Dennis J Mcfarland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1492995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brain–computer interfaces for communication and control. Clinical Neurophysiology, 2002, 113, 767-791.	1.5	6,747
2	Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17849-17854.	7.1	1,262
3	An EEC-based brain-computer interface for cursor control. Electroencephalography and Clinical Neurophysiology, 1991, 78, 252-259.	0.3	961
4	Electroencephalographic (EEG) control of three-dimensional movement. Journal of Neural Engineering, 2010, 7, 036007.	3.5	351
5	Independent home use of a brain-computer interface by people with amyotrophic lateral sclerosis. Neurology, 2018, 91, e258-e267.	1.1	105
6	Neurological Principles and Rehabilitation of Action Disorders. Neurorehabilitation and Neural Repair, 2011, 25, 33S-43S.	2.9	103
7	Factors Influencing Tests of Auditory Processing: A Perspective on Current Issues and Relevant Concerns. Journal of the American Academy of Audiology, 2013, 24, 572-589.	0.7	45
8	Therapeutic applications of BCI technologies. Brain-Computer Interfaces, 2017, 4, 37-52.	1.8	44
9	The production of focal herpes encephalitis in mice by stereotaxic inoculation of virus. Journal of the Neurological Sciences, 1986, 72, 307-318.	0.6	33
10	Effects of training pre-movement sensorimotor rhythms on behavioral performance. Journal of Neural Engineering, 2015, 12, 066021.	3.5	33
11	Brain–computer interface use is a skill that user and system acquire together. PLoS Biology, 2018, 16, e2006719.	5.6	33
12	Brain–computer interfaces and personhood: interdisciplinary deliberations on neural technology. Journal of Neural Engineering, 2019, 16, 063001.	3.5	31
13	Temporal-Order Discrimination for Selected Auditory and Visual Stimulus Dimensions. Journal of Speech, Language, and Hearing Research, 1998, 41, 300-314.	1.6	29
14	Prediction of subjective ratings of emotional pictures by EEG features. Journal of Neural Engineering, 2017, 14, 016009.	3.5	29
15	BCIs That Use Sensorimotor Rhythms. , 2012, , 228-240.		16
16	A single g factor is not necessary to simulate positive correlations between cognitive tests. Journal of Clinical and Experimental Neuropsychology, 2012, 34, 378-384.	1.3	13
17	How neuroscience can inform the study of individual differences in cognitive abilities. Reviews in the Neurosciences, 2017, 28, 343-362.	2.9	13
18	Assessing short-term recognition memory with forced-choice psychophysical methods. Journal of Neuroscience Methods. 1992. 44, 145-155.	2.5	12

DENNIS J MCFARLAND

#	Article	IF	CITATIONS
19	Symptoms as latent variables. Behavioral and Brain Sciences, 2010, 33, 165-166.	0.7	8
20	Factor-Analytic Evidence for the Complexity of the Delis–Kaplan Executive Function System (D-KEFS). Assessment, 2020, 27, 1645-1656.	3.1	8
21	The Effects of Using Partial or Uncorrected Correlation Matrices When Comparing Network and Latent Variable Models. Journal of Intelligence, 2020, 8, 7.	2.5	8
22	Modeling Individual Subtests of the WAIS IV with Multiple Latent Factors. PLoS ONE, 2013, 8, e74980.	2.5	6
23	Modeling General and Specific Abilities. Assessment, 2016, 23, 698-706.	3.1	6
24	Evaluation of multidimensional models of WAIS-IV subtest performance. Clinical Neuropsychologist, 2017, 31, 1127-1140.	2.3	6
25	Mouse phenotype modulates the behavioral effects of acute thiamine deficiency. Physiology and Behavior, 1985, 35, 597-601.	2.1	5
26	Simulating the Effects of Common and Specific Abilities on Test Performance: An Evaluation of Factor Analysis. Journal of Speech, Language, and Hearing Research, 2014, 57, 1919-1928.	1.6	4
27	Considering complex models of cognitive abilities Journal of Applied Research in Memory and Cognition, 2019, 8, 301-304.	1.1	1