
## James B Phillips

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1493577/publications.pdf Version: 2024-02-01



IAMES R DHILLIDS

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A Shock to the (Nervous) System: Bioelectricity Within Peripheral Nerve Tissue Engineering. Tissue<br>Engineering - Part B: Reviews, 2022, 28, 1137-1150.                                                     | 4.8 | 6         |
| 2  | An alginate-based encapsulation system for delivery of therapeutic cells to the CNS. RSC Advances, 2022, 12, 4005-4015.                                                                                       | 3.6 | 9         |
| 3  | <i>In silico</i> framework to inform the design of repair constructs for peripheral nerve injury repair. Journal of the Royal Society Interface, 2022, 19, 20210824.                                          | 3.4 | 4         |
| 4  | Novel inhibitors of AChE and $\hat{Al^2}$ aggregation with neuroprotective properties as lead compounds for the treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, 2022, 235, 114305. | 5.5 | 19        |
| 5  | A combined experimental and computational framework to evaluate the behavior of therapeutic cells for peripheral nerve regeneration. Biotechnology and Bioengineering, 2022, 119, 1980-1996.                  | 3.3 | 3         |
| 6  | Drug Therapies for Peripheral Nerve Injuries. Reference Series in Biomedical Engineering, 2022, ,<br>437-463.                                                                                                 | 0.1 | 0         |
| 7  | Collagen Biomaterials for Nerve Tissue Engineering. Reference Series in Biomedical Engineering, 2022, ,<br>353-382.                                                                                           | 0.1 | 0         |
| 8  | The molecular profile of nerve repair: humans mirror rodents. Neural Regeneration Research, 2021, 16, 1440.                                                                                                   | 3.0 | 4         |
| 9  | Engineered Tissues Made from Human iPSC-Derived Schwann Cells for Investigating Peripheral Nerve<br>Regeneration In Vitro. Methods in Molecular Biology, 2021, 2269, 245-254.                                 | 0.9 | 2         |
| 10 | Materials for peripheral nerve repair constructs: Natural proteins or synthetic polymers?.<br>Neurochemistry International, 2021, 143, 104953.                                                                | 3.8 | 39        |
| 11 | Engineered aligned endothelial cell structures in tethered collagen hydrogels promote peripheral nerve regeneration. Acta Biomaterialia, 2021, 126, 224-237.                                                  | 8.3 | 34        |
| 12 | Natural Biomaterials as Instructive Engineered Microenvironments That Direct Cellular Function in<br>Peripheral Nerve Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2021, 9, 674473.     | 4.1 | 17        |
| 13 | Modelling-informed cell-seeded nerve repair construct designs for treating peripheral nerve injuries.<br>PLoS Computational Biology, 2021, 17, e1009142.                                                      | 3.2 | 3         |
| 14 | â€~EngNT' — Engineering live neural tissue for nerve replacement. Emerging Topics in Life Sciences, 2021,<br>5, 699-703.                                                                                      | 2.6 | 2         |
| 15 | Engineered neural tissue made using clinical-grade human neural stem cells supports regeneration in<br>a long gap peripheral nerve injury model. Acta Biomaterialia, 2021, 135, 203-213.                      | 8.3 | 17        |
| 16 | Repurposing Small Molecules to Target PPAR-Î <sup>3</sup> as New Therapies for Peripheral Nerve Injuries.<br>Biomolecules, 2021, 11, 1301.                                                                    | 4.0 | 9         |
| 17 | Volumetric MRI is a promising outcome measure of muscle reinnervation. Scientific Reports, 2021, 11, 22433.                                                                                                   | 3.3 | 3         |
| 18 | Neural cell responses to wear debris from metal-on-metal total disc replacements. European Spine<br>Journal, 2020, 29, 2701-2712.                                                                             | 2.2 | 4         |

| #  | Article                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Quantifying regeneration in patients following peripheral nerve injury. Journal of Plastic,<br>Reconstructive and Aesthetic Surgery, 2020, 73, 201-208.                            | 1.0  | 18        |
| 20 | Mechanical Response of Neural Cells to Physiologically Relevant Stiffness Gradients. Advanced<br>Healthcare Materials, 2020, 9, e1901036.                                          | 7.6  | 41        |
