Stanislav S Zakharenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1492533/publications.pdf

Version: 2024-02-01

60 papers 7,269 citations

35 h-index 138484 58 g-index

63 all docs 63
docs citations

63 times ranked

 $\begin{array}{c} 10770 \\ \text{citing authors} \end{array}$

#	Article	IF	Citations
1	A Comprehensive Analysis of Cerebellar Volumes in the 22q11.2 Deletion Syndrome. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2023, 8, 79-90.	1.5	5
2	Identification of small molecules that mitigate vincristineâ€induced neurotoxicity while sensitizing leukemia cells to vincristine. Clinical and Translational Science, 2021, 14, 1490-1504.	3.1	12
3	MicroRNAs in the Onset of Schizophrenia. Cells, 2021, 10, 2679.	4.1	23
4	A Case for Thalamic Mechanisms of Schizophrenia: Perspective From Modeling 22q11.2 Deletion Syndrome. Frontiers in Neural Circuits, 2021, 15, 769969.	2.8	13
5	Noncanonical function of an autophagy protein prevents spontaneous Alzheimer's disease. Science Advances, 2020, 6, eabb9036.	10.3	62
6	Schizophrenia-related microdeletion causes defective ciliary motility and brain ventricle enlargement via microRNA-dependent mechanisms in mice. Nature Communications, 2020, 11, 912.	12.8	25
7	LC3-Associated Endocytosis Facilitates β-Amyloid Clearance and Mitigates Neurodegeneration in Murine Alzheimer's Disease. Cell, 2019, 178, 536-551.e14.	28.9	326
8	Rejuvenation of plasticity in the brain: opening the critical period. Current Opinion in Neurobiology, 2019, 54, 83-89.	4.2	18
9	10.4 Thalamocortical Disruption in Mouse Models of 22Q11 Deletion Syndrome. Journal of the American Academy of Child and Adolescent Psychiatry, 2018, 57, S284.	0.5	O
10	The COPII cargo adapter SEC24C is essential for neuronal homeostasis. Journal of Clinical Investigation, 2018, 128, 3319-3332.	8.2	30
11	Haploinsufficiency of the 22q11.2 microdeletion gene Mrpl40 disrupts short-term synaptic plasticity and working memory through dysregulation of mitochondrial calcium. Molecular Psychiatry, 2017, 22, 1313-1326.	7.9	68
12	CRTC1 Nuclear Translocation Following Learning Modulates Memory Strength via Exchange of Chromatin Remodeling Complexes on the Fgf1 Gene. Cell Reports, 2017, