Zhenghe Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1493985/publications.pdf

Version: 2024-02-01

7672 26,812 549 79 citations h-index papers

133 g-index 560 560 560 23402 docs citations times ranked citing authors all docs

14012

#	Article	IF	CITATIONS
1	Adhesion-Shielding based synthesis of interfacially active magnetic Janus nanoparticles. Journal of Colloid and Interface Science, 2022, 607, 1741-1753.	5.0	11
2	A critical evaluation of novel demulsifying agents based on acrylic terpolymers for Mexican heavy crude oils dehydration. Separation and Purification Technology, 2022, 281, 119878.	3.9	13
3	Fullerene-like elastic carbon coatings on silicon nanoparticles by solvent controlled association of natural polyaromatic molecules as high-performance lithium-ion battery anodes. Energy Storage Materials, 2022, 45, 412-421.	9.5	26
4	CO2-responsive surfactants for greener extraction of heavy oil: A bench-scale demonstration. Journal of Cleaner Production, 2022, 338, 130554.	4.6	11
5	Functionalization of mesoporous carbons derived from pomelo peel as capacitive electrodes for preferential removal/recovery of copper and lead from contaminated water. Chemical Engineering Journal, 2022, 433, 134508.	6.6	20
6	Hierarchical mesoporous heteroatom-doped carbon accelerating the adsorption and conversion of polysulfide for high performance Lithium–Sulfur batteries. Composites Communications, 2022, 30, 101079.	3.3	15
7	Comprehensive treatment of oil-contaminated soils using CO2-Responsive O/W microemulsions. Journal of Cleaner Production, 2022, 341, 130857.	4.6	7
8	Electric potential-determined redox intermediates for effective recycling of spent lithium-ion batteries. Green Chemistry, 2022, 24, 3723-3735.	4.6	10
9	Enhancing low-temperature thermal remediation of petroleum sludge by solvent deasphalting. Chemosphere, 2022, 304, 135278.	4.2	1
10	Molecular structure-tuned stability and switchability of CO2-responsive oil-in-water emulsions. Journal of Colloid and Interface Science, 2022, 627, 661-670.	5 . 0	8
11	Control of nanostructures through pH-dependent self-assembly of nanoplatelets. Journal of Colloid and Interface Science, 2021, 582, 439-445.	5 . O	11
12	Alkylacrylic-carboxyalkylacrylic random bipolymers as demulsifiers for heavy crude oils. Separation and Purification Technology, 2021, 256, 117850.	3.9	9
13	Cellulose-coated magnetic Janus nanoparticles for dewatering of crude oil emulsions. Chemical Engineering Science, 2021, 230, 116215.	1.9	20
14	Enhancing oil–solid and oil–water separation in heavy oil recovery by <scp>CO₂</scp> â€responsive surfactants. AICHE Journal, 2021, 67, .	1.8	21
15	The effect of chitosan molecular weight on CO ₂ -triggered switching between emulsification and demulsification. Soft Matter, 2021, 17, 9332-9338.	1.2	2
16	Probing Specific Adsorption of Electrolytes at Kaolinite–Aqueous Interfaces by Atomic Force Microscopy. Journal of Physical Chemistry Letters, 2021, 12, 2406-2412.	2.1	7
17	Inward Flow of Intervening Liquid Films Driven by the Marangoni Effect during Bubble–Solid Collisions in Ethyl Alcohol–NaCl Aqueous Solutions. Langmuir, 2021, 37, 4121-4128.	1.6	1
18	Advanced Switchable Molecules and Materials for Oil Recovery and Oily Waste Cleanup. Advanced Science, 2021, 8, e2004082.	5. 6	28

#	Article	IF	CITATIONS
19	Magnetic multi-functional SBA-15 supported silver nanocomposites: Synthesis, characterization and application. Applied Surface Science, 2021, 552, 149487.	3.1	12
20	Extra Sodiation Sites in Hard Carbon for High Performance Sodium Ion Batteries. Small Methods, 2021, 5, e2100580.	4.6	40
21	Dewetting dynamics of heavy crude oil droplet in low-salinity fluids at elevated pressures and temperatures. Journal of Colloid and Interface Science, 2021, 596, 420-430.	5.0	14
22	Water Film Drainage between a Very Viscous Oil Drop and a Mica Surface. Physical Review Letters, 2021, 127, 124503.	2.9	6
23	A lattice defect-inspired leaching strategy toward simultaneous recovery and separation of value metals from spent cathode materials. Waste Management, 2021, 135, 40-46.	3.7	9
24	Study on demulsifier crude oil interactions at oil-water interface for crude oil dehydration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127526.	2.3	19
25	Surfactant and surfactant-polymer effects on wettability and crude oil liberation in carbonates. Journal of Petroleum Science and Engineering, 2021, 207, 109117.	2.1	17
26	Corrosion rate studies of AISI 1020 steel using linear, cyclic, and aromatic naphthenic acid standards. Journal of Petroleum Science and Engineering, 2020, 184, 106474.	2.1	7
27	New insights into the slime coating caused by montmorillonite in the flotation of coal. Journal of Cleaner Production, 2020, 242, 118540.	4.6	60
28	Role of mineral flotation technology in improving bitumen extraction from mined Athabasca oil sands—II. Flotation hydrodynamics of waterâ€based oil sand extraction. Canadian Journal of Chemical Engineering, 2020, 98, 330-352.	0.9	26
29	Determination of clay content in Canadian oil sands using xâ€ray florescence spectroscopy for diagnosis of ore processability. Canadian Journal of Chemical Engineering, 2020, 98, 360-372.	0.9	6
30	Effect of electrolytes on interactions between a novel organic-inorganic hybrid polymer flocculant and kaolinite particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 590, 124391.	2.3	7
31	Probing Interaction of Divalent Cations with Illite Basal Surfaces by Atomic Force Microscopy. Journal of Physical Chemistry C, 2020, 124, 2079-2087.	1.5	6
32	The boundary condition at the air–liquid interface and its effect on film drainage between colliding bubbles. Current Opinion in Colloid and Interface Science, 2020, 50, 101374.	3.4	17
33	Molecular Characterization of Strongly and Weakly Interfacially Active Asphaltenes by High-Resolution Mass Spectrometry. Energy & Samp; Fuels, 2020, 34, 13966-13976.	2.5	23
34	Comprehensive study on cleaner production of heavy oil from Athabasca oil sands using chemical additives in biodiesel-assisted ambient-aqueous bitumen extraction process. Journal of Cleaner Production, 2020, 277, 122940.	4.6	14
35	Microscale Effects of Polymer on Wettability Alteration in Carbonates. SPE Journal, 2020, 25, 1884-1894.	1.7	22
36	Aggregation Behavior of E-SARA Asphaltene Fractions Studied by Small-Angle Neutron Scattering. Energy & Energy	2.5	25

#	Article	IF	CITATIONS
37	Structure and reactivity of flotation reagents. , 2020, , 181-236.		1
38	Role of surfactants in spontaneous displacement of high viscosity oil droplets from solid surfaces in aqueous solutions. Journal of Colloid and Interface Science, 2020, 579, 898-908.	5.0	18
39	Self-assembly and solubility properties of polyaromatic compounds studied by molecular dynamics simulation. Fuel, 2020, 277, 118060.	3.4	16
40	Perspectives on the Active Sites and Catalyst Design for the Hydrogenation of Dimethyl Oxalate. ACS Catalysis, 2020, 10, 4465-4490.	5 . 5	69
41	Revealing Mechanism of Li ₃ PO ₄ Coating Suppressed Surface Oxygen Release for Commercial Ni-Rich Layered Cathodes. ACS Applied Energy Materials, 2020, 3, 7445-7455.	2.5	58
42	Treatment of oily wastewaters using magnetic Janus nanoparticles of asymmetric surface wettability. Journal of Colloid and Interface Science, 2020, 568, 207-220.	5.0	35
43	Interaction Between the Cyclopentane Hydrate Particle and Water Droplet in Hydrocarbon Oil. Langmuir, 2020, 36, 2063-2070.	1.6	18
44	Dehydrating Heavy Crude Oils with New Amphoteric Block Bipolymers. Energy &	2.5	8
45	Li1.2Ni0.25Mn0.55O2: A high-capacity cathode material with a homogeneous monoclinic Li2MnO3-like superstructure. Journal of Alloys and Compounds, 2020, 827, 154202.	2.8	19
46	Effect of Velocity, Solid Wettability, and Temperature on Drainage Dynamics of C5PeC11-in-Toluene Liquid Films between Silica and Water Droplet. Energy & Energy & 2020, 34, 6834-6843.	2.5	5
47	A novel method for screening deep eutectic solvent to recycle the cathode of Li-ion batteries. Green Chemistry, 2020, 22, 4473-4482.	4.6	158
48	Smartwater Effects on Wettability, Adhesion, and Oil Liberation in Carbonates. SPE Journal, 2020, 25, 1771-1783.	1.7	10
49	Microscale Interactions of Surfactant and Polymer Chemicals at Crude Oil/Water Interface for Enhanced Oil Recovery. SPE Journal, 2020, 25, 1812-1826.	1.7	7
50	Interaction of flotation reagents with mineral surface. , 2020, , 237-305.		0
51	Coalescence or Bounce? How Surfactant Adsorption in Milliseconds Affects Bubble Collision. Journal of Physical Chemistry Letters, 2019, 10, 5662-5666.	2.1	23
52	Deformation behavior and constitutive model for high temperature compression of a newly type of Ni 3 Alâ€based superalloy. Materialwissenschaft Und Werkstofftechnik, 2019, 50, 1094-1105.	0.5	0
53	Covalent bonding of MnO2 onto graphene aerogel forwards: Efficiently catalytic degradation of organic wastewater. Applied Surface Science, 2019, 496, 143585.	3.1	28
54	Revelation of the Nature of the Ligand–PbS Bond and Its Implication on Chemical Functionalization of PbS. Journal of Physical Chemistry C, 2019, 123, 22981-22988.	1.5	2

#	Article	IF	CITATIONS
55	CO2-responsive surfactants with tunable switching pH. Journal of Colloid and Interface Science, 2019, 557, 185-195.	5.0	35
56	DROP IMPACT ONTO A CANTILEVER BEAM: BEHAVIOR OF THE LAMELLA AND FORCE MEASUREMENT. Interfacial Phenomena and Heat Transfer, 2019, 7, 85-96.	0.3	8
57	Bubbles with tunable mobility of surfaces in ethanol-NaCl aqueous solutions. Journal of Colloid and Interface Science, 2019, 556, 345-351.	5.0	11
58	Temperature and CO ₂ Dual-Responsive Pickering Emulsions Using Jeffamine M2005-Modified Cellulose Nanocrystals. Langmuir, 2019, 35, 13663-13670.	1.6	32
59	Polyetheramine as an alternative alkali for alkali/surfactant/polymer flooding. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 581, 123820.	2.3	7
60	Two-dimensional correlation analysis of continuous online in situ ATR-FTIR on the adsorption of heptyl xanthate at the surface of ZnS and Pb(II) activated ZnS. Minerals Engineering, 2019, 144, 106019.	1.8	9
61	Study of Venturi tube geometry on the hydrodynamic cavitation for the generation of microbubbles. Minerals Engineering, 2019, 132, 268-274.	1.8	85
62	Molecular Mechanisms of Suppressing Asphaltene Aggregation and Flocculation by Dodecylbenzenesulfonic Acid Probed by Molecular Dynamics Simulations. Energy & Energy	2.5	34
63	Magnetically responsive Janus nanoparticles synthesized using cellulosic materials for enhanced phase separation in oily wastewaters and water-in-crude oil emulsions. Chemical Engineering Journal, 2019, 378, 122045.	6.6	75
64	Synthesis, characterization and acid-base properties of kaolinite and metal (Fe, Mn, Co) doped kaolinite. Applied Clay Science, 2019, 179, 105138.	2.6	35
65	Interfacial properties pertinent to W/O and O/W emulsion systems prepared using polyaromatic compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575, 283-291.	2.3	11
66	Stimuli-Responsive Hybrid Polymer for Enhanced Solid–Liquid Separation of Industrial Effluents. Environmental Science & Env	4.6	11
67	Coalescence of Bubbles with Mobile Interfaces in Water. Physical Review Letters, 2019, 122, 194501.	2.9	73
68	Vanadium silicate (EVS)-supported silver nanoparticles: A novel catalytic sorbent for elemental mercury removal from flue gas. Journal of Hazardous Materials, 2019, 375, 1-8.	6.5	38
69	Probing Anisotropic Surface Properties of Illite by Atomic Force Microscopy. Langmuir, 2019, 35, 6532-6539.	1.6	21
70	Green Recycling of Goethite and Gypsum Residues in Hydrometallurgy with α-Fe ₃ O ₄ and γ-Fe ₂ O ₃ Nanoparticles: Application, Characterization, and DFT Calculation. ACS Sustainable Chemistry and Engineering, 2019, 7, 6821-6829.	3.2	21
71	Inherent thermal regeneration performance of different MnO2 crystallographic structures for mercury removal. Journal of Hazardous Materials, 2019, 374, 267-275.	6.5	50
72	Chemical Functionalization of ZnS: A Perspective from the Ligand–ZnS Bond Character. Journal of Physical Chemistry C, 2019, 123, 6054-6061.	1.5	4