| 21 | Perspective on Schwann Cells Derived from Induced Pluripotent Stem Cells in Peripheral Nerve Tissue<br>Engineering. Cells, 2020, 9, 2497.                                          | 4.1  | 39        |
| 22 | Combining Stem Cells and Materials for Nerve Tissue Regeneration. , 2020, , 269-281.                                                                                               |      | 0         |
| 23 | Mechanical properties of the spinal cord and brain: Comparison with clinical-grade biomaterials for tissue engineering and regenerative medicine. Biomaterials, 2020, 258, 120303. | 11.4 | 39        |
| 24 | Combining in silico and in vitro models to inform cell seeding strategies in tissue engineering.<br>Journal of the Royal Society Interface, 2020, 17, 20190801.                    | 3.4  | 15        |
| 25 | Cell Therapies for Spinal Cord Injury: Trends and Challenges of Current Clinical Trials. Neurosurgery, 2020, 87, E456-E472.                                                        | 1.1  | 24        |
| 26 | Three-dimensional culture systems in central nervous system research. , 2020, , 571-601.                                                                                           |      | 2         |
| 27 | Strategies for Peripheral Nerve Repair. Current Tissue Microenvironment Reports, 2020, 1, 49-59.                                                                                   | 3.2  | 18        |
| 28 | Characterising cellular and molecular features of human peripheral nerve degeneration. Acta<br>Neuropathologica Communications, 2020, 8, 51.                                       | 5.2  | 34        |
| 29 | Controlled local release of PPARÎ <sup>3</sup> agonists from biomaterials to treat peripheral nerve injury. Journal of Neural Engineering, 2020, 17, 046030.                       | 3.5  | 11        |
| 30 | Rapidly formed stable and aligned dense collagen gels seeded with Schwann cells support peripheral nerve regeneration. Journal of Neural Engineering, 2020, 17, 046036.            | 3.5  | 33        |
| 31 | A Tenon's capsule/bulbar conjunctiva interface biomimetic to model fibrosis and local drug delivery.<br>PLoS ONE, 2020, 15, e0241569.                                              | 2.5  | 8         |
| 32 | Collagen Biomaterials for Nerve Tissue Engineering. , 2020, , 1-30.                                                                                                                |      | 0         |
| 33 | Drug Therapies for Peripheral Nerve Injuries. , 2020, , 1-27.                                                                                                                      |      | 1         |
| 34 | Microscopic biophysical model of self-organization in tissue due to feedback between cell- and macroscopic-scale forces. Physical Review Research, 2020, 2, .                      | 3.6  | 2         |
| 35 | Title is missing!. , 2020, 15, e0241569.                                                                                                                                           |      | 0         |
| 36 | Title is missing!. , 2020, 15, e0241569.                                                                                                                                           |      | 0         |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Title is missing!. , 2020, 15, e0241569.                                                                                                                                                                                  |     | 0         |
| 38 | Title is missing!. , 2020, 15, e0241569.                                                                                                                                                                                  |     | 0         |
| 39 | Physical and mechanical properties of RAFT-stabilised collagen gels for tissue engineering applications. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 99, 216-224.                                   | 3.1 | 8         |
| 40 | Editorial: Peripheral Nerve Regeneration. Frontiers in Cellular Neuroscience, 2019, 13, 464.                                                                                                                              | 3.7 | 5         |
| 41 | Generation of c-MycERTAM-transduced human late-adherent olfactory mucosa cells for potential regenerative applications. Scientific Reports, 2019, 9, 13190.                                                               | 3.3 | 4         |
