7â´x: A synthetic route to metastable superconducting phases. Materials Letters, 1989, 7, 411-414.	2.6	10
383	Defect chemical explanation for the effect of air anneal on CdS/CuInSe2solar cell performance. Applied Physics Letters, 1989, 54, 558-560.	3.3	173
384	Doping of copper indium selenide (CuInSe2) crystals: evidence for influence of thermal defects. Chemistry of Materials, 1989, 1, 202-207.	6.7	11
385	Interaction of Oxygen with Native Chemical Defects in CuInSe2 Thin Films. Materials Research Society Symposia Proceedings, 1989, 148, 451.	0.1	6
386	Atomic radii in ternary adamantines. Journal of Physics and Chemistry of Solids, 1988, 49, 103-111.	4.0	12
387	Electrochemical preparation and properties of oxygen deficient YBa2Cu3O7â^'x. Physica C: Superconductivity and Its Applications, 1988, 153-155, 1457-1458.	1.2	5
388	Sample modulation photoacoustic measurements. Solar Cells, 1988, 25, 155-162.	0.6	6
389	Photoelectrochemical characterization of CuGaSe/sub 2/ and Cu(Ga,In)Se/sub 2/ films and defect chemical implications for solar cell performance. , 1988, , .		1
390	Calorimetric separation and determination of conversion losses in solar cells. , 1988, , .		1
391	n â€â€‰AgInSe2 / Polyiodide and â€Polysulfide Photoelectrochemical Cells. Journal of the Electroc Society, 1988, 135, 104-108.	hemical 2.9	9
392	Power Dissipation Mechanisms in Photovoltaic Cells. Springer Series in Optical Sciences, 1988, , 247-251.	0.7	3
393	Ternary Chalcogenideâ€Based Photoelectrochemical Cells: VIII . Solution Composition Effects in Aqueous Polysulfide and Aqueous Polyiodide Cells. Journal of the Electrochemical Society, 1987, 134, 592-600.	2.9	9
394	CdS induced homojunction formation in crystallinep uInSe2. Applied Physics Letters, 1987, 50, 158-160.	3.3	27
395	Characterization of yttrium barium (copper,silver)oxide YBa2(Cu,Ag)O7 superconductors. Inorganic Chemistry, 1987, 26, 3653-3655.	4.0	15
396	Comment on: Preparation and characterization of chemically deposited CuInS2 thin films. Solar Energy Materials and Solar Cells, 1987, 15, 225-226.	0.4	5

#	Article	IF	CITATIONS
397	Effects of Ag/Cu substitution in YBa2Cu3O7 superconductors. Materials Research Bulletin, 1987, 22, 1581-1588.	5.2	35
398	Correlation of acoustically detected thermal waves with injected and photogenerated currents in a photovoltaic cell. IEEE Transactions on Electron Devices, 1987, 34, 457-458.	3.0	9
399	Cat's Cradle and Iceâ€Nine. Physics Today, 1986, 39, 11-13.	0.3	0
400	Electrodeposition of CuInSe2 and CuInS2 films. Solar Cells, 1986, 16, 245-254.	0.6	70
401	EBIC investigations of junction activity and the role of oxygen in CdS/CuInSe2 devices. Solar Cells, 1986, 16, 495-519.	0.6	51
402	n-CuInSe2 photoelectrochemical cells. Solar Cells, 1986, 16, 529-548.	0.6	20
403	Impedance Study of Surface Optimization of n â€â€‰CuInSe2 in Photoelectrochemical Solar Cells. Journal of the Electrochemical Society, 1986, 133, 112-116.	f 2.9	18
404	Injected currentâ€related distortion of photothermal signals from a photovoltaic cell. Applied Physics Letters, 1986, 49, 1351-1353.	3.3	12
405	Dielectric Properties of the Interfacial Layer on n â€â€‰CulnSe2 in Photoelectrochemical Solar Cells. Journal of the Electrochemical Society, 1986, 133, 930-934.	2.9	7
406	Electrolyte Electroreflectance Study of Surface Optimization of n â€â€‰CuInSe2 in Photoelectrochemical Solar Cells. Journal of the Electrochemical Society, 1986, 133, 107-112.	2.9	20
407	Photoelectrochemical Activity of n â€â€‰AgInSe2 / Polyiodide Junctions. Journal of the Electrochen Society, 1986, 133, 1533-1534.	າical 2.9	2
408	Computer Simulation of the Photoacoustic Signal of Photovoltaic Cells. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1986, 33, 622-629.	3.0	6
409	The Importance of Solution Kinetics in Photoelectrochemical Phenomena. , 1986, , 335-341.		0
410	Photoelectrochemical test for photovoltaic activity of p-CuInSe2 films. Solar Cells, 1985, 14, 109-121.	0.6	16
411	Optical characterization of polycrystalline CuInSe2 films on scattering substrates by fourier transform photothermal deflection spectroscopy. Thin Solid Films, 1985, 128, 11-20.	1.8	13
412	Electroplated CuInS2 and CuInSe2 layers: Preparation and physical and photovoltaic characterization. Thin Solid Films, 1985, 128, 93-106.	1.8	91
413	Slurry painted CulnS2 and Culn5S8 layers: Preparation and photoelectrochemical characterization. Solar Energy Materials and Solar Cells, 1985, 12, 211-219.	0.4	23