#	Article	IF	CITATIONS
73	The surface sulphidization and wetting of lead oxide fine particles. Minerals Engineering, 2019, 134, 241-249.	1.8	5
74	Microscale Interactions of Surfactant and Polymer Chemicals at Crude Oil-Water Interface for Enhanced Oil Recovery. , 2019, , .		1
75	CO2 hydrogenation to high-value products via heterogeneous catalysis. Nature Communications, 2019, 10, 5698.	5.8	571
76	Recent Advances in Studying Colloidal Interactions in Mineral Processing. Mining, Metallurgy and Exploration, 2019, 36, 35-53.	0.4	1
77	Nanoemulsion formation by the phase inversion temperature method using polyoxypropylene surfactants. Journal of Colloid and Interface Science, 2019, 540, 177-184.	5.0	78
78	CO2-responsive aqueous foams stabilized by pseudogemini surfactants. Journal of Colloid and Interface Science, 2019, 536, 381-388.	5.0	49
79	Viscosity reduction of extra-heavy oil using toluene in water emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 560, 252-259.	2.3	8
80	Effects of Salinity and Individual Ions on Crude-Oil/Water Interface Physicochemical Interactions at Elevated Temperature. SPE Reservoir Evaluation and Engineering, 2019, 22, 897-910.	1.1	24
81	Spontaneous Displacement of High Viscosity Micrometer Size Oil Droplets from a Curved Solid in Aqueous Solutions. Langmuir, 2019, 35, 615-627.	1.6	11
82	CO2-responsive O/W microemulsions prepared using a switchable superamphiphile assembled by electrostatic interactions. Journal of Colloid and Interface Science, 2019, 534, 595-604.	5.0	45
83	Flocculationâ€assisted dewatering of fluid fine tailings using a volute screw press. Canadian Journal of Chemical Engineering, 2019, 97, 74-83.	0.9	1
84	Pseudo-Gemini Biosurfactants with CO ₂ Switchability for Enhanced Oil Recovery (EOR). Tenside, Surfactants, Detergents, 2019, 56, 407-416.	0.5	10
85	Coalescence of Crude Oil Droplets in Brine Systems: Effect of Individual Electrolytes. Energy & Coales, 2018, 32, 5763-5771.	2.5	36
86	Demulsifier assisted film thinning and coalescence in crude oil emulsions under DC electric fields. Chemical Engineering Research and Design, 2018, 134, 117-129.	2.7	51
87	Molecular Dynamics Study of Hydrophilic Sphalerite (110) Surface as Modified by Normal and Branched Butylthiols. Langmuir, 2018, 34, 3363-3373.	1.6	16
88	Synergistic Adsorption of Polyaromatic Compounds on Silica Surfaces Studied by Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2018, 122, 4290-4299.	1.5	27
89	Rational Design of Silver Sulfide Nanowires for Efficient CO ₂ Electroreduction in Ionic Liquid. ACS Catalysis, 2018, 8, 1469-1475.	5.5	76
90	Effect of humic acids on bitumen films at the oil-water interface and on emulsion stability: Potential implications for groundwater remediation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 544, 53-59.	2.3	24

#	Article	IF	Citations
91	Ether modified poly(ether ether ketone) nonwoven membrane with excellent wettability and stability as a lithium ion battery separator. Journal of Power Sources, 2018, 378, 176-183.	4.0	56
92	Studying demulsification mechanisms of water-in-crude oil emulsions using a modified thin liquid film technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 540, 215-223.	2.3	40
93	Ultrathin 5-fold twinned sub-25 nm silver nanowires enable highly selective electroreduction of CO2 to CO. Nano Energy, 2018, 45, 456-462.	8.2	115
94	Dynamic Covalent Silica Nanoparticles for pH-Switchable Pickering Emulsions. Langmuir, 2018, 34, 5798-5806.	1.6	38
95	Descriptor of catalytic activity of metal sulfides for oxygen reduction reaction: a potential indicator for mineral flotation. Journal of Materials Chemistry A, 2018, 6, 9650-9656.	5.2	41
96	Biodiesel-Assisted Ambient Aqueous Bitumen Extraction (BA ³ BE) from Athabasca Oil Sands. Energy & Ene	2.5	14
97	CO 2 storage in saline aquifers by dissolution and residual trapping under supercritical conditions: An experimental investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 548, 37-45.	2.3	21
98	Effects of Salinity and Individual Water Ions on Crude Oil-Water Interface Physicochemical Interactions at Elevated Temperature. , 2018, , .		5
99	Single-Molecule MoS ₂ –Polymer Interaction and Efficient Aqueous Exfoliation of MoS ₂ into Single Layer. Journal of Physical Chemistry C, 2018, 122, 8262-8269.	1.5	11
100	Underwater Adhesion of a Stimuli-Responsive Polymer on Highly Oriented Pyrolytic Graphite: A Single-Molecule Force Study. Journal of Physical Chemistry C, 2018, 122, 6721-6729.	1.5	9
101	Understanding Interactions between Clay and Model Coal Surfaces in Electrolyte Solutions by a Quartz Crystal Microbalance with Dissipation Study. Energy & Samp; Fuels, 2018, 32, 233-240.	2.5	10
102	Magnetic Separation and Recycling of Goethite and Calcium Sulfate in Zinc Hydrometallurgy in the Presence of Maghemite Fine Particles. ACS Sustainable Chemistry and Engineering, 2018, 6, 1532-1538.	3.2	15
103	Cu(I)/Cu(II) mixed-valence surface complexes of S-[(2-hydroxyamino)-2-oxoethyl]-N,N-dibutyldithiocarbamate: Hydrophobic mechanism to malachite flotation. Journal of Colloid and Interface Science, 2018, 512, 701-712.	5.0	84
104	SmartWater Effects on Wettability, Adhesion and Oil Liberation in Carbonates., 2018,,.		3
105	Microwave Treatment of Ultramafic Nickel Ores: Heating Behavior, Mineralogy, and Comminution Effects. Minerals (Basel, Switzerland), 2018, 8, 524.	0.8	22
106	Contributions of van der Waals Interactions and Hydrophobic Attraction to Molecular Adhesions on a Hydrophobic MoS ₂ Surface in Water. Langmuir, 2018, 34, 14196-14203.	1.6	13
107	Mechanism of Goethite Precipitation on Magnetite and Maghemite Nanoparticles Studied by Surface Complexation/Precipitation Modeling. Langmuir, 2018, 34, 15134-15142.	1.6	15
108	Interactions of Asphaltene Subfractions in Organic Media of Varying Aromaticity. Energy & Ene	2.5	17

#	Article	IF	CITATIONS
109	Dynamic Interaction between a Millimeter-Sized Bubble and Surface Microbubbles in Water. Langmuir, 2018, 34, 11667-11675.	1.6	32
110	Probing Boundary Conditions at Hydrophobic Solid–Water Interfaces by Dynamic Film Drainage Measurement. Langmuir, 2018, 34, 12025-12035.	1.6	21
111	The rheology of polyvinylpyrrolidone-coated silica nanoparticles positioned at an air-aqueous interface. Journal of Colloid and Interface Science, 2018, 527, 346-355.	5.0	28
112	CO2-switchable dispersion of a natural chitosan and its application as a responsive pickering emulsifier. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 507-514.	2.3	20
113	Adsorption-Based Synthesis of Magnetically Responsive and Interfacially Active Composite Nanoparticles for Dewatering of Water-in-Diluted Bitumen Emulsions. Energy & Energy & 2018, 32, 8078-8089.	2.5	23
114	Effect of temperature on foamability using a thermoresponsive polymer. AIP Advances, 2018, 8, .	0.6	6
115	Tri-layer nonwoven membrane with shutdown property and high robustness as a high-safety lithium ion battery separator. Journal of Membrane Science, 2018, 565, 50-60.	4.1	63
116	Water Ion Interactions at Crude-Oil/Water Interface and Their Implications for Smart Waterflooding in Carbonates. SPE Journal, 2018, 23, 1817-1832.	1.7	32
117	Recent progress in improving the stability of copper-based catalysts for hydrogenation of carbon–oxygen bonds. Catalysis Science and Technology, 2018, 8, 3428-3449.	2.1	89
118	Statistical Analysis of Coal Beneficiation Performance in a Continuous Air Dense Medium Fluidized Bed Separator. International Journal of Coal Preparation and Utilization, 2017, 37, 12-32.	1.2	17
119	Impact of fine solids on mined Athabasca oil sands extraction I. Floatability of fine solids. Canadian Journal of Chemical Engineering, 2017, 95, 111-119.	0.9	5
120	Impact of fine solids on mined athabasca oil sands extraction II. Effect of fine solids with different surface wettability on bitumen recovery. Canadian Journal of Chemical Engineering, 2017, 95, 120-126.	0.9	7
121	Probing Mechanical Properties of Water–Crude Oil Interfaces and Colloidal Interactions of Petroleum Emulsions Using Atomic Force Microscopy. Energy & Energy & 2017, 31, 3445-3453.	2.5	14
122	Shape-Dependent Electrocatalytic Reduction of CO ₂ to CO on Triangular Silver Nanoplates. Journal of the American Chemical Society, 2017, 139, 2160-2163.	6.6	551
123	Effect of Approach Velocity on Thin Liquid Film Drainage between an Air Bubble and a Flat Solid Surface. Journal of Physical Chemistry C, 2017, 121, 5573-5584.	1.5	45
124	Water Ion Interactions at Crude Oil-Water Interface: A New Fundamental Understanding on SmartWater Flood., 2017,,.		6
125	pH Switchable Emulsions Based on Dynamic Covalent Surfactants. Langmuir, 2017, 33, 3040-3046.	1.6	51
126	An investigation of the deposition of ceria on silica by quartz crystal microbalance: Observations on the effect of many body interactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522, 207-217.	2.3	6

