Elizabeth M Rhea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1493950/publications.pdf

Version: 2024-02-01

27 papers 1,436 citations

16 h-index 27 g-index

27 all docs

27 docs citations

times ranked

27

2072 citing authors

#	Article	IF	Citations
1	The S1 protein of SARS-CoV-2 crosses the blood–brain barrier in mice. Nature Neuroscience, 2021, 24, 368-378.	14.8	295
2	Gut reactions: How the blood–brain barrier connects the microbiome and the brain. Experimental Biology and Medicine, 2018, 243, 159-165.	2.4	161
3	Role of the Blood-Brain Barrier in Central Nervous System Insulin Resistance. Frontiers in Neuroscience, 2019, 13, 521.	2.8	159
4	Healthy aging and the blood–brain barrier. Nature Aging, 2021, 1, 243-254.	11.6	116
5	Interactions of SARS-CoV-2 with the Blood–Brain Barrier. International Journal of Molecular Sciences, 2021, 22, 2681.	4.1	99
6	Blood-Brain Barriers in Obesity. AAPS Journal, 2017, 19, 921-930.	4.4	95
7	Insulin transport across the blood–brain barrier can occur independently of the insulin receptor. Journal of Physiology, 2018, 596, 4753-4765.	2.9	94
8	Ghrelin transport across the blood–brain barrier can occur independently of the growth hormone secretagogue receptor. Molecular Metabolism, 2018, 18, 88-96.	6.5	59
9	Brain uptake pharmacokinetics of incretin receptor agonists showing promise as Alzheimer's and Parkinson's disease therapeutics. Biochemical Pharmacology, 2020, 180, 114187.	4.4	57
10	Insulin resistance, dyslipidemia, and apolipoprotein E interactions as mechanisms in cognitive impairment and Alzheimer's disease. Experimental Biology and Medicine, 2016, 241, 1676-1683.	2.4	34
11	Interactions of Lipids, Lipoproteins, and Apolipoproteins with the Blood-Brain Barrier. Pharmaceutical Research, 2021, 38, 1469-1475.	3.5	34
12	ApoE and cerebral insulin: Trafficking, receptors, and resistance. Neurobiology of Disease, 2020, 137, 104755.	4.4	32
13	Routes for the delivery of insulin to the central nervous system: A comparative review. Experimental Neurology, 2019, 313, 10-15.	4.1	29
14	The Blood–Brain Barrier, Oxidative Stress, and Insulin Resistance. Antioxidants, 2021, 10, 1695.	5.1	28
15	A historical perspective on the interactions of insulin at the bloodâ€brain barrier. Journal of Neuroendocrinology, 2021, 33, e12929.	2.6	18
16	Insulin Resistance in Peripheral Tissues and the Brain: A Tale of Two Sites. Biomedicines, 2022, 10, 1582.	3.2	18
17	Intranasal Insulin Transport is Preserved inÂAged SAMP8 Mice and is Altered by Albumin and Insulin Receptor Inhibition. Journal of Alzheimer's Disease, 2017, 57, 241-252.	2.6	17
18	Intracellular ascorbate tightens the endothelial permeability barrier through Epac1 and the tubulin cytoskeleton. American Journal of Physiology - Cell Physiology, 2016, 311, C652-C662.	4.6	16

#	Article	IF	CITATION
19	The SAMP8 mouse for investigating memory and the role of insulin in the brain. Experimental Gerontology, 2017, 94, 64-68.	2.8	15
20	Molecular Mechanisms of Intranasal Insulin in SAMP8 Mice. Journal of Alzheimer's Disease, 2019, 71, 1361-1373.	2.6	12
21	Insulin BBB pharmacokinetics in young apoE male and female transgenic mice. PLoS ONE, 2020, 15, e0228455.	2.5	10
22	Effects of apolipoprotein E isoform, sex, and diet on insulin BBB pharmacokinetics in mice. Scientific Reports, 2021, 11, 18636.	3.3	8
23	Insulin blood-brain barrier transport and interactions are greater following exercise in mice. Journal of Applied Physiology, 2022, 132, 824-834.	2.5	8
24	Intranasal Delivery: Effects on the Neuroimmune Axes and Treatment of Neuroinflammation. Pharmaceutics, 2020, 12, 1120.	4.5	7
25	Effect of controlled cortical impact on the passage of pituitary adenylate cyclase activating polypeptide (PACAP) across the blood-brain barrier. Peptides, 2018, 99, 8-13.	2.4	6
26	The impact of acute rosiglitazone on insulin pharmacokinetics at the bloodâ€brain barrier. Endocrinology, Diabetes and Metabolism, 2020, 3, e00149.	2.4	6
27	Effects of Rapamycin on Insulin Brain Endothelial Cell Binding and Blood–Brain Barrier Transport. Medical Sciences (Basel, Switzerland), 2021, 9, 56.	2.9	3