Structural and Solar Conversion Characteristics of the  ( Cu2Se )  x  ( In2Se3 ) 1 â² x Syste Electrochemical Society, 1985, 132, 1319-1327.

#	Article	IF	CITATIONS
415	Photoacoustic calorimetry of photovoltaic cells: Use of phase shifts to indicate thermal loss mechanisms. Applied Physics Letters, 1985, 46, 446-448.	3.3	18
416	Xâ€ray photoelectron and Auger electron spectroscopic analysis of surface treatments and electrochemical decomposition of CuInSe2photoelectrodes. Journal of Applied Physics, 1985, 57, 4761-4771.	2.5	145
417	Photosynthetic Parameters in Ramalina Duriaei, in Vivo, Studied by Photoacoustics. , 1985, , 9-22.		7
418	Ternary Chalcogenideâ€Based Photoelectrochemical Cells: V . Surface Analyses of the Polysulfide Interface by Xâ€Ray Photoelectron Spectroscopy; Absence of Se/S Exchange in the System. Journal of the Electrochemical Society, 1985, 132, 1070-1076.	2.9	32
419	Ternary chalcogenide-based photoelectrochemical cells. 6. Is there a thermodynamic explanation for the output stability of copper indium sulfide (CuInS2) and copper indium selenide (CuInSe2) photoanodes?. The Journal of Physical Chemistry, 1985, 89, 2818-2827.	2.9	41
420	High efficiencyn d(Se,Te)/S=photoelectrochemical cell resulting from solution chemistry control. Applied Physics Letters, 1985, 46, 608-610.	3.3	64
421	Ternary Chalcogenideâ€Based Photoelectrochemical Cells: IV . Further Characterization of the Polysulfide Systems. Journal of the Electrochemical Society, 1985, 132, 1062-1070.	2.9	43
422	n uInSe2based photoelectrochemical cells: Improved, stable performance in aqueous polyiodide through rational surface and solution modifications. Applied Physics Letters, 1984, 45, 746-748.	3.3	54
423	Simulations of frequency-dependent photoacoustic magnitude signals and their implications for bacteriorhodopsin photocycle energetics. Biophysical Chemistry, 1984, 20, 249-259.	2.8	3
424	n-Cu-In-chalcogenide-based photoelectrochemical cells. Progress in Crystal Growth and Characterization, 1984, 10, 263-270.	0.8	4
425	ll-IV-V2 chalcopyrite-type photoelectrodes: The CdSnP2 aqueous polysulfide system. Progress in Crystal Growth and Characterization, 1984, 10, 321-327.	0.8	3
426	Electrodeposited layers of CuInS2, CuIn5S8 and CuInSe2. Progress in Crystal Growth and Characterization, 1984, 10, 345-351.	0.8	16
427	Photoluminescence studies of CuInSe2: Identification of intrinsic defect levels. Progress in Crystal Growth and Characterization, 1984, 10, 365-370.	0.8	40
428	The structure and composition of the CdSe-(Oxidized titanium) interface: An investigation by transmission electron microscopy and electron diffraction. Thin Solid Films, 1984, 112, 349-358.	1.8	1
429	Electrodeposition of Cuî—,Inî—,S layers and their photoelectrochemical characterization. Solar Energy Materials and Solar Cells, 1984, 10, 41-45.	0.4	42
430	Ternary chalcogenide-based photoelectrochemical cells III. n-CuIn5S8/aqueous polysulfide. Solar Energy Materials and Solar Cells, 1984, 11, 57-74.	0.4	29
431	Photoacoustic study of the green alga Trebouxia in the lichen Ramalina duriaei in vivo. Photosynthesis Research, 1984, 5, 297-306.	2.9	24
432	The Effect of AIR-Pollution and Bisulfite Treatment in the Lichen Ramalina Duriaei Studied by Photoacoustics. , 1984, , 251-254.		11