#	Article	IF	CITATIONS
127	Adsorption of a Polyaromatic Compound on Silica Surfaces from Organic Solvents Studied by Molecular Dynamics Simulation and AFM Imaging. Journal of Physical Chemistry C, 2017, 121, 5020-5028.	1.5	65
128	Impact of salinity on warm waterâ€based mineable oil sands processing. Canadian Journal of Chemical Engineering, 2017, 95, 281-289.	0.9	7
129	Interactions of Polyaromatic Compounds. Part 1: Nanoaggregation Probed by Electrospray Ionization Mass Spectrometry and Molecular Dynamics Simulation. Energy & Energy & 2017, 31, 3465-3474.	2.5	13
130	Bromination of petroleum coke for elemental mercury capture. Journal of Hazardous Materials, 2017, 336, 232-239.	6.5	47
131	A fatty acid solvent of switchable miscibility. Journal of Colloid and Interface Science, 2017, 504, 645-651.	5.0	35
132	Foaming Behavior of Polymer-Coated Colloids: The Need for Thick Liquid Films. Langmuir, 2017, 33, 6528-6539.	1.6	33
133	Magnetically responsive catalytic sorbent for removal of Hg O and NO. Fuel Processing Technology, 2017, 160, 158-169.	3.7	26
134	Fractionation of Asphaltenes in Understanding Their Role in Petroleum Emulsion Stability and Fouling. Energy &	2.5	91
135	Line tensions of galena (001) and sphalerite (110) surfaces: A molecular dynamics study. Journal of Molecular Liquids, 2017, 248, 634-642.	2.3	15
136	Silica-Silver Nanocomposites as Regenerable Sorbents for Hg ⁰ Removal from Flue Gases. Environmental Science & Envir	4.6	49
137	Probing Single-Molecule Adhesion of a Stimuli Responsive Oligo(ethylene glycol) Methacrylate Copolymer on a Molecularly Smooth Hydrophobic MoS ₂ Basal Plane Surface. Langmuir, 2017, 33, 10429-10438.	1.6	9
138	Asphaltene Subfractions Responsible for Stabilizing Water-in-Crude Oil Emulsions. Part 3. Effect of Solvent Aromaticity. Energy &	2.5	46
139	Defective ZnCo2O4 with Zn vacancies: Synthesis, property and electrochemical application. Journal of Alloys and Compounds, 2017, 724, 1149-1156.	2.8	34
140	Highly conductive alkaline anion exchange membrane containing imidazolium-functionalized octaphenyl polyhedral oligomeric silsesquioxane filler. Journal of Membrane Science, 2017, 541, 474-482.	4.1	20
141	Interactions of Polyaromatic Compounds. Part 2. Flocculation Probed by Dynamic Light Scattering and Molecular Dynamics Simulation. Energy & Samp; Fuels, 2017, 31, 9201-9212.	2.5	21
142	Suppressing Shuttle Effect Using Janus Cation Exchange Membrane for High-Performance Lithium–Sulfur Battery Separator. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44776-44781.	4.0	40
143	A study on novel reactive oily bubble technology enhanced collophane flotation. International Journal of Mineral Processing, 2017, 169, 85-90.	2.6	8
144	Novel lithium ion battery separator based on hydroxymethyl functionalized poly(ether etherÂketone). Journal of Membrane Science, 2017, 540, 422-429.	4.1	41

#	Article	IF	Citations
145	Role of reactive oily bubble in apatite flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513, 11-19.	2.3	27
146	Asphaltene fractionation based on adsorption onto calcium carbonate: Part 2. Self-association and aggregation properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 514, 79-90.	2.3	47
147	Surface forces in unconventional oil processing. Current Opinion in Colloid and Interface Science, 2017, 27, 63-73.	3.4	13
148	Fatty acid-asphaltene interactions at oil/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513, 168-177.	2.3	40
149	Elemental mercury reaction chemistry on brominated petroleum cokes. Carbon, 2017, 124, 89-96.	5.4	25
150	Water Ion Interactions at Crude Oil-water Interface - Is there a Correlation between IFT and Interfacial Rheology?. , 2017, , .		0
151	Role of Preconditioning Cationic Zetag Flocculant in Enhancing Mature Fine Tailings Flocculation. Energy & Ener	2.5	19
152	Synthesis and Characterization of Tunable Dualâ€pH Switchable Zwitterionic Copolymers. Macromolecular Chemistry and Physics, 2016, 217, 1614-1619.	1.1	0
153	Low temperature processed, high-performance and stable NiOx based inverted planar perovskite solar cells via a poly(2-ethyl-2-oxazoline) nanodots cathode electron-extraction layer. Materials Today Energy, 2016, 1-2, 1-10.	2.5	30
154	Microscale liquid-liquid displacement dynamics: Molecular kinetic or hydrodynamic control. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 497, 336-343.	2.3	20
155	Understanding the hydrophobic mechanism of 3-hexyl-4-amino-1, 2,4-triazole-5-thione to malachite by ToF-SIMS, XPS, FTIR, contact angle, zeta potential and micro-flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 503, 34-42.	2.3	139
156	Enhancing heavy oil liberation from solid surfaces using biodegradable demulsifiers. Journal of Environmental Chemical Engineering, 2016, 4, 1753-1758.	3.3	26
157	Nanoaggregation of Polyaromatic Compounds Probed by Electrospray Ionization Mass Spectrometry. Energy & Energy	2.5	5
158	Dewatering Bitumen Emulsions Using Interfacially Active Organic Composite Absorbent Particles. Energy & Energy	2.5	13
159	Preparation of CO2-responsive emulsions with switchable hydrophobic tertiary amine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 502, 107-113.	2.3	35
160	Oil removal of spent hydrotreating catalyst CoMo/Al2O3 via a facile method with enhanced metal recovery. Journal of Hazardous Materials, 2016, 318, 723-731.	6.5	26
161	Competitive Adsorption of Naphthenic Acids and Polyaromatic Molecules at a Toluene–Water Interface. Journal of Physical Chemistry B, 2016, 120, 12901-12910.	1.2	13
162	Highly effective emulsification/demulsification with a CO 2 -switchable superamphiphile. Journal of Colloid and Interface Science, 2016, 480, 198-204.	5.0	65

#	Article	IF	Citations
163	Dynamic Interactions between a Silica Sphere and Deformable Interfaces in Organic Solvents Studied by Atomic Force Microscopy. Langmuir, 2016, 32, 9797-9806.	1.6	12
164	The effect of water molecules on the thiol collector interaction on the galena (PbS) and sphalerite (ZnS) surfaces: A DFT study. Applied Surface Science, 2016, 389, 103-111.	3.1	77
165	Molecular Interactions between a Biodegradable Demulsifier and Asphaltenes in an Organic Solvent. Energy & Ener	2.5	12
166	Simultaneous measurement of dynamic force and spatial thin film thickness between deformable and solid surfaces by integrated thin liquid film force apparatus. Soft Matter, 2016, 12, 9105-9114.	1.2	39
167	In situ probing the self-assembly of 3-hexyl-4-amino-1,2,4-triazole-5-thione on chalcopyrite surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 511, 285-293.	2.3	42
168	Hydroiodic Acid Reduced Graphene Hybrid with \hat{l} -MnO $<$ sub $>$ 2 $<$ /sub $>$ for Electrode Material in Supercapacitors. ECS Journal of Solid State Science and Technology, 2016, 5, M51-M57.	0.9	8
169	Extraction and separation of tungsten from acidic high-phosphorus solution. Hydrometallurgy, 2016, 164, 97-102.	1.8	28
170	Ceria coated silica particles: One step preparation and settling behaviour under the influence of colloidal and hydrodynamic interactions. Materials Chemistry and Physics, 2016, 173, 467-474.	2.0	4
171	Synthesis of porous MnCo ₂ O ₄ microspheres with yolk–shell structure induced by concentration gradient and the effect on their performance in electrochemical energy storage. RSC Advances, 2016, 6, 10763-10774.	1.7	33
172	Adsorption of hybrid polyacrylamides on anisotropic kaolinite surfaces: Effect of polymer characteristics and solution properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 498, 285-296.	2.3	24
173	Role of Naphthenic Acids in Controlling Self-Aggregation of a Polyaromatic Compound in Toluene. Journal of Physical Chemistry B, 2016, 120, 3516-3526.	1.2	14
174	Selectivity of 2-mercaptobenzimidazole derivatives on metal ions studied by UV–vis spectromentry and DFT calculations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 490, 318-325.	2.3	15
175	QCM-D study of nanoparticle interactions. Advances in Colloid and Interface Science, 2016, 233, 94-114.	7. O	145
176	Role of Ethyl Cellulose in Bitumen Extraction from Oil Sands Ores Using an Aqueous–Nonaqueous Hybrid Process. Energy & Dies, 2016, 30, 121-129.	2.5	24
177	Guided Self-Assembly of Nano-Precipitates into Mesocrystals. Scientific Reports, 2015, 5, 16530.	1.6	12
178	Image analysis of heavy oil liberation from host rocks/sands. Canadian Journal of Chemical Engineering, 2015, 93, 1126-1137.	0.9	10
179	A Study of the Hydrocyclone for the Separation of Light and Heavy Particles in Aqueous Slurry. Canadian Journal of Chemical Engineering, 2015, 93, 1667-1677.	0.9	11
180	Interfacial sciences in unconventional petroleum production: from fundamentals to applications. Chemical Society Reviews, 2015, 44, 5446-5494.	18.7	262

#	Article	IF	CITATIONS
181	Demulsifying water-in-oil emulsions by ethyl cellulose demulsifiers studied using focused beam reflectance measurement. Chemical Engineering Science, 2015, 130, 254-263.	1.9	39
182	Impact of Sulfur Loading on Brominated Biomass Ash on Mercury Capture. Energy & Ener	2.5	13
183	Studying bubble–particle interactions by zeta potential distribution analysis. Journal of Colloid and Interface Science, 2015, 449, 399-408.	5.0	57
184	Role of Caustic Addition in Bitumen–Clay Interactions. Energy & Fuels, 2015, 29, 58-69.	2.5	39
185	Potential Hazards of Brominated Carbon Sorbents for Mercury Emission Control. Environmental Science &	4.6	65
186	Nanocomposites of graphene oxide, Ag nanoparticles, and magnetic ferrite nanoparticles for elemental mercury (Hg ⁰) removal. RSC Advances, 2015, 5, 15634-15640.	1.7	39
187	Model molecules mimicking asphaltenes. Advances in Colloid and Interface Science, 2015, 218, 1-16.	7.0	146
188	Measurement and modeling on hydrodynamic forces and deformation of an air bubble approaching a solid sphere in liquids. Advances in Colloid and Interface Science, 2015, 217, 31-42.	7.0	22
189	Interaction between Air Bubbles and Superhydrophobic Surfaces in Aqueous Solutions. Langmuir, 2015, 31, 7317-7327.	1.6	80
190	Asphaltene Subfractions Responsible for Stabilizing Water-in-Crude Oil Emulsions. Part 2: Molecular Representations and Molecular Dynamics Simulations. Energy & Energy & 2015, 29, 4783-4794.	2.5	122
191	The pH-dependant attachment of ceria nanoparticles to silica using surface analytical techniques. Applied Surface Science, 2015, 345, 249-255.	3.1	22
192	Fundamental Study of Emulsions Stabilized by Soft and Rigid Particles. Langmuir, 2015, 31, 6282-6288.	1.6	56
193	Study interactions between fine particles and micron size bubbles generated by hydrodynamic cavitation. Minerals Engineering, 2015, 84, 106-115.	1.8	48
194	Fabrication of coral like carbon black/MnO ₂ nano composites from commercial carbon black and their application in supercapacitors. RSC Advances, 2015, 5, 97080-97088.	1.7	8
195	Probing Anisotropic Surface Properties of Molybdenite by Direct Force Measurements. Langmuir, 2015, 31, 11409-11418.	1.6	68
196	Effect of solvent addition on bitumen–air bubble attachment in process water. Chemical Engineering Science, 2015, 137, 31-39.	1.9	20
197	Interfacial Layer Properties of a Polyaromatic Compound and its Role in Stabilizing Water-in-Oil Emulsions. Langmuir, 2015, 31, 10382-10391.	1.6	41
198	Synthesis of Surface-Responsive Composite Particles by Dehydration of Water-in-Oil Emulsions. ACS Applied Materials & Dehydration of Water-in-Oil Emulsions.	4.0	16

#	Article	IF	Citations
199	Reactive oily bubble technology for flotation of apatite, dolomite and quartz. International Journal of Mineral Processing, 2015, 134, 74-81.	2.6	74
200	Interfacial rheological and wetting properties of deamidated barley proteins. Food Hydrocolloids, 2015, 43, 400-409.	5.6	14
201	Mineral carbon storage in pre-treated ultramafic ores. Minerals Engineering, 2015, 70, 43-54.	1.8	21
202	Study of N-isopropoxypropyl-N'-ethoxycarbonyl thiourea adsorption on chalcopyrite using in situ SECM, ToF-SIMS and XPS. Journal of Colloid and Interface Science, 2015, 437, 42-49.	5.0	83
203	CHAPTER 11. Particle-Stabilized Emulsions in Heavy Oil Processing. RSC Soft Matter, 2014, , 283-316.	0.2	2
204	Application of reactive oily bubbles to bastnaesite flotation. Minerals Engineering, 2014, 64, 139-145.	1.8	50
205	Microwave heating of ultramafic nickel ores and mineralogical effects. Minerals Engineering, 2014, 58, 22-25.	1.8	33
206	Current state of fine mineral tailings treatment: A critical review on theory and practice. Minerals Engineering, 2014, 58, 113-131.	1.8	270
207	The chemistry of tetrameric acids in petroleum. Advances in Colloid and Interface Science, 2014, 205, 319-338.	7.0	30
208	Impact of gypsum supersaturated process water on the interactions between silica and zinc sulphide minerals. Minerals Engineering, 2014, 55, 172-180.	1.8	11
209	Adsorption of organic–inorganic hybrid polymers on kaolin from aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 453, 13-20.	2.3	39
210	Studying bitumen–bubble interactions using atomic force microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 444, 165-172.	2.3	24
211	Problematic Stabilizing Films in Petroleum Emulsions: Shear Rheological Response of Viscoelastic Asphaltene Films and the Effect on Drop Coalescence. Langmuir, 2014, 30, 6730-6738.	1.6	121
212	Role of Asphaltenes in Stabilizing Thin Liquid Emulsion Films. Langmuir, 2014, 30, 3024-3033.	1.6	146
213	Enhancing Bitumen Liberation by Controlling the Interfacial Tension and Viscosity Ratio through Solvent Addition. Energy & Solvent Addition. Energy & Solvent Addition. Energy & Solvent Addition. Energy & Solvent Addition.	2.5	27
214	Coreâ€"Shell Ellipsoidal MnCo ₂ O ₄ Anode with Micro-/Nano-Structure and Concentration Gradient for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2014, 6, 21325-21334.	4.0	114
215	Understanding Mechanisms of Asphaltene Adsorption from Organic Solvent on Mica. Langmuir, 2014, 30, 9370-9377.	1.6	63
216	Interaction of reactive oily bubble in flotation of bastnaesite. Journal of Rare Earths, 2014, 32, 772-778.	2.5	35

#	Article	IF	Citations
217	Ligand-promoted dissolution of serpentine in ultramafic nickel ores. Minerals Engineering, 2014, 64, 109-119.	1.8	10
218	Dewetting Dynamics of a Solid Microsphere by Emulsion Drops. Journal of Physical Chemistry C, 2014, 118, 13552-13562.	1.5	28
219	Probing Anisotropic Surface Properties and Interaction Forces of Chrysotile Rods by Atomic Force Microscopy and Rheology. Langmuir, 2014, 30, 10809-10817.	1.6	60
220	Asphaltene Subfractions Responsible for Stabilizing Water-in-Crude Oil Emulsions. Part 1: Interfacial Behaviors. Energy & Energy	2.5	148
221	Effect of Caustic Type on Bitumen Extraction from Canadian Oil Sands. Energy & Energ	2.5	36
222	Initial Partition and Aggregation of Uncharged Polyaromatic Molecules at the Oil–Water Interface: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2014, 118, 1040-1051.	1.2	76
223	Surfactant-Free Switchable Emulsions Using CO ₂ -Responsive Particles. ACS Applied Materials & Discrete Supplied & Discrete Supplied & Discrete Supplied & Discrete Supplied & Di	4.0	70
224	Demulsification Mechanism of Asphaltene-Stabilized Water-in-Oil Emulsions by a Polymeric Ethylene Oxide–Propylene Oxide Demulsifier. Energy & Demulsifier. Energy & Samp; Fuels, 2014, 28, 6760-6771.	2.5	178
225	Effect of microwave pre-treatment on ultramafic nickel ore slurry rheology. Minerals Engineering, 2014, 61, 97-104.	1.8	34
226	Electrochemical Aspects of Chemical Mechanical Polishing. Modern Aspects of Electrochemistry, 2014, , 303-339.	0.2	1
227	On the simulation of hydrocyclones using CFD. Canadian Journal of Chemical Engineering, 2013, 91, 950-958.	0.9	20
228	On the Size Distribution of Self-Associated Asphaltenes. Energy & Energy & 2013, 27, 5083-5106.	2.5	98
229	Measurement of Interactions between Solid Particles, Liquid Droplets, and/or Gas Bubbles in a Liquid using an Integrated Thin Film Drainage Apparatus. Langmuir, 2013, 29, 3594-3603.	1.6	74
230	Impact of gypsum supersaturated water on the uptake of copper and xanthate on sphalerite. Minerals Engineering, 2013, 49, 165-171.	1.8	18
231	A DFT study on the structure-reactivity relationship of thiophosphorus acids as flotation collectors with sulfide minerals: Implication of surface adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 434, 243-252.	2.3	46
232	Dissipation of Film Drainage Resistance by Hydrophobic Surfaces in Aqueous Solutions. Journal of Physical Chemistry C, 2013, 117, 8799-8805.	1.5	19
233	Impact of gypsum supersaturated solution on surface properties of silica and sphalerite minerals. Minerals Engineering, 2013, 46-47, 6-15.	1.8	19
234	Cascade partial coalescence phenomena at electrolyte–oil interfaces and determination of bounds for the surface potential. Soft Matter, 2013, 9, 4516.	1.2	3

#	Article	IF	CITATIONS
235	Chemical–mechanical bromination of biomass ash for mercury removal from flue gases. Fuel, 2013, 108, 54-59.	3.4	44
236	Understanding suspension rheology of anisotropically-charged platy minerals from direct interaction force measurement using AFM. Current Opinion in Colloid and Interface Science, 2013, 18, 149-156.	3.4	34
237	Interaction of divalent cations with basal planes and edge surfaces of phyllosilicate minerals: Muscovite and talc. Journal of Colloid and Interface Science, 2013, 404, 183-191.	5.0	43
238	Anisotropic Surface Charging of Chlorite Surfaces. Clays and Clay Minerals, 2013, 61, 152-164.	0.6	33
239	Preparation of silica gel bound crown ether and its extraction performance towards zirconium and hafnium. Chemical Engineering Journal, 2013, 225, 528-534.	6.6	21
240	Role of asphaltenes in stabilisation of water in crude oil emulsions. Canadian Journal of Chemical Engineering, 2013, 91, 1365-1371.	0.9	54
241	Characterising ragâ€forming solids. Canadian Journal of Chemical Engineering, 2013, 91, 1395-1401.	0.9	18
242	Hg occurrence in coal and its removal before coal utilization. Fuel, 2013, 104, 70-76.	3.4	49
243	Probing Adsorption of Polyacrylamide-Based Polymers on Anisotropic Basal Planes of Kaolinite Using Quartz Crystal Microbalance. Langmuir, 2013, 29, 3989-3998.	1.6	73
244	Cryoâ€XPS study of xanthate adsorption on pyrite. Surface and Interface Analysis, 2013, 45, 805-810.	0.8	38
245	Liquid degassing using monoâ€dispersed and polyâ€dispersed micron droplets. Canadian Journal of Chemical Engineering, 2013, 91, 1059-1068.	0.9	3
246	Impact of fugitive bitumen on polymerâ€based flocculation of mature fine tailings. Canadian Journal of Chemical Engineering, 2013, 91, 1427-1432.	0.9	26
247	The Effect of Geometry on Sample Leakage in Multi-Channel Microfluidic Devices. , 2013, , .		0
248	A Study of the Colloidal Stability of Mixed Abrasive Slurries and Their Role in CMP. Journal of the Electrochemical Society, 2012, 159, H482-H489.	1.3	16
249	Characterization of Mercury Binding onto a Novel Brominated Biomass Ash Sorbent by X-ray Absorption Spectroscopy. Environmental Science & Environmenta	4.6	30
250	Study of Bitumen Liberation from Oil Sands Ores by Online Visualization. Energy & Study & Stud	2.5	44
251	Probing Structure–Nanoaggregation Relations of Polyaromatic Surfactants: A Molecular Dynamics Simulation and Dynamic Light Scattering Study. Journal of Physical Chemistry B, 2012, 116, 5907-5918.	1.2	97
252	Generation and characterization of submicron size bubbles. Advances in Colloid and Interface Science, 2012, 179-182, 123-132.	7.0	86

#	Article	IF	Citations
253	Molecular Interactions of a Polyaromatic Surfactant C5Pe in Aqueous Solutions Studied by a Surface Forces Apparatus. Journal of Physical Chemistry B, 2012, 116, 11187-11196.	1.2	38
254	Response to Timoney Critique of Royal Society of Canada Expert Panel on Oil Sands. Environmental Science & Environmental Scien	4.6	12
255	Probing Molecular Interactions of an Asphaltene Model Compound in Organic Solvents Using a Surface Forces Apparatus (SFA). Energy & Surface Forces Apparatus (SFA).	2.5	46
256	Robust Aqueous–Nonaqueous Hybrid Process for Bitumen Extraction from Mineable Athabasca Oil Sands. Energy & Diese, 2012, 26, 2920-2927.	2.5	44
257	A Study of Silver Species on Silver-Exchanged ETS-10 and Mordenite by XRD, SEM and Solid-State ¹⁰⁹ Ag, ²⁹ Si and ²⁷ Al NMR Spectroscopy. Journal of Nanoscience and Nanotechnology, 2012, 12, 6420-6427.	0.9	9
258	Al-PAM assisted filtration system for abatement of mature fine tailings. Chemical Engineering Science, 2012, 80, 91-99.	1.9	53
259	Adsorption of mercaptobenzoheterocyclic compounds on sulfide mineral surfaces: A density functional theory study of structure–reactivity relations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 409, 1-9.	2.3	64
260	A novel approach for preferential flotation recovery of molybdenite from a porphyry copper–molybdenum ore. Minerals Engineering, 2012, 36-38, 37-44.	1.8	41
261	Novel Magnetic Demulsifier for Water Removal from Diluted Bitumen Emulsion. Energy & Samp; Fuels, 2012, 26, 2705-2710.	2.5	125
262	Understanding Interfacial Behavior of Ethylcellulose at the Water–Diluted Bitumen Interface. Energy & Lamp; Fuels, 2012, 26, 1740-1745.	2.5	57
263	Synthesis of Interfacially Active and Magnetically Responsive Nanoparticles for Multiphase Separation Applications. Advanced Functional Materials, 2012, 22, 1732-1740.	7.8	131
264	Solid-State NMR and TGA Studies of Silver Reduction in Chabazite. Journal of Nanoscience and Nanotechnology, 2012, 12, 1988-1993.	0.9	5
265	Interactions of divalent cations with tetrameric acid aggregates in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 396, 238-245.	2.3	13
266	Effect of polycarboxylate ether comb-type polymer on viscosity and interfacial properties of kaolinite clay suspensions. Journal of Colloid and Interface Science, 2012, 378, 222-231.	5.0	54
267	Interaction forces between a deformable air bubble and a spherical particle of tuneable hydrophobicity and surface charge in aqueous solutions. Journal of Colloid and Interface Science, 2012, 379, 121-129.	5.0	18
268	Carbon capture and storage using alkaline industrial wastes. Progress in Energy and Combustion Science, 2012, 38, 302-320.	15.8	436
269	Formation of Vesicles and Micelles in Aqueous Systems of Tetrameric Acids as Determined by Dynamic Light Scattering. Journal of Dispersion Science and Technology, 2011, 32, 1582-1591.	1.3	8
270	Adsorption Kinetics of a Novel Organic–Inorganic Hybrid Polymer on Silica and Alumina Studied by Quartz Crystal Microbalance. Journal of Physical Chemistry C, 2011, 115, 15390-15402.	1.5	73

