
Rachel Jayne Standish

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1493983/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global metaâ€analysis reveals incomplete recovery of soil conditions and invertebrate assemblages after ecological restoration in agricultural landscapes. Journal of Applied Ecology, 2022, 59, 358-372.	4.0	20
2	Agricultural landâ€use favours Mucoromycotinian, but not Glomeromycotinian, arbuscular mycorrhizal fungi across ten biomes. New Phytologist, 2022, 233, 1369-1382.	7.3	19
3	Oldâ€field restoration improves habitat for ants in a semiâ€arid landscape. Restoration Ecology, 2022, 30, e13605.	2.9	2
4	Phosphorus supply affects seedling growth of mycorrhizal but not cluster-root forming jarrah-forest species. Plant and Soil, 2022, 472, 577-594.	3.7	6
5	<scp>P</scp> is for persistence: Soil phosphorus remains elevated for more than a decade after old field restoration. Ecological Applications, 2022, 32, e2547.	3.8	7
6	Plant size and neighbourhood characteristics influence survival and growth in a restored exâ€agricultural ecosystem. Ecological Solutions and Evidence, 2022, 3, .	2.0	3
7	Transformation archetypes in global food systems. Sustainability Science, 2022, 17, 1827-1840.	4.9	8
8	Ecological interactions among microbial functional guilds in the plant-soil system and implications for ecosystem function. Plant and Soil, 2022, 476, 301-313.	3.7	14
9	Nitrogen but not phosphorus addition affects symbiotic N2 fixation by legumes in natural and semi-natural grasslands located on four continents. Plant and Soil, 2022, 478, 689-707.	3.7	11
10	Abiotic and biotic responses to woody debris additions in restored old fields in a multiâ€site <scp>Beforeâ€Afterâ€Controlâ€Impact</scp> experiment. Ecology and Evolution, 2022, 12, .	1.9	0
11	Best served deep: The seedbank from salvaged topsoil underscores the role of the dispersal filter in restoration practice. Applied Vegetation Science, 2021, 24, .	1.9	5
12	Evidence for Niche Differentiation in the Environmental Responses of Co-occurring Mucoromycotinian Fine Root Endophytes and Glomeromycotinian Arbuscular Mycorrhizal Fungi. Microbial Ecology, 2021, 81, 864-873.	2.8	17
13	Mine completion criteria defined by best-practice: A global meta-analysis and Western Australian case studies. Journal of Environmental Management, 2021, 282, 111912.	7.8	13
14	A framework for measuring the effects of disturbance in restoration projects. Restoration Ecology, 2021, 29, e13379.	2.9	8
15	Genetic and mating system assessment of translocation success of the longâ€lived perennial shrub <i>Lambertia orbifolia</i> (Proteaceae). Restoration Ecology, 2021, 29, e13369.	2.9	9
16	Global change shifts tradeâ€offs among ecosystem functions in woodlands restored for multifunctionality. Journal of Applied Ecology, 2021, 58, 1705-1717.	4.0	5
17	Nutrient enrichment diminishes plant diversity and density, and alters long-term ecological trajectories, in a biodiverse forest restoration. Ecological Engineering, 2021, 165, 106222.	3.6	12
18	Beyond species richness and community composition: Using plant functional diversity to measure restoration success in jarrah forest. Applied Vegetation Science, 2021, 24, e12607.	1.9	4