#	Article	IF	CITATIONS
433	Photoacoustics as a Probe for Photosynthetic O2 Evolution and Energy Storage in an Intact Leaf $\hat{a} \in$ " Distribution of Excitation Energy between PSII and PSI., 1984,, 331-334.		2
434	Photocalorimetric Investigations of Energy Conversion Processes Using Photoacoustic Detection. , 1984, , 242-270.		2
435	The relation between performance and stability of Cd-chalcogenide/polysulfide photoelectrochemical cells. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 143, 103-112.	0.1	13
436	Chalcopyrite-type ternaries as photoelectrodes in wet solar cells. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1983, 2, 2039-2043.	0.4	7
437	Photoelectrochemical solar cells: Temperature control by cell design and its effects on the performance of cadmium chalcogenide-polysulphide systems. Solar Cells, 1983, 9, 229-245.	0.6	4
438	Photoacoustic detection of photosynthetic oxygen evolution from leaves. Quantitative analysis by phase and amplitude measurements. Biochimica Et Biophysica Acta - Bioenergetics, 1983, 724, 433-446.	1.0	139
439	Simultaneous detection of photosynthetic energy storage and oxygen evolution in leaves by photothermal radiometry and photoacoustics. Biochimica Et Biophysica Acta - Bioenergetics, 1983, 722, 182-189.	1.0	35
440	Effect of photoelectrochemical etching on charge collection efficiency in CdS: An electron beam induced current study. Journal of Applied Physics, 1983, 54, 4676-4678.	2.5	8
441	nâ€CuInSe2/polysulfide photoelectrochemical solar cells. Applied Physics Letters, 1982, 40, 727-728.	3.3	40
442	Ternary Chalcogenideâ€Based Photoelectrochemical Cells: II . The Polysulfide System. Journal of the Electrochemical Society, 1982, 129, 1506-1512.	2.9	50
443	Photoacoustic measurements of photosynthetic activities in whole leaves. Photochemistry and gas exchange. Biochimica Et Biophysica Acta - Bioenergetics, 1982, 679, 452-465.	1.0	162
444	Photosynthetic chromatic transitions and Emerson enhancement effects in intact leaves studied by photoacoustics. FEBS Letters, 1982, 150, 142-146.	2.8	24
445	Photoacoustic Calorimetry of Purple Membrane. Biophysical Journal, 1982, 37, 4-6.	0.5	6
446	Photoacoustic photocalorimetry and spectroscopy of Halobacterium halobium purple membranes. Biophysical Journal, 1982, 37, 405-415.	0.5	43
447	Photoelectrochemical solar cells: Interpretation of cell performance using electrochemical determination of photoelectrode properties. Thin Solid Films, 1982, 91, 349-356.	1.8	30
448	Electroplated cadmium chalcogenide layers: Characterization and use in photoelectrochemical solar cells. Thin Solid Films, 1982, 90, 433-438.	1.8	76
449	Photoacoustic Methods Applied to Biological Systems. , 1982, , 21-32.		1
450	Dependence of photoacoustic signal on optical absorption coefficient in optically dense liquids. Analytical Chemistry, 1981, 53, 1426-1432.	6.5	18

#	Article	IF	CITATIONS
451	Additions and Corrections - Effect of Photoelectrode Crystal Structure on Output Stability of Cd(Se,Te)/Polysulfide Photoelectrochemical Cells. Journal of the American Chemical Society, 1981, 103, 3614-3614.	13.7	0

452	Effect of Surface Etching and Morphology on the Stability of CdSe / Sâ Journal of the Electrochemical Society, 1981, 128, 2325-2330.	쀉 x  =  Photoelectrochemi 2.9	cal Çells.
-----	---	----------------------------------	------------

453	Frequency-dependent photoacoustic signals from leaves and their relation to photosynthesis. FEBS Letters, 1981, 129, 44-46.	2.8	27
454	Photoacoustic cell for reflection and transition measurements. Review of Scientific Instruments, 1981, 52, 1306-1310.	1.3	27
455	Changes in Surface Crystallinity and Morphology of CdS and CdSe Photoelectrodes upon Use in Polysulfide Electrolyte. Journal of the Electrochemical Society, 1981, 128, 1484-1488.	2.9	16
456	Photoelectrochemical performance of the n-CdSe/aqueous polysulfide system at room- and sub-zero ambient temperatures. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981, 130, 373-379.	0.1	7
457	Factors influencing output stability of Cd-chalcogenide/polysulfide photoelectrochemical cells. Solar Energy Materials and Solar Cells, 1981, 4, 373-381.	0.4	21
458	Photoelectrochemistry of the CuInS2/Sn2â^' system. Solar Energy Materials and Solar Cells, 1981, 4, 169-177.	0.4	43
459	Photoelectrochemical cells using polycrystalline and thin film MoS2 electrodes. Solar Energy Materials and Solar Cells, 1981, 5, 403-416.	0.4	35
460	Photoacoustic calorimetry of purple membrane. Journal of Photochemistry and Photobiology, 1981, 17, 41.	0.6	0
461	Photoacoustic figure of merit for photothermal energy conversion efficiency. Optics Communications, 1981, 39, 243-246.	2.1	3
462	Activation analysis of forwardâ€biased CdSâ€electrolyte diode. Applied Physics Letters, 1981, 38, 458-460.	3.3	9
463	Photoelectrochemistry of Hydrogenated Amorphous Silicon (aâ€Si:H). Journal of the Electrochemical Society, 1980, 127, 1209-1211.	2.9	6
464	Photoacoustic calorimetry of concentrated fluorescent solutions. The Journal of Physical Chemistry, 1980, 84, 3384-3389.	2.9	31
465	Photoacoustic calorimetry of Halobacterium halobium photocycle. Biochemical and Biophysical Research Communications, 1980, 97, 200-206.	2.1	19
466	Electrocatalytic Electrodes for the Polysulfide Redox System. Journal of the Electrochemical Society, 1980, 127, 544-549.	2.9	329
467	Photoacoustic detection of photosynthetic activities in isolated broken chloroplasts. Biochimica Et Biophysica Acta - Bioenergetics, 1980, 593, 330-341.	1.0	75
468	Photo acoustic in life sciences. Journal of Proteomics, 1980, 3, 293-310.	2.4	44

#	Article	IF	CITATIONS
469	Effect of photoelectrode crystal structure on output stability of Cd(Se,Te)/polysulfide photoelectrochemical cells. Journal of the American Chemical Society, 1980, 102, 5962-5964.	13.7	58
470	Painted, Polycrystalline Thin Film Photoelectrodes for Photoelectrochemical Solar Cells. Journal of the Electrochemical Society, 1980, 127, 2252-2254.	2.9	99
471	Materials aspects of photo-electrochemical systems. Solar Energy Materials and Solar Cells, 1979, 1, 343-355.	0.4	19
472	Sample cells for photoacoustic measurements. Analytical Chemistry, 1979, 51, 1865-1867.	6.5	20
473	Transient photocurrents and conversion losses in polysulfide-based photoelectrochemical cells. Journal of the American Chemical Society, 1979, 101, 3969-3971.	13.7	23
474	Photoacoustics in photobiology. Trends in Biochemical Sciences, 1979, 4, N240.	7.5	1
475	La fin des ages de la pierre et le debut de l'age du fer en Afrique centrale. African Economic History, 1979, , 66.	0.1	1
476	Stone Tools, Toolkits, and Human Behavior in Prehistory [and Comments and Reply]. Current Anthropology, 1979, 20, 661-683.	1.6	165
477	S/Se Substitution in Polycrystalline CdSe Photoelectrodes: Photoelectrochemical Energy Conversion. Journal of the Electrochemical Society, 1978, 125, 1623-1628.	2.9	63
478	Spectroscopy and energetics of the purple membrane of Halobacterium halobium. FEBS Letters, 1978, 91, 131-134.	2.8	39
479	Photoacoustic spectroscopy of chloroplast membranes; listening to photosynthesis. FEBS Letters, 1978, 91, 339-342.	2.8	67
480	Photoacoustic determination of photovoltaic energy conversion efficiency. Applied Physics Letters, 1978, 33, 810-811.	3.3	70
481	Simple setup for single and differential photoacoustic spectroscopy. Review of Scientific Instruments, 1978, 49, 1206-1209.	1.3	23
482	Development and Repair of Photosystem II Activity in Normal and Chloramphenicol-treated Euglena gracilis Cells. Plant Physiology, 1978, 62, 1-5.	4.8	17
483	Solar Energy Conversion and Storage by a Photoelectrochemical Storage Cell. , 1978, , 1302-1308.		3
484	Polycrystalline CdSe-Based Photoelectrochemical Cells with Storage Capability. , 1978, , 869-870.		1
485	Development of Photosystem II Activity in Chlamydomonas reinhardi Mutants. Plant Physiology, 1977, 60, 845-849.	4.8	10
486	Photoelectrochemical Energy Conversion and Storage: The Polycrystalline Cell with Different Storage Modes. Journal of the Electrochemical Society, 1977, 124, 532-534.	2.9	74