#	Article	IF	Citations
271	Role of Dissolving Carbon Dioxide in Densification of Oil Sands Tailings. Energy & E	2.5	14
272	Preparation of a [Ru(bpy) ₂ (dppz)] ²⁺ -Intercalated DNA Cast Film Using a Self-Standing Method and Its Luminescence Tuning by Cu ²⁺ Ions and EDTA. Inorganic Chemistry, 2011, 50, 2043-2045.	1.9	12
273	Improving Oil Sands Processability Using a Temperature-Sensitive Polymer. Energy & E	2.5	27
274	Wettability Control Mechanism of Highly Contaminated Hydrophilic Silica/Alumina Surfaces by Ethyl Cellulose. Journal of Physical Chemistry C, 2011, 115, 10576-10587.	1.5	59
275	Determination of Anisotropic Surface Characteristics of Different Phyllosilicates by Direct Force Measurements. Langmuir, 2011, 27, 12996-13007.	1.6	72
276	Effect of Hydroxyl Content and Molecular Weight of Biodegradable Ethylcellulose on Demulsification of Water-in-Diluted Bitumen Emulsions. Industrial & Demulsineering Chemistry Research, 2011, 50, 6347-6354.	1.8	69
277	Preparation of Solid and Hollow Asphaltene Fibers by Single Step Electrospinning. Journal of Engineered Fibers and Fabrics, 2011, 6, 155892501100600.	0.5	7
278	Oil sands and the environment. Physics Today, 2011, 64, 9-9.	0.3	0
279	Improving copper flotation recovery from a refractory copper porphyry ore by using ethoxycarbonyl thiourea as a collector. Minerals Engineering, 2011, 24, 817-824.	1.8	55
280	Electrochemically monitoring the removal of bisphenol A based on its anodic deposition at an ITO electrode. Sensors and Actuators B: Chemical, 2011, 160, 784-790.	4.0	18
281	Understanding Molecular Interactions of Asphaltenes in Organic Solvents Using a Surface Force Apparatus. Journal of Physical Chemistry C, 2011, 115, 16043-16051.	1.5	83
282	A Novel Method to Improve Crystallinity of Supported Nanoparticles Using Low Melting Point Metals. Journal of Physical Chemistry C, 2011, 115, 14591-14597.	1.5	13
283	The diffusion coefficient of H2S in liquid sulfur. Fluid Phase Equilibria, 2011, 307, 135-141.	1.4	7
284	Modelling of cavitation in a highâ€intensity agitation cell. Canadian Journal of Chemical Engineering, 2011, 89, 1154-1164.	0.9	4
285	Electrochemical fabrication and potential-enhanced luminescence of [Ru(bpy)2tatp]2+ incorporating DNA-stabilized single-wall carbon nanotubes on an indium tin oxide electrode. Electrochimica Acta, 2011, 56, 1432-1438.	2.6	6
286	Identifying modes of occurrence of mercury in coal by temperature programmed pyrolysis. Proceedings of the Combustion Institute, 2011, 33, 2763-2769.	2.4	91
287	A novel pH potentiometric sensor based on electrochemically synthesized polybisphenol A films at an ITO electrode. Sensors and Actuators B: Chemical, 2011, 155, 730-736.	4.0	37
288	DNA Intercalating Studies of [Ru(bpy) ₂ dmt] ²⁺ with Two Vacant Nitrogen Atoms by Introducing Copper(II) Ions. DNA and Cell Biology, 2011, 30, 329-336.	0.9	0

#	Article	IF	Citations
289	Isothermal Microcalorimetry as a Quality by Design Tool to Determine Optimal Blending Sequences. AAPS Journal, 2010, 12, 417-423.	2.2	1
290	Development of a Novel Mercury Cartridge for Mercury Analysisâ€. Energy & Development of a Novel Mercury Cartridge for Mercury Analysisâ€. Energy & Development of a Novel Mercury Cartridge for Mercury Analysisâ€.	2.5	13
291	Electrochemical detection of bisphenol A mediated by [Ru(bpy)3]2+ on an ITO electrode. Journal of Hazardous Materials, 2010, 180, 703-709.	6.5	62
292	Gemini surfactant controlled preparation of well-ordered lamellar mesoporous molybdenum oxide. Journal of Porous Materials, 2010, 17, 99-105.	1.3	7
293	Chemical modulation of the luminescence of a DNA-bound diruthenium(II) complex by copper(II) ion and EDTA. Transition Metal Chemistry, 2010, 35, 707-711.	0.7	10
294	Polymer aids for settling and filtration of oil sands tailings. Canadian Journal of Chemical Engineering, 2010, 88, 403-410.	0.9	21
295	Characterization of organic oated solids isolated from different oil sands. Canadian Journal of Chemical Engineering, 2010, 88, 462-470.	0.9	8
296	Luminescence properties of [Ru(bpy)2MDHIP]2+ modulated by the introduction of DNA, copper(II) ion and EDTA. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 75, 1566-1570.	2.0	26
297	Trace elements in coal: Associations with coal and minerals and their behavior during coal utilization – A review. Fuel, 2010, 89, 904-911.	3.4	325
298	Recent developments in novel sorbents for flue gas clean up. Fuel Processing Technology, 2010, 91, 1175-1197.	3.7	161
299	Surfactant-associated electrochemical properties of ferrocene adsorbed on a glassy carbon electrode modified with multi-walled carbon nanotubes. Thin Solid Films, 2010, 518, 3240-3245.	0.8	8
300	Luminescence detection of DNA-[Ru(bpy)2tatp]2+ conjugates on a polyaniline/ITO electrode associated with in situ electrochemical tuning. Chemical Physics Letters, 2010, 492, 170-173.	1.2	6
301	Effect of Dynamic Bubble Nucleation on Bitumen Flotation. Canadian Metallurgical Quarterly, 2010, 49, 363-372.	0.4	25
302	Synthesis of Mesoporous Tungsten Trioxide with Crystalline Pore Wall at Low Hydrothermal Temperature. Journal of Dispersion Science and Technology, 2010, 31, 709-714.	1.3	1
303	Carbon Nanotube-Silver Composite for Mercury Capture and Analysis. Energy & Camp; Fuels, 2010, 24, 419-426.	2.5	71
304	Role of Naphthenic Acids in Stabilizing Water-in-Diluted Model Oil Emulsions. Journal of Physical Chemistry B, 2010, 114, 7710-7718.	1.2	64
305	Use of Short-Chain Amine in Processing of Weathered/Oxidized Oil Sands Ores. Energy & Discourse Supply 100, 24, 3581-3588.	2.5	21
306	Pore-Scale Investigation of the Matrixâ^'Fracture Interaction During CO ₂ Injection in Naturally Fractured Oil Reservoirs. Energy & Samp; Fuels, 2010, 24, 1421-1430.	2.5	52

#	Article	IF	CITATIONS
307	Mechanistic Study on Demulsification of Water-in-Diluted Bitumen Emulsions by Ethylcellulose. Langmuir, 2010, 26, 3050-3057.	1.6	114
308	Interaction Forces between Asphaltene Surfaces in Organic Solvents. Langmuir, 2010, 26, 183-190.	1.6	117
309	Contribution of Colloidal Forces in Non-contact Area to the Adhesion Between a Micro-probe and a Substrate Surface: Theoretical Analysis. Journal of Adhesion Science and Technology, 2009, 23, 125-138.	1.4	2
310	Role of Bicarbonate Ions in Oil Sands Extraction Systems with a Poor Processing Ore. Journal of Dispersion Science and Technology, 2009, 30, 809-822.	1.3	11
311	A Novel Method to Control the Size of Silver Nanoparticles Formed on Chabazite. Journal of Nanoscience and Nanotechnology, 2009, 9, 2768-2771.	0.9	16
312	On the role of cavitation in particle collection in flotation – A critical review. II. Minerals Engineering, 2009, 22, 419-433.	1.8	136
313	Magnetic Multiâ€Functional Nano Composites for Environmental Applications. Advanced Functional Materials, 2009, 19, 1268-1275.	7.8	110
314	Understanding weathering of oil sands ores by atomic force microscopy. AICHE Journal, 2009, 55, 3277-3285.	1.8	22
315	Effect of particle size on the rheology of Athabasca clay suspensions. Canadian Journal of Chemical Engineering, 2009, 87, 422-434.	0.9	31
316	Effect of weathering on oil sands processability. Canadian Journal of Chemical Engineering, 2009, 87, 879-886.	0.9	12
317	Electrocatalytic activity of [Ru(bpy)3]2+ for hypoxanthine oxidation studied by rotating electrode methods. Bioelectrochemistry, 2009, 74, 310-314.	2.4	14
318	Mediated oxidation of guanine by [Ru(bpy)2dpp]2+ and their electrochemical assembly on the ITO electrode. Electrochimica Acta, 2009, 54, 3250-3254.	2.6	14
319	Synthesis of well-ordered lamellar mesoporous molybdenum oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 333, 194-198.	2.3	16
320	Wettability determination of solids isolated from oil sands. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 337, 80-90.	2.3	48
321	The effect of stabilizer addition and sonication on nanoparticle agglomeration in a confined impinging jet reactor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 350, 38-50.	2.3	37
322	Advanced coal combustion and utilization part II-fundamentals and new technology. Asia-Pacific Journal of Chemical Engineering, 2009, 5, 401-402.	0.8	0
323	Emission Control of Mercury and Sulfur by Mild Thermal Upgrading of Coal. Energy & Samp; Fuels, 2009, 23, 766-773.	2.5	19
324	A Comprehensive Analysis of Organic Matter Removal from Clay-Sized Minerals Extracted from Oil Sands Using Low Temperature Ashing and Hydrogen Peroxide. Energy & Energy & 2009, 23, 3716-3720.	2.5	12

#	Article	IF	CITATIONS
325	Colloidal Interactions between Asphaltene Surfaces in Toluene. Energy & Ene	2.5	73
326	Effect of Weathering on Surface Characteristics of Solids and Bitumen from Oil Sands. Energy & Energy & Fuels, 2009, 23, 334-341.	2.5	44
327	Effect of Solid Wettability on Processability of Oil Sands Ores. Energy & E	2.5	42
328	Mercury Removal from Flue Gases by Novel Regenerable Magnetic Nanocomposite Sorbents. Environmental Science & Environmental Sc	4.6	137
329	Physics in the oil sands of Alberta. Physics Today, 2009, 62, 31-35.	0.3	40
330	Role of Bitumen Components in Stabilizing Water-in-Diluted Oil Emulsions. Energy & E	2.5	52
331	Biodegradable Polymer for Demulsification of Water-in-Bitumen Emulsions. Energy & 2009, 23, 451-456.	2.5	96
332	Single micro-bubble generation by pressure pulse technique. Chemical Engineering Science, 2008, 63, 1779-1787.	1.9	18
333	DNA-promoted electrochemical assembly of [Ru(bpy)2dpp]3+/2+ on the ITO electrode by introducing copper(II) ion. Electrochimica Acta, 2008, 53, 5169-5173.	2.6	6
334	Electrochemical properties of ferrocene adsorbed on multi-walled carbon nanotubes electrode. Thin Solid Films, 2008, 516, 2151-2157.	0.8	21
335	Preparation of BMP-2 Containing Bovine Serum Albumin (BSA) Nanoparticles Stabilized by Polymer Coating. Pharmaceutical Research, 2008, 25, 2896-2909.	1.7	90
336	Effect of molecular weight and charge density on the performance of polyacrylamide in lowâ€grade oil sand ore processing. Canadian Journal of Chemical Engineering, 2008, 86, 177-185.	0.9	17
337	Novel polymer aids for lowâ€grade oil sand ore processing. Canadian Journal of Chemical Engineering, 2008, 86, 168-176.	0.9	25
338	Measurement of sliding velocity and induction time of a single microâ€bubble under an inclined collector surface. Canadian Journal of Chemical Engineering, 2008, 86, 1001-1010.	0.9	17
339	Hydrogen and Oxygen Bubble Attachment to a Bitumen Drop. Canadian Journal of Chemical Engineering, 2008, 82, 846-849.	0.9	6
340	In situ characterization of the adsorbed Concanavalin a on germanium surface at various pH. Biotechnology Progress, 2008, 24, 972-980.	1.3	7
341	Voltammetric determination of 6-mercaptopurine using [Co(phen)3]3+/MWNT modified graphite electrode. Journal of Electroanalytical Chemistry, 2008, 621, 97-102.	1.9	27
342	The effect of compression forces on the stability of dibasic calcium phosphate dihydrate tablets in the presence of glutamic acid hydrochloride monitored by isothermal calorimetry. Thermochimica Acta, 2008, 467, 86-90.	1.2	3