#	Article	IF	CITATIONS
19	Recovery of woody but not herbaceous native flora 10 years post oldâ€field restoration. Ecological Solutions and Evidence, 2021, 2, e12097.	2.0	8
20	Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	40
21	Mycorrhizal symbiosis and phosphorus supply determine interactions among plants with contrasting nutrientâ€acquisition strategies. Journal of Ecology, 2021, 109, 3892-3902.	4.0	10
22	AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.	5.3	73
23	Opposing community assembly patterns for dominant and nondominant plant species in herbaceous ecosystems globally. Ecology and Evolution, 2021, 11, 17744-17761.	1.9	8
24	Potential benefits of biodiversity to Australian vegetation projects registered with the Emissions Reduction Fund—is there a carbonâ€biodiversity tradeâ€off?. Ecological Management and Restoration, 2020, 21, 165-172.	1.5	11
25	Towards a bridging concept for undesirable resilience in social-ecological systems. Global Sustainability, 2020, 3, .	3.3	33
26	A framework for developing completion criteria for mine closure and rehabilitation. Journal of Environmental Management, 2020, 273, 111078.	7.8	33
27	Nonâ€native plants and nitrogen addition have little effect on pollination and seed set in 3â€yearâ€old restored woodland. Austral Ecology, 2020, 45, 1156-1168.	1.5	1
28	First Cryo-Scanning Electron Microscopy Images and X-Ray Microanalyses of Mucoromycotinian Fine Root Endophytes in Vascular Plants. Frontiers in Microbiology, 2020, 11, 2018.	3.5	16
29	Field-Deployed Extruded Seed Pellets Show Promise for Perennial Grass Establishment in Arid Zone Mine Rehabilitation. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	13
30	Microbial processing of plant remains is coâ€limited by multiple nutrients in global grasslands. Global Change Biology, 2020, 26, 4572-4582.	9.5	27
31	Resilience trinity: safeguarding ecosystem functioning and services across three different time horizons and decision contexts. Oikos, 2020, 129, 445-456.	2.7	33
32	Richard J. Hobbs: how one ecologist has influenced the way we think about restoration ecology. Restoration Ecology, 2020, 28, 1042-1046.	2.9	0
33	Integrating diverse social and ecological motivations to achieve landscape restoration. Journal of Applied Ecology, 2019, 56, 246-252.	4.0	28
34	Benefits of mycorrhizal inoculation to ecological restoration depend on plant functional type, restoration context and time. Fungal Ecology, 2019, 40, 140-149.	1.6	103
35	Ten years of pulling: Ecosystem recovery after longâ€ŧerm weed management in Garry oak savanna. Conservation Science and Practice, 2019, 1, e92.	2.0	4
36	Rethinking soil water repellency and its management. Plant Ecology, 2019, 220, 977-984.	1.6	8

RACHEL JAYNE STANDISH

#	Article	IF	CITATIONS
37	Enduring effects of large legumes and phosphorus fertiliser on jarrah forest restoration 15†years after bauxite mining. Forest Ecology and Management, 2019, 438, 204-214.	3.2	15
38	Applied phosphorus has long-term impacts on vegetation responses in restored jarrah forest. , 2019, , .		4
39	The role of landscape connectivity in resistance, resilience, and recovery of multiâ€ŧrophic microarthropod communities. Ecology, 2018, 99, 1164-1172.	3.2	13
40	Threats to biodiversity from cumulative human impacts in one of North America's last wildlife frontiers. Conservation Biology, 2018, 32, 672-684.	4.7	53
41	Novel ecosystems: Governance and conservation in the age of the Anthropocene. Journal of Environmental Management, 2018, 208, 36-45.	7.8	38
42	Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology and Evolution, 2018, 2, 50-56.	7.8	172
43	Movers and Stayers: Novel Assemblages in Changing Environments. Trends in Ecology and Evolution, 2018, 33, 116-128.	8.7	52
44	Effect of plant root symbionts on performance of native woody species in competition with an invasive grass in multispecies microcosms. Ecology and Evolution, 2018, 8, 8652-8664.	1.9	6
45	Nestedness patterns reveal impacts of reduced rainfall on seedling establishment in restored jarrah forest. Forest Ecology and Management, 2018, 427, 242-249.	3.2	4
46	Fine root endophytes under scrutiny: a review of the literature on arbuscule-producing fungi recently suggested to belong to the Mucoromycotina. Mycorrhiza, 2017, 27, 619-638.	2.8	67
47	Correlation between soil development and native plant growth in forest restoration after surface mining. Ecological Engineering, 2017, 106, 209-218.	3.6	32
48	Using structured decisionâ€making to set restoration objectives when multiple values and preferences exist. Restoration Ecology, 2017, 25, 858-865.	2.9	33
49	Fine endophytes (<i>Clomus tenue</i>) are related to Mucoromycotina, not Clomeromycota. New Phytologist, 2017, 213, 481-486.	7.3	101
50	Global resource acquisition patterns of invasive and native plant species do not hold at the regional scale in Mediterranean type ecosystems. Biological Invasions, 2017, 19, 1143-1151.	2.4	15
51	Isolation predicts compositional change after discrete disturbances in a global metaâ€study. Ecography, 2017, 40, 1256-1266.	4.5	18
52	Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness― Science, 2016, 351, 457-457.	12.6	16
53	Plant functional traits of dominant native and invasive species in mediterraneanâ€elimate ecosystems. Ecology, 2016, 97, 75-83.	3.2	123
54	Advances in restoration ecology: rising to the challenges of the coming decades. Ecosphere, 2015, 6, 1-25.	2.2	361