#	Article	IF	CITATIONS
487	Subsurface movements of stone artefacts and their implications for the prehistory of Central Africa. Nature, 1977, 266, 812-815.	27.8	159
488	Photo-electrochemical energy conversion: electrocatalytic sulphur electrodes. Journal of Applied Electrochemistry, 1977, 7, 181-182.	2.9	64
489	Development of Photosystem II Complex during Greening of Chlamydomonas reinhardi y-1. Plant Physiology, 1976, 58, 257-267.	4.8	43
490	Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC). Nature, 1976, 260, 312-313.	27.8	341
491	Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes. Nature, 1976, 261, 403-404.	27.8	435
492	Electrochemical, solid state, photochemical and technological aspects of photoelectrochemical energy converters. Nature, 1976, 263, 97-100.	27.8	72
493	UNESCO. Nature, 1975, 253, 85-85.	27.8	1
494	Platinum bronzes. II. Crystal structures of calcium platinum oxide (CaPt2O4) and cadmium platinum oxide (Cd0.3Pt3O4). Inorganic Chemistry, 1974, 13, 110-115.	4.0	28
495	Platinum bronzes. IV. Preparation, crystal chemistry, and physical properties. Inorganic Chemistry, 1974, 13, 1377-1388.	4.0	60
496	Mixed and partial oxidation states. Photoelectron spectroscopic evidence. Chemical Physics Letters, 1973, 18, 108-111.	2.6	44
497	Valence band photoelectron spectra of platinum cyanides. Chemical Physics Letters, 1973, 22, 489-494.	2.6	17
498	The stability of K2[Pt(CN)4]ClO·3·x.H2O in wet and dry atmosphere. Solid State Communications, 1973, 12, 1091-1094.	1.9	19
499	Platinum bronzes III. A reinvestigation of the composition of Adams' catalyst (1). Journal of Catalysis, 1973, 31, 369-371.	6.2	21
500	Absorption corrections: procedures for checking crystal shape, crystal orientation, and computer absorption programs: erratum. Journal of Applied Crystallography, 1973, 6, 244-244.	4.5	0
501	A four probe cell for rapid resistivity measurements. Review of Scientific Instruments, 1973, 44, 1567-1568.	1.3	10
502	Valence band photoelectron spectra of platinum cyanides. Chemical Physics Letters, 1973, 22, 489-494.	2.6	2
503	Structure and properties of Ni0.25Pt3O4. New platinum bronze. Inorganic Chemistry, 1972, 11, 2311-2315.	4.0	26
504	Stone Age Typology: Another Approach. Current Anthropology, 1971, 12, 211-215.	1.6	10

#	Article	IF	CITATIONS
505	Improvement of Cu(Ga,In)Se/sub 2/ based solar cells by etching the absorber. , 0, , .		10
506	Nomarski contrast microscopy of CuBSe/sub 2//Mo (B=In, Ga) films. , 0, , .		0
507	New aspects of phase segregation and junction formation in CulnSe/sub 2/. , 0, , .		3
508	Direct solar energy conversion with photovoltaic devices. , 0, , 216-237.		1
509	CHAPTER 17. Real World Efficiency Limits: the Shockley–Queisser Model as a Starting Point. RSC Energy and Environment Series, 0, , 547-566.	0.5	2
510	Plasmonics Yields Surprisingly Efficient Electron Transport Via Assembly of Shell-Insulated Au Nanoparticles. SSRN Electronic Journal, 0, , .	0.4	0
511	How Can Halide Perovskites Have such Low Defect Densities?. , 0, , .		Ο