#	Article	IF	Citations
343	Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents. Applied Surface Science, 2008, 254, 3522-3530.	3.1	58
344	Asialoglycoprotein receptor-targeted superparamagnetic iron oxide nanoparticles. International Journal of Pharmaceutics, 2008, 360, 197-203.	2.6	57
345	Interfacial Films Adsorbed from Bitumen in Toluene Solution at a Tolueneâ^'Water Interface: A Langmuir and Langmuirâ^'Blodgett Film Approach. Energy & Energy & 2008, 22, 1784-1791.	2.5	20
346	Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences, 2008, 20, 14-27.	3.2	1,765
347	Synthesis, Characterization, and Application of Magnetic Nanocomposites for the Removal of Heavy Metals from Industrial Effluents. , 2008, , 105-148.		8
348	Novel Regenerable Sorbent for Mercury Capture from Flue Gases of Coal-Fired Power Plant. Environmental Science & Environmental	4.6	98
349	Potential of Air Dense Medium Fluidized Bed Separation of Mineral Matter for Mercury Rejection from Alberta Sub-Bituminous Coal. International Journal of Coal Preparation and Utilization, 2008, 28, 115-132.	1.2	33
350	Study of Al(OH) < sub > 3 < /sub > â^'Polyacrylamide-Induced Pelleting Flocculation by Single Molecule Force Spectroscopy. Langmuir, 2008, 24, 14015-14021.	1.6	37
351	Probing Surface Charge Potentials of Clay Basal Planes and Edges by Direct Force Measurements. Langmuir, 2008, 24, 12899-12910.	1.6	92
352	Laboratory Tests on Mercury Emission Monitoring with Resonating Gold-coated Silicon Cantilevers. Environmental Science & Envir	4.6	20
353	Role of Flotation Reagents in Tuning Colloidal Forces for Sphalerite-Silica Separation. Canadian Metallurgical Quarterly, 2007, 46, 329-340.	0.4	5
354	A comparison of the effectiveness of cationic polymers poly-l-lysine (PLL) and polyethylenimine (PEI) for non-viral delivery of plasmid DNA to bone marrow stromal cells (BMSC). European Journal of Pharmaceutics and Biopharmaceutics, 2007, 65, 388-397.	2.0	97
355	Asphaltene Films at a Toluene/Water Interface. Energy & E	2.5	56
356	Novel Bitumen Froth Cleaning Device and Rag Layer Characterization. Energy & Energy	2.5	12
357	An Investigation on Mercury Association in an Alberta Sub-bituminous Coalâ€. Energy & Fuels, 2007, 21, 485-490.	2.5	18
358	Single Molecule Force Spectroscopy of Asphaltene Aggregates. Langmuir, 2007, 23, 6182-6190.	1.6	34
359	Mercury Removal Characteristics during Thermal Upgrading of Fractionated Alberta Subbituminous Coal. Energy & E	2.5	12
360	Lowâ∈Workâ∈Function Surface Formed by Solutionâ∈Processed and Thermally Deposited Nanoscale Layers of Cesium Carbonate. Advanced Functional Materials, 2007, 17, 1966-1973.	7.8	333

#	Article	IF	CITATIONS
361	Flocculation of kaolinite clay suspensions using a temperature-sensitive polymer. AICHE Journal, 2007, 53, 479-488.	1.8	70
362	DNA-enhanced assembly of [Ru(bpy)2ITATP]3+/2+ on an ITO electrode. Electrochimica Acta, 2007, 52, 4956-4961.	2.6	8
363	Metal nanodots formed and supported on chabazite and chabazite-like surfaces. Microporous and Mesoporous Materials, 2007, 103, 309-315.	2.2	24
364	Electrochemistry of a novel monoruthenated porphyrin and its interaction with DNA. Journal of Electroanalytical Chemistry, 2007, 600, 243-250.	1.9	25
365	Adsorbents for capturing mercury in coal-fired boiler flue gas. Journal of Hazardous Materials, 2007, 146, 1-11.	6.5	322
366	A novel method of measuring electrophoretic mobility of gas bubbles. Journal of Colloid and Interface Science, 2007, 308, 344-350.	5.0	128
367	Fundamental study on talc–ink adhesion for talc-assisted flotation deinking of wastepaper. Minerals Engineering, 2007, 20, 566-573.	1.8	9
368	DNA intercalating studies of [Ru(bpy)2HPIP]2+ with intramolecular hydrogen bond ligand based on introduction of copper ion. Transition Metal Chemistry, 2007, 32, 776-780.	0.7	10
369	Effect of Operating Temperature on Waterâ€Based Oil Sands Processing. Canadian Journal of Chemical Engineering, 2007, 85, 726-738.	0.9	47
370	Role of Flotation Reagents in Tuning Colloidal Forces for Sphalerite-Silica Separation. Canadian Metallurgical Quarterly, 2007, 46, 329-340.	0.4	1
371	Colloidal Interactions between Asphaltene Surfaces in Aqueous Solutions. Langmuir, 2006, 22, 1485-1492.	1.6	57
372	Adhesion of Single Polyelectrolyte Molecules on Silica, Mica, and Bitumen Surfaces. Langmuir, 2006, 22, 1652-1659.	1.6	41
373	Characterization of the Charge Carriers in Bitumen. Energy & 2006, 20, 2099-2108.	2.5	15
374	Langmuir Films of Bitumen at Oil/Water Interfaces. Energy & Samp; Fuels, 2006, 20, 1572-1578.	2.5	21
375	Effect of Divalent Cations and Surfactants on Silicaâ^Bitumen Interactions. Industrial & Engineering Chemistry Research, 2006, 45, 7482-7490.	1.8	46
376	Colloidal Interactions between Langmuirâ^'Blodgett Bitumen Films and Fine Solid Particles. Langmuir, 2006, 22, 8831-8839.	1.6	22
377	Isolation and Characterization of Interfacial Materials in Bitumen Emulsions. Energy & Empty Fuels, 2006, 20, 673-681.	2.5	13
378	Structural Effects Recorded for AFM Tips Interacting with Individual Nanoparticles and Their Clusters Deposited on Substrates. Langmuir, 2006, 22, 8850-8859.	1.6	10

#	Article	IF	Citations
379	Solids-Stabilized Emulsions: A Review. , 2006, , 186-224.		24
380	Role of illite–illite interactions in oil sands processing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 281, 202-214.	2.3	32
381	DNA-promoted electrochemical assembly of [Ru(bpy)2IP]3+/2+ at an ITO electrode. Electrochimica Acta, 2006, 51, 1996-2002.	2.6	16
382	AFM colloidal forces measured between microscopic probes and flat substrates in nanoparticle suspensions. Journal of Colloid and Interface Science, 2006, 301, 511-522.	5.0	50
383	Probing colloidal forces between a Si3N4 AFM tip and single nanoparticles of silica and alumina. Journal of Colloid and Interface Science, 2006, 303, 627-638.	5.0	26
384	Nanostructured Ni–WC–Co composite coatings fabricated by electrophoretic deposition. Surface and Coatings Technology, 2006, 200, 3896-3902.	2.2	41
385	Tribological and corrosion behaviors of Al2O3/polymer nanocomposite coatings. Wear, 2006, 260, 976-983.	1.5	117
386	Preparation of enriched cerium oxide from bastnasite with hydrochloric acid by two-step leaching. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2006, 37, 155-160.	1.0	28
387	Role of oily bubbles in enhancing bitumen flotation. Minerals Engineering, 2006, 19, 641-650.	1.8	54
388	Role of colloidal interactions in oil sand tailings treatment. AICHE Journal, 2006, 52, 371-383.	1.8	42
389	Fine Coal Beneficiation using an Air Dense Medium Fluidized Bed. Coal Preparation, 2006, 26, 1-15.	0.5	41
390	Effect of Illite Clay and Divalent Cations on Bitumen Recovery. Canadian Journal of Chemical Engineering, 2006, 84, 643-650.	0.9	21
391	Preparation of enriched cerium oxide from bastnasite with hydrochloric acid by two-step leaching. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 155-160.	1.1	0
392	Surface Charge Controlled Magnetic Nanoparticles with Grafting of Poly(4-vinylpyridine). Journal of Nanoscience and Nanotechnology, 2005, 5, 390-393.	0.9	6
393	DNA-binding and cleavage studies of novel copper(II) complex with l-phenylalaninate and 1,4,8,9-tetra-aza-triphenylene ligands. Journal of Inorganic Biochemistry, 2005, 99, 2240-2247.	1.5	104
394	An induction time model for the attachment of an air bubble to a hydrophobic sphere in aqueous solutions. International Journal of Mineral Processing, 2005, 75, 69-82.	2.6	32
395	Interaction forces in bitumen extraction from oil sands. Journal of Colloid and Interface Science, 2005, 287, 507-520.	5.0	98
396	Colloidal forces between bitumen surfaces in aqueous solutions measured with atomic force microscope. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 260, 217-228.	2.3	57

#	Article	IF	Citations
397	Pitting and stress corrosion cracking behavior in welded austenitic stainless steel. Electrochimica Acta, 2005, 50, 1391-1403.	2.6	202
398	Asphaltene Monolayers at a Toluene/Water Interfaceâ€. Energy & Fuels, 2005, 19, 1330-1336.	2.5	67
399	Coprecipitation of Nickel?Copper?Aluminum Takovite as Catalyst Precursors for Simultaneous Production of Carbon Nanofibers and Hydrogen ChemInform, 2005, 36, no.	0.1	1
400	Interactions of polypyridyl cobalt complexes with DNA studied by rotating electrode methods. Journal of Applied Electrochemistry, 2005, 35, 235-241.	1.5	9
401	Stacked metal cathode for high-contrast-ratio polymeric light-emitting devices. Applied Physics Letters, 2005, 86, 143514.	1.5	27
402	Processability of Oil Sand Ores in Alberta. Energy & Ener	2.5	47
403	Adsorption of Bituminous Components at Oil/Water Interfaces Investigated by Quartz Crystal Microbalance:Â Implications to the Stability of Water-in-Oil Emulsions. Langmuir, 2005, 21, 8278-8289.	1.6	64
404	Role of Acidified Sodium Silicate in Low Temperature Bitumen Extraction from Poor-Processing Oil Sand Ores. Industrial & Engineering Chemistry Research, 2005, 44, 4753-4761.	1.8	29
405	Synergetic Role of Polymer Flocculant in Low-Temperature Bitumen Extraction and Tailings Treatment. Energy & En	2.5	44
406	On the Role of Temperature in Oil Sands Processing. Energy & Samp; Fuels, 2005, 19, 1440-1446.	2.5	43
407	Coprecipitation of Nickelâ^'Copperâ^'Aluminum Takovite as Catalyst Precursors for Simultaneous Production of Carbon Nanofibers and Hydrogen. Chemistry of Materials, 2005, 17, 815-821.	3.2	49
408	Adhesion forces between functionalized probes and hydrophilic silica surfaces. Journal of Adhesion Science and Technology, 2005, 19, 149-163.	1.4	18
409	Silanation of Nanostructured Mesoporous Magnetic Particles for Heavy Metal Recovery. Industrial & Lamp; Engineering Chemistry Research, 2005, 44, 816-824.	1.8	40
410	Characterization of Adsorbed Athabasca Asphaltene Films at Solventâ [*] Water Interfaces Using a Langmuir Interfacial Trough. Industrial & Engineering Chemistry Research, 2005, 44, 1160-1174.	1.8	43
411	Drift Flux Modelling for a Two-Phase System in a Flotation Column. Canadian Journal of Chemical Engineering, 2005, 83, 169-176.	0.9	16
412	Recent advances in reverse flotation of diasporic ores––A Chinese experience. Minerals Engineering, 2004, 17, 1007-1015.	1.8	80
413	Role of macromolecules in kaolinite flotation. Minerals Engineering, 2004, 17, 1017-1022.	1.8	39
414	Effect of charged colloidal particles on adsorption of surfactants at oil–water interface. Journal of Colloid and Interface Science, 2004, 274, 625-630.	5.0	46

#	Article	IF	Citations
415	Template-Assisted Synthesis of Mesoporous Magnetic Nanocomposite Particles. Advanced Functional Materials, 2004, 14, 345-351.	7.8	162
416	Role of fine clays in bitumen extraction from oil sands. AICHE Journal, 2004, 50, 1917-1927.	1.8	105
417	Role of polyelectrolyte charge density in tuning colloidal forces. AICHE Journal, 2004, 50, 2613-2626.	1.8	24
418	Recovery of cadmium from a zinc hydrometallurgical leachate using reactive emulsion liquid membrane technology. Journal of Chemical Technology and Biotechnology, 2004, 79, 313-320.	1.6	13
419	A novel experimental technique to study single bubble–bitumen attachment in flotation. International Journal of Mineral Processing, 2004, 74, 15-29.	2.6	40
420	Fundamental Study on Mercury Release Characteristics during Thermal Upgrading of an Alberta Sub-bituminous Coal. Energy & Energy	2.5	15
421	Preparation of Poly(1-vinylimidazole)-Grafted Magnetic Nanoparticles and Their Application for Removal of Metal lons. Chemistry of Materials, 2004, 16, 1977-1983.	3.2	360
422	Understanding Waterâ€Based Bitumen Extraction from Athabasca Oil Sands. Canadian Journal of Chemical Engineering, 2004, 82, 628-654.	0.9	358
423	Interaction between Bitumen and Fines in Oil Sands Extraction System: Implication to Bitumen Recovery. Canadian Journal of Chemical Engineering, 2004, 82, 655-666.	0.9	74
424	Processibility of Athabasca Oil Sand Using a Laboratory Hyd ro t ransport Extraction System (LHES). Canadian Journal of Chemical Engineering, 2004, 82, 687-695.	0.9	21
425	Assessment of Bitumen Re c overy from the Athabasca Oil Sands Using a Laboratory Denver Flotation Cell. Canadian Journal of Chemical Engineering, 2004, 82, 696-703.	0.9	29
426	Effect of Temperature on the Stability of Froth Formed in the Recycle Process Water of Oil Sands Extraction. Canadian Journal of Chemical Engineering, 2004, 82, 801-806.	0.9	6
427	Langmuir and Langmuirâ€Blodgett Asphaltene Films at Heptaneâ€water Interface. Canadian Journal of Chemical Engineering, 2004, 82, 821-828.	0.9	14
428	Solution-chemistry analysis of ammonium bicarbonate consumption in rare-earth-element precipitation. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2003, 34, 611-617.	1.0	54
429	Role of crystal structure in flotation separation of diaspore from kaolinite, pyrophyllite and illite. Minerals Engineering, 2003, 16, 219-227.	1.8	139
430	Chlorination kinetics of fluorine-fixed rare earth concentrate. Minerals Engineering, 2003, 16, 671-674.	1.8	50
431	Effect of surface mobility on the particle sliding along a bubble or a solid sphere. Journal of Colloid and Interface Science, 2003, 259, 81-88.	5.0	20
432	Studies of Athabasca asphaltene Langmuir films at air–water interface. Journal of Colloid and Interface Science, 2003, 264, 128-140.	5.0	82

#	Article	IF	Citations
433	Effect of chemical composition on electrokinetics of diaspore. Journal of Colloid and Interface Science, 2003, 267, 211-216.	5.0	16
434	Electrokinetic study of clay interactions with coal in flotation. International Journal of Mineral Processing, 2003, 68, 183-196.	2.6	163
435	Attachment of individual particles to a stationary air bubble in model systems. International Journal of Mineral Processing, 2003, 68, 47-69.	2.6	41
436	Effects of physical environment on induction time of air–bitumen attachment. International Journal of Mineral Processing, 2003, 69, 235-250.	2.6	121
437	Interactions of amphoteric amino phosphoric acids with calcium-containing minerals and selective flotation. International Journal of Mineral Processing, 2003, 72, 87-94.	2.6	92
438	Role of fine kaolinite clay in toluene-diluted bitumen/water emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 215, 141-153.	2.3	61
439	Studies on Bitumenâ [°] 'Silica Interaction in Aqueous Solutions by Atomic Force Microscopy. Langmuir, 2003, 19, 3911-3920.	1.6	135
440	Solution Chemistry Study of Salt-type Mineral Flotation Systems:  Role of Inorganic Dispersants. Industrial & Dispersants Chemistry Research, 2003, 42, 1641-1647.	1.8	61
441	Measurement of Adhesive Forces during Coking of Athabasca Vacuum Residue. Industrial & Engineering Chemistry Research, 2003, 42, 3549-3554.	1.8	5
442	Langmuir and Langmuirâ-'Blodgett Films of Mixed Asphaltene and a Demulsifier. Langmuir, 2003, 19, 9730-9741.	1.6	104
443	Separation of Cobalt from a Nickel-Hydrometallurgical Effluent Using an Emulsion Liquid Membrane. Separation Science and Technology, 2003, 38, 3553-3574.	1.3	25
444	Stress corrosion crack initiation and propagation in longitudinally welded 304 austenitic stainless steel. Corrosion Engineering Science and Technology, 2003, 38, 69-75.	0.7	3
445	Bitumen Recovery with Oily Air Bubbles. Canadian Journal of Chemical Engineering, 2003, 81, 993-997.	0.9	35
446	Wettability Effect on Bubble Formation at a Rigid Porous Sparger. Canadian Metallurgical Quarterly, 2002, 41, 273-279.	0.4	1
447	Asphalteneâ^'Silica Interactions in Aqueous Solutions:Â Direct Force Measurements Combined with Electrokinetic Studies. Industrial & Electrokinetic Studies. In	1.8	60
448	Electrokinetic Study of Hexane Droplets in Surfactant Solutions and Process Water of Bitumen Extraction Systems. Industrial & Extraction Systems. Industrial & Extraction Systems. Industrial & Extraction Systems. Industrial & Extraction Systems.	1.8	38
449	Fundamental study of reactive oily-bubble flotation. Minerals Engineering, 2002, 15, 667-676.	1.8	80
450	Physical Characterization of a Chitosanâ€Based Hydrogel Delivery System. Journal of Pharmaceutical Sciences, 2002, 91, 1669-1677.	1.6	50

#	Article	IF	Citations
451	Adsorption from the Organic Phase in the Octanoic Acid–Octylamine–Silica System. Journal of Colloid and Interface Science, 2002, 252, 470-472.	5.0	O
452	Bitumen–Clay Interactions in Aqueous Media Studied by Zeta Potential Distribution Measurement. Journal of Colloid and Interface Science, 2002, 252, 409-418.	5.0	148
453	Kinetics of manganese reduction leaching from weathered rare-earth mud with sodium sulfite. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2002, 33, 41-46.	1.0	26
454	Novel poly(arylene ether) as membranes for gas separation. Journal of Membrane Science, 2002, 205, 23-31.	4.1	64
455	Influence of water-soluble and water-insoluble natural surface active components on the stability of water-in-toluene-diluted bitumen emulsion. Fuel, 2002, 81, 1859-1869.	3.4	60
456	Polyelectrolyte-Mediated Interaction between Similarly Charged Surfaces:Â Role of Divalent Counter lons in Tuning Surface Forces. Langmuir, 2001, 17, 8321-8327.	1.6	40
457	Sphalerite–silica interactions: effect of pH and calcium ions. International Journal of Mineral Processing, 2001, 61, 57-71.	2.6	31
458	Microstructure and optical properties of scandium oxide thin films prepared by metalorganic chemical-vapor deposition. Applied Physics Letters, 2001, 79, 3782-3784.	1.5	37
459	Effect of natural surfactants released from athabasca oil sands on air holdup in a water column. Canadian Journal of Chemical Engineering, 2000, 78, 617-624.	0.9	14
460	Effect of clays and calcium ions on bitumen extraction from athabasca oil sands using flotation. Canadian Journal of Chemical Engineering, 2000, 78, 674-681.	0.9	100
461	An integrated approach for coal tailings management. Canadian Journal of Chemical Engineering, 2000, 78, 780-784.	0.9	3
462	Selective arsenic-fixing roast of refractory gold concentrate. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2000, 31, 1163-1168.	1.0	13
463	A novel process for recovering rare earth from weathered black earth. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2000, 31, 191-196.	1.0	21
464	FLOTATION Pre-aeration of Feed., 2000, , 1556-1562.		1
465	In situ transmission electron microscopy study of electric-field-induced microcracking in single crystal Pb(Mg1/3Nb2/3)O3–PbTiO3. Applied Physics Letters, 2000, 76, 3732-3734.	1.5	43
466	A novel process for recovering clean coal and water from coal tailings. Minerals Engineering, 2000, 13, 173-181.	1.8	22
467	Advances in the Ambient Temperature Ferrite Process Applied to Acid Mine Drainage Treatment. Environmental Technology (United Kingdom), 2000, 21, 201-207.	1.2	2
468	Magnetic Seed in Ambient Temperature Ferrite Process Applied to Acid Mine Drainage Treatment. Environmental Science & Environm	4.6	40