RACHEL JAYNE STANDISH

#	Article	IF	CITATIONS
55	Longâ€ŧerm data suggest jarrahâ€forest establishment at restored mine sites is resistant to climate variability. Journal of Ecology, 2015, 103, 78-89.	4.0	31
56	Soil conditioning and plant-soil feedbacks in a modified forest ecosystem are soil-context dependent. Plant and Soil, 2015, 390, 183-194.	3.7	10
57	Soil-vegetation type, stem density and species richness influence biomass of restored woodland in south-western Australia. Forest Ecology and Management, 2015, 344, 53-62.	3.2	12
58	Phosphorus fertilisation and large legume species affect jarrah forest restoration after bauxite mining. Forest Ecology and Management, 2015, 354, 10-17.	3.2	23
59	Experimental evidence that even minor livestock trampling has severe effects on land snail communities in forest remnants. Journal of Applied Ecology, 2015, 52, 161-170.	4.0	10
60	Seedling emergence and summer survival after direct seeding for woodland restoration on old fields in southâ€western <scp>A</scp> ustralia. Ecological Management and Restoration, 2014, 15, 140-146.	1.5	31
61	Managing the whole landscape: historical, hybrid, and novel ecosystems. Frontiers in Ecology and the Environment, 2014, 12, 557-564.	4.0	378
62	Identifying management options for modified vegetation: Application of the novel ecosystems framework to a case study in the Galapagos Islands. Biological Conservation, 2014, 172, 37-48.	4.1	36
63	Coâ€benefits of planting species mixes in carbon projects. Ecological Management and Restoration, 2014, 15, 26-29.	1.5	12
64	Resilience in ecology: Abstraction, distraction, or where the action is?. Biological Conservation, 2014, 177, 43-51.	4.1	325
65	How will climate variability interact with long-term climate change to affect the persistence of plant species in fragmented landscapes?. Environmental Conservation, 2014, 41, 110-121.	1.3	16
66	Incorporating novelty and novel ecosystems into restoration planning and practice in the 21st century. Ecological Processes, 2013, 2, .	3.9	70
67	Primed for Change: Developing Ecological Restoration for the 21st Century. Restoration Ecology, 2013, 21, 297-304.	2.9	147
68	Benefits of tree mixes in carbon plantings. Nature Climate Change, 2013, 3, 869-874.	18.8	141
69	Improving city life: options for ecological restoration in urban landscapes and how these might influence interactions between people and nature. Landscape Ecology, 2013, 28, 1213-1221.	4.2	129
70	Nitrogen and phosphorus fertilizer regime affect jarrah forest restoration after bauxite mining in <scp>W</scp> estern <scp>A</scp> ustralia. Applied Vegetation Science, 2013, 16, 610-618.	1.9	30
71	Habitat restoration will help some functional plant types persist under climate change in fragmented landscapes. Global Change Biology, 2012, 18, 2057-2070.	9.5	37
72	The Ridgefield Multiple Ecosystem Services Experiment: Can restoration of former agricultural land achieve multiple outcomes?. Agriculture, Ecosystems and Environment, 2012, 163, 14-27.	5.3	52

#	Article	IF	CITATIONS
73	Facilitating adaptation of biodiversity to climate change: a conceptual framework applied to the world's largest Mediterranean-climate woodland. Climatic Change, 2012, 110, 227-248.	3.6	89
74	Seed mass and summer drought survival in a Mediterranean-climate ecosystem. Plant Ecology, 2011, 212, 1479-1489.	1.6	44
75	After the fence: vegetation and topsoil condition in grazed, fenced and benchmark eucalypt woodlands of fragmented agricultural landscapes. Australian Journal of Botany, 2011, 59, 369.	0.6	27
76	Restoration of OCBILs in south-western Australia: Response to Hopper. Plant and Soil, 2010, 330, 15-18.	3.7	14
77	Landâ€use legacy and the persistence of invasive <i>Avena barbata</i> on abandoned farmland. Journal of Applied Ecology, 2008, 45, 1576-1583.	4.0	56
78	What's new about old fields? Land abandonment and ecosystem assembly. Trends in Ecology and Evolution, 2008, 23, 104-112.	8.7	668
79	Restoring Jarrah Forest after Bauxite Mining in Western Australia — The Effect of Fertilizer on Floristic Diversity and Composition. , 2008, , .		4
80	Invasion by a Perennial Herb Increases Decomposition Rate and Alters Nutrient Availability in Warm Temperate Lowland Forest Remnants. Biological Invasions, 2004, 6, 71-81.	2.4	62
81	Impact of an invasive clonal herb on epigaeic invertebrates in forest remnants in New Zealand. Biological Conservation, 2004, 116, 49-58.	4.1	49
82	The impact of an invasive weed Tradescantia fluminensis on native forest regeneration. Journal of Applied Ecology, 2001, 38, 1253-1263.	4.0	127
83	Capacity for change: three core attributes of adaptive capacity that bolster restoration efficacy. Restoration Ecology, 0, , .	2.9	6