| 42 | The Effects of Surgical Antiseptics and Time Delays on RNA Isolated From Human and Rodent Peripheral<br>Nerves. Frontiers in Cellular Neuroscience, 2019, 13, 189.                                                        | 3.7 | 4         |
| 43 | An allogeneic â€~off the shelf' therapeutic strategy for peripheral nerve tissue engineering using clinical grade human neural stem cells. Scientific Reports, 2018, 8, 2951.                                             | 3.3 | 43        |
| 44 | An Optimized Collagen-Fibrin Blend Engineered Neural Tissue Promotes Peripheral Nerve Repair. Tissue<br>Engineering - Part A, 2018, 24, 1332-1340.                                                                        | 3.1 | 42        |
| 45 | An integrated theoretical-experimental approach to accelerate translational tissue engineering.<br>Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e53-e59.                                            | 2.7 | 16        |
| 46 | Controlling human corneal stromal stem cell contraction to mediate rapid cell and matrix<br>organization of real architecture for 3-dimensional tissue equivalents. Acta Biomaterialia, 2018, 67,<br>229-237.             | 8.3 | 18        |
| 47 | Schwann cells and mesenchymal stem cells in laminin- or fibronectin-aligned matrices and regeneration across a critical size defect of 15 mm in the rat sciatic nerve. Journal of Neurosurgery: Spine, 2018, 28, 109-118. | 1.7 | 48        |
| 48 | Low frequency oscillating gradient spin-echo sequences improve sensitivity to axon diameter: An experimental study in viable nerve tissue. Neurolmage, 2018, 182, 314-328.                                                | 4.2 | 31        |
| 49 | Vascularization Strategies for Peripheral Nerve Tissue Engineering. Anatomical Record, 2018, 301, 1657-1667.                                                                                                              | 1.4 | 70        |
| 50 | Developing an <i>In Vitro</i> Model to Screen Drugs for Nerve Regeneration. Anatomical Record, 2018, 301, 1628-1637.                                                                                                      | 1.4 | 25        |
| 51 | Stabilization, Rolling, and Addition of Other Extracellular Matrix Proteins to Collagen Hydrogels<br>Improve Regeneration in Chitosan Guides for Long Peripheral Nerve Gaps in Rats. Neurosurgery, 2017,<br>80, 465-474.  | 1.1 | 49        |
| 52 | Adapting tissue-engineered in vitro CNS models for high-throughput study of neurodegeneration.<br>Journal of Tissue Engineering, 2017, 8, 204173141769792.                                                                | 5.5 | 9         |
| 53 | Could clinical photochemical internalisation be optimised to avoid neuronal toxicity?. International Journal of Pharmaceutics, 2017, 528, 133-143.                                                                        | 5.2 | 12        |
| 54 | Engineered neural tissue with Schwann cell differentiated human dental pulp stem cells: potential<br>for peripheral nerve repair?. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11,<br>3362-3372.       | 2.7 | 82        |

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Combining Gene and Stem Cell Therapy for Peripheral Nerve Tissue Engineering. Stem Cells and Development, 2017, 26, 231-238.                                                                                              | 2.1  | 23        |
| 56 | The Effect of Hypothermic and Cryogenic Preservation on Engineered Neural Tissue. Tissue<br>Engineering - Part C: Methods, 2017, 23, 575-582.                                                                             | 2.1  | 20        |
| 57 | Using Stem Cells to Grow Artificial Tissue for Peripheral Nerve Repair. Stem Cells International, 2016, 2016, 1-18.                                                                                                       | 2.5  | 49        |
| 58 | Electrostatic self-assembled graphene oxide-collagen scaffolds towards a three-dimensional microenvironment for biomimetic applications. RSC Advances, 2016, 6, 49039-49051.                                              | 3.6  | 35        |
| 59 | Biomechanical properties of the spinal cord: implications for tissue engineering and clinical translation. Regenerative Medicine, 2016, 11, 659-673.                                                                      | 1.7  | 31        |
| 60 | Label-free mapping of microstructural organisation in self-aligning cellular collagen hydrogels using image correlation spectroscopy. Acta Biomaterialia, 2016, 30, 258-264.                                              | 8.3  | 12        |
| 61 | Embryonic and mature astrocytes exert different effects on neuronal growth in rat ventral mesencephalic slice cultures. SpringerPlus, 2015, 4, 558.                                                                       | 1.2  | 3         |
| 62 | Engineered neural tissue with aligned, differentiated adipose-derived stem cells promotes peripheral nerve regeneration across a critical sized defect in rat sciatic nerve. Biomaterials, 2015, 37, 242-251.             | 11.4 | 186       |
| 63 | Optimising contraction and alignment of cellular collagen hydrogels to achieve reliable and consistent engineered anisotropic tissue. Journal of Biomaterials Applications, 2015, 30, 599-607.                            | 2.4  | 29        |
| 64 | A three-dimensional model of the human blood-brain barrier to analyse the transport of nanoparticles and astrocyte/endothelial interactions. F1000Research, 2015, 4, 1279.                                                | 1.6  | 15        |
| 65 | A three-dimensional model of the human blood-brain barrier to analyse the transport of nanoparticles and astrocyte/endothelial interactions. F1000Research, 2015, 4, 1279.                                                | 1.6  | 24        |
| 66 | A three-dimensional collagen construct to model lipopolysaccharide-induced activation of BV2 microglia. Journal of Neuroinflammation, 2014, 11, 134.                                                                      | 7.2  | 24        |
| 67 | Building stable anisotropic tissues using cellular collagen gels. Organogenesis, 2014, 10, 6-8.                                                                                                                           | 1.2  | 18        |
| 68 | Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite<br>outgrowth in an aligned tissueâ€engineered collagen construct <i>in vitro</i> . FASEB Journal, 2014, 28,<br>1634-1643. | 0.5  | 162       |
| 69 | Monitoring Neuron and Astrocyte Interactions with a 3D Cell Culture System. Methods in Molecular<br>Biology, 2014, 1162, 113-124.                                                                                         | 0.9  | 18        |
| 70 | Targeting tumour energy metabolism potentiates the cytotoxicity of 5-aminolevulinic acid photodynamic therapy. British Journal of Cancer, 2013, 109, 976-982.                                                             | 6.4  | 44        |
| 71 | Engineered neural tissue for peripheral nerve repair. Biomaterials, 2013, 34, 7335-7343.                                                                                                                                  | 11.4 | 185       |
| 72 | Fully Protected Glycosylated Zinc (II) Phthalocyanine Shows High Uptake and Photodynamic<br>Cytotoxicity in MCFâ€7 Cancer Cells. Photochemistry and Photobiology, 2013, 89, 139-149.                                      | 2.5  | 34        |

| #  | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | A 3D <i>in vitro</i> model reveals differences in the astrocyte response elicited by potential stem cell therapies for CNS injury. Regenerative Medicine, 2013, 8, 739-746.                                                                         | 1.7  | 15        |
| 74 | Glucose-Coated Gold Nanoparticles Transfer across Human Brain Endothelium and Enter Astrocytes<br>In Vitro. PLoS ONE, 2013, 8, e81043.                                                                                                              | 2.5  | 122       |
| 75 | Engineering an Integrated Cellular Interface in Three-Dimensional Hydrogel Cultures Permits<br>Monitoring of Reciprocal Astrocyte and Neuronal Responses. Tissue Engineering - Part C: Methods,<br>2012, 18, 526-536.                               | 2.1  | 19        |
| 76 | Antioxidant Inhibitors Potentiate the Cytotoxicity of Photodynamic Therapy. Photochemistry and Photobiology, 2012, 88, 175-187.                                                                                                                     | 2.5  | 64        |
| 77 | Inhibition of Specific Cellular Antioxidant Pathways Increases the Sensitivity of Neurons to<br>Metaâ€tetrahydroxyphenyl Chlorinâ€Mediated Photodynamic Therapy in a 3D Coâ€culture Model.<br>Photochemistry and Photobiology, 2012, 88, 1539-1545. | 2.5  | 18        |
| 78 | The six most essential questions in psychiatric diagnosis: a pluralogue part 1: conceptual and definitional issues in psychiatric diagnosis. Philosophy, Ethics, and Humanities in Medicine, 2012, 7, 3.                                            | 1.5  | 50        |
| 79 | An ultrastructural and biochemical analysis of collagen in rat peripheral nerves: the relationship<br>between fibril diameter and mechanical properties. Journal of the Peripheral Nervous System, 2011, 16,<br>261-269.                            | 3.1  | 24        |
| 80 | Micro-structured Materials and Mechanical Cues in 3D Collagen Gels. Methods in Molecular Biology, 2011, 695, 183-196.                                                                                                                               | 0.9  | 32        |
| 81 | The neuroprotective effects of fibronectin mats and fibronectin peptides following spinal cord injury in the rat. Neuroscience, 2010, 168, 523-530.                                                                                                 | 2.3  | 39        |
| 82 | Alignment of Astrocytes Increases Neuronal Growth in Three-Dimensional Collagen Gels and Is<br>Maintained Following Plastic Compression to Form a Spinal Cord Repair Conduit. Tissue Engineering -<br>Part A, 2010, 16, 3173-3184.                  | 3.1  | 100       |
| 83 | Peripheral neural cell sensitivity to mTHPC-mediated photodynamic therapy in a 3D in vitro model.<br>British Journal of Cancer, 2009, 101, 658-665.                                                                                                 | 6.4  | 25        |
| 84 | Host muscle cell infiltration in cell-seeded plastic compressed collagen constructs. Journal of Tissue<br>Engineering and Regenerative Medicine, 2009, 3, 72-75.                                                                                    | 2.7  | 2         |
| 85 | A versatile 3D culture model facilitates monitoring of astrocytes undergoing reactive gliosis. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 634-646.                                                                           | 2.7  | 90        |
| 86 | Cell Responses to Biomimetic Protein Scaffolds Used in Tissue Repair and Engineering. International Review of Cytology, 2007, 262, 75-150.                                                                                                          | 6.2  | 123       |
| 87 | Characterization of non-neuronal elements within fibronectin mats implanted into the damaged adult rat spinal cord. Biomaterials, 2006, 27, 485-496.                                                                                                | 11.4 | 62        |
| 88 | Characterization of a "Blanch-Blush―Mechano-Response in Palmar Skin. Journal of Investigative<br>Dermatology, 2006, 126, 220-226.                                                                                                                   | 0.7  | 4         |
| 89 | Serum deprivation and re-addition: effects on cyclooxygenase inhibitor sensitivity in cultured glia.<br>Inflammopharmacology, 2005, 13, 431-439.                                                                                                    | 3.9  | 0         |
| 90 | Neural Tissue Engineering: A Self-Organizing Collagen Guidance Conduit. Tissue Engineering, 2005, 11,<br>1611-1617.                                                                                                                                 | 4.6  | 134       |

| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91 | British Society for Matrix Biology Autumn Meeting †Joint with the UK Tissue & Cell Engineering Society,<br>University of Bristol, UK. International Journal of Experimental Pathology, 2005, 86, A1-A56. | 1.3  | 0         |
| 92 | Investigating the mechanical shear-plane between core and sheath elements of peripheral nerves. Cell<br>and Tissue Research, 2005, 320, 229-234.                                                         | 2.9  | 28        |
| 93 | A drug delivery system for the treatment of peripheral nervous system injuries. , 2004, 2004, 5047-9.                                                                                                    |      | 2         |
| 94 | Investigating mechanical behaviour at a core-sheath interface in peripheral nerve. Journal of the<br>Peripheral Nervous System, 2004, 9, 255-262.                                                        | 3.1  | 34        |
| 95 | Peripheral nerves in the rat exhibit localized heterogeneity of tensile properties during limb movement. Journal of Physiology, 2004, 557, 879-887.                                                      | 2.9  | 78        |
| 96 | Fluid shear in viscous fibronectin gels allows aggregation of fibrous materials for CNS tissue engineering. Biomaterials, 2004, 25, 2769-2779.                                                           | 11.4 | 46        |
| 97 | The effects of treatment with antibodies to transforming growth factor β1 and β2 following spinal cord damage in the adult rat. Neuroscience, 2004, 126, 173-183.                                        | 2.3  | 32        |
| 98 | Engineered Aligned Endothelial Cell Structures in Tethered Collagen Hydrogels Promote Peripheral<br>Nerve Regeneration. SSRN Electronic Journal, 0, , .                                                  | 0.4  | 0         |