#	Article	IF	Citations
469	Surface forces between sphalerite and silica particles in aqueous solutions. Journal of Adhesion Science and Technology, 2000, 14, 1813-1827.	1.4	18
470	Review of Magnetic Carrier Technologies for Metal Ion Removal. Magnetic & Electrical Separation, 1999, 9, 169-188.	0.5	35
471	Structural Determination Of A Novel Defect In SrBi2Ta2O9 Using Atomic-Resolution Z-Contrast Imaging. Microscopy and Microanalysis, 1999, 5, 112-113.	0.2	0
472	Commonalties of the influence of lower valent A-site and B-site modifications on lead zirconate titanate ferroelectrics and antiferroelectrics. Journal of Materials Research, 1999, 14, 465-475.	1.2	19
473	Effect of substituents with different valences on antiferroelectric stability of antiferroelectric lead zirconate ceramics. Journal of Materials Research, 1999, 14, 4251-4258.	1.2	17
474	In situ orientation study of xanthate on copper under potential control. Journal of Electroanalytical Chemistry, 1999, 475, 124-129.	1.9	8
475	Coagulation of bitumen with fine silica in model systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 148, 199-211.	2.3	56
476	A solution chemistry approach to the study of rare earth element precipitation by oxalic acid. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1999, 30, 189-195.	1.0	98
477	Role of Complexing Agents in Ferrite Formation under Ambient Conditions. Industrial & Engineering Chemistry Research, 1999, 38, 4689-4693.	1.8	13
478	Wettability of fine solids extracted from bitumen froth. Journal of Adhesion Science and Technology, 1999, 13, 1209-1224.	1.4	18
479	Effect of Depressants on Xanthate Adsorption on Pentlandite and Pyrrhotite: Single vs Mixed Minerals. Canadian Metallurgical Quarterly, 1999, 38, 105-112.	0.4	8
480	Electrokinetics and Wettability of Huebnerite and Ferberite. Journal of Colloid and Interface Science, 1998, 198, 209-215.	5.0	4
481	Interaction of Ionic Species and Fine Solids with a Low Energy Hydrophobic Surface from Contact Angle Measurement. Journal of Colloid and Interface Science, 1998, 204, 342-349.	5.0	27
482	Numerical and experimental study of a hydrodynamic cavitation tube. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1998, 29, 911-917.	1.0	11
483	Adsorption on silica in Pb and CaSO4CO3 systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 132, 159-171.	2.3	20
484	Interactions in the sphaleriteî—,Caî—,SO4î—,CO3 systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 137, 69-77.	2.3	26
485	Pentlandite/pyrrhotite interaction and xanthate adsorption. International Journal of Mineral Processing, 1998, 52, 203-214.	2.6	42
486	An agglomeration study of sulphide minerals using zeta-potential and settling rate. Part 1: Pyrite and galena. Minerals Engineering, 1998, 11, 159-169.	1.8	45

#	Article	IF	Citations
487	An agglomeration study of sulphide minerals using zeta potential and settling rate. Part II: sphalerite/pyrite and sphalerite/galena. Minerals Engineering, 1998, 11, 605-614.	1.8	39
488	Effect of diethylenetriamine on xanthane interaction with Pb-contaminated pyrite. Minerals Engineering, 1998, 11, 639-649.	1.8	10
489	A useful UV spectroscopic method for the determination of the concentration of diethylenetriamine (DETA) in aqueous mineral flotation solutions. Talanta, 1998, 46, 145-148.	2.9	6
490	Determination of the ordered structures of Pb(Mg1/3Nb2/3)O3 and Ba(Mg1/3Nb2/3)O3 by atomic-resolution Z-contrast imaging. Applied Physics Letters, 1998, 72, 3145-3147.	1.5	119
491	Relative Flotation Response of Zinc Sulfide: Mineral and Precipitate. Separation Science and Technology, 1998, 33, 819-833.	1.3	6
492	Effect of Surface Properties of Fine Particles on Dynamic Bubble Formation in Gas-Supersaturated Systems. Industrial & Engineering Chemistry Research, 1998, 37, 1998-2004.	1.8	15
493	The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics. Ferroelectrics, 1998, 206, 337-353.	0.3	354
494	A Novel Two-Step Silica-Coating Process for Engineering Magnetic Nanocomposites. Chemistry of Materials, 1998, 10, 3936-3940.	3.2	239
495	Effects of quenched disorder on La-modified lead zirconate titanate: Long- and short-range ordered structurally incommensurate phases, and glassy polar clusters. Journal of Applied Physics, 1998, 84, 458-471.	1.1	101
496	The characteristics of dc glow discharge and its effects on enhancement of diamond nucleation in HF-CVD system. Materials Research Society Symposia Proceedings, 1998, 555, 233.	0.1	0
497	Z-Contrast Imaging of Ordered Structures in Pb(Mg1/3Nb2/3)O3 and Ba(Mg1/3Nb2/3)O3. Microscopy and Microanalysis, 1998, 4, 554-555.	0.2	0
498	Effects of quenched impurities and relative antiferroelectric/ferroelectric phase stability on the incommensurately modulated polar structures of La-modified lead zirconate titanate. Applied Physics Letters, 1997, 71, 2280-2282.	1.5	11
499	A study of interactions and flotation of wolframite with octyl hydroxamate. Minerals Engineering, 1997, 10, 623-633.	1.8	40
500	An automated data acquisition technique for settling tests. Minerals Engineering, 1997, 10, 1095-1105.	1.8	18
501	Silanation and stability of 3-aminopropyl triethoxy silane on nanosized superparamagnetic particles: I. Direct silanation. Applied Surface Science, 1997, 120, 269-278.	3.1	136
502	Xanthate adsorption on Pb contaminated pyrite. International Journal of Mineral Processing, 1997, 49, 207-221.	2.6	21
503	Role of hydrodynamic cavitation in fine particle flotation. International Journal of Mineral Processing, 1997, 51, 139-149.	2.6	101
504	Pyrite flotation in the presence of metal ions and sphalerite. International Journal of Mineral Processing, 1997, 52, 187-201.	2.6	94

#	Article	IF	Citations
505	Functionalization and applications of nanosized \hat{l}^3 -Fe2O3 particles. Journal of Applied Physics, 1996, 79, 4702.	1.1	39
506	Forces between Crystalline Alumina (Sapphire) Surfaces in Aqueous Sodium Dodecyl Sulfate Surfactant Solutions. Langmuir, 1996, 12, 2263-2270.	1.6	36
507	Wetting of Mercury Surfaces by Halide Electrolyte Solutions. Langmuir, 1996, 12, 547-554.	1.6	13
508	Fundamental Study of an Ambient Temperature Ferrite Process in the Treatment of Acid Mine Drainage. Environmental Science & Environmental Science & Process in the Treatment of Acid Mine Drainage.	4.6	64
509	Infrared Spectroscopic Investigations of the Stability of Xanthate-Mineral Interaction Products. Applied Spectroscopy, 1996, 50, 521-527.	1.2	12
510	Development of in situ external reflection spectroscopy technique for adsorbed films. Minerals Engineering, 1996, 9, 351-355.	1.8	4
511	Domainlike Organizations in Ferroelectrics Containing Quenched Randomness. Materials Research Society Symposia Proceedings, 1996, 453, 419.	0.1	1
512	Effect of gas nuclei on the filtration of fine particles with different surface properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 113, 67-77.	2.3	12
513	Effect of Gas Nuclei on Hydrophobic Coagulation. Journal of Colloid and Interface Science, 1996, 179, 311-314.	5.0	41
514	Influence of lowerâ€valentAâ€site modifications on the structureâ€property relations of lead zirconate titanate. Journal of Applied Physics, 1996, 80, 5866-5874.	1.1	45
515	Correlation of freezing dynamics and domain-like states in relaxor ferroelectrics. Ferroelectrics, 1996, 176, 91-97.	0.3	2
516	Qualitative and Quantitative Evaluation of Heterogeneous Adsorbed Monolayers on Semiconductor Electrode by Infrared Reflection Spectroscopy. The Journal of Physical Chemistry, 1996, 100, 7181-7184.	2.9	12
517	Epitaxy and Monolayer Patterning of Solution-Derived LiNbO ₃ Thin Layers. Materials Research Society Symposia Proceedings, 1995, 401, 249.	0.1	6
518	Surface Ionization and Complexation at the Sphalerite/Water Interface. Journal of Colloid and Interface Science, 1995, 169, 414-421.	5.0	30
519	Surface Ionization and Complexation at the Sphalerite/Water Interface. Journal of Colloid and Interface Science, 1995, 175, 61-67.	5.0	4
520	Direct observation of a diblock copolymer-induced microemulsion at a polymer/polymer interface. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 2351-2357.	2.4	14
521	Structural Studies of Ordering in the (Pb1-xBax)(Mg1/3Nb2/3)O3 Crystalline Solution Series. Journal of the American Ceramic Society, 1995, 78, 2481-2489.	1.9	67
522	Longâ€time present tweedlike precursors and paraelectric clusters in ferroelectrics containing strong quenched randomness. Applied Physics Letters, 1995, 67, 2471-2473.	1.5	111

#	Article	IF	Citations
523	Self-Assembled Monolayer Coatings on Nanosized Magnetic Particles Using 16-Mercaptohexadecanoic Acid. Langmuir, 1995, 11, 4617-4622.	1.6	91
524	Measurement of Forces between Spontaneous Vesicle-Forming Bilayers. Langmuir, 1995, 11, 4256-4266.	1.6	54
525	Prediction of species distribution at sphalerite/water interface. Minerals Engineering, 1995, 8, 999-1007.	1.8	9
526	Metal ion production and transfer between sulphide minerals. Minerals Engineering, 1995, 8, 1523-1539.	1.8	39
527	An Evaluation of the van Oss-Chaudhury-Good Equation and Neumann's Equation of State Approach with Mercury Substrate. Langmuir, 1995, 11, 1044-1046.	1.6	27
528	Incommensuration in Laâ€modified antiferroelectric lead zirconate titanate ceramics. Applied Physics Letters, 1994, 65, 3287-3289.	1.5	33
529	Interactions of Silica Surfaces. Journal of Colloid and Interface Science, 1994, 165, 367-385.	5.0	538
530	Forces between Alumina Surfaces in Salt Solutions: Non-DLVO Forces and the Implications for Colloidal Processing. Journal of the American Ceramic Society, 1994, 77, 437-443.	1.9	127
531	The spontaneous relaxor to normal ferroelectric transformation in La-modified lead zirconate titanate. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1994, 70, 33-48.	0.6	191
532	On the role of cavitation in particle collection during flotation - a critical review. Minerals Engineering, 1994, 7, 1073-1084.	1.8	78
533	X-ray photoelectron and infrared spectroscopic investigation of sphalerite activation with iron. Langmuir, 1994, 10, 3582-3586.	1.6	12
534	Measurements of Hydrophobic and DLVO Forces in Bubble-Surface Interactions in Aqueous Solutions. Langmuir, 1994, 10, 3279-3289.	1.6	445
535	Origin ofFspots and stress sensitivity in lanthanum lead zirconate titanate. Journal of Applied Physics, 1993, 74, 7454-7460.	1.1	51
536	Chemical Processing and Properties of Nanocrystalline BaTiO ₃ . Materials Research Society Symposia Proceedings, 1992, 271, 339.	0.1	13
537	Structure and interactions of surfactant-covered surfaces in nonaqueous (oil-surfactant-water) media. Langmuir, 1992, 8, 2966-2975.	1.6	29
538	Preparation and Characterization of Sol-Gel Derived PbTiO ₃ Thin Layers on GaAs. Materials Research Society Symposia Proceedings, 1990, 200, 167.	0.1	10
539	A study of hydrophobic coagulation. Journal of Colloid and Interface Science, 1990, 134, 427-434.	5.0	102
540	Electron microscopy studies of high <i>T</i> _{<i>c</i>} phase development in melt-quenched Bi-Ca-Sr-Cu oxides. Journal of Materials Research, 1990, 5, 39-45.	1.2	24

#	Article	IF	CITATIONS
541	Growth twins in Bi ₂ Ca ₁ Sr ₂ Cu ₂ O ₈ superconductor single crystals. Journal of Materials Research, 1990, 5, 909-912.	1.2	9
542	The role of hydrophobia interactions in coagulation. Journal of Colloid and Interface Science, 1989, 132, 532-541.	5.0	108
543	Evolution of the High Tc Phase in Rapidly Solidified Bi-Ca-Sr-Cu Oxides. Materials Research Society Symposia Proceedings, 1989, 169, 329.	0.1	0
544	Incommensuration in "dirty" antiferroelectrics., 0,,.		1
545	Transmission electron microscopy study of strontium barium niobate relaxors. , 0, , .		0
546	Domain-like organizations in ferroelectrics containing quenched randomness., 0,,.		0
547	Sintering process of low temperature cofired ceramics. , 0, , .		1
548	Understanding bitumen recovery from oil sands through Colloidal and interfacial phenomena. , 0, , .		1
549	Effect of Depressants on Xanthate Adsorption on Pentlandite and Pyrrhotite: Single vs Mixed Minerals. , 0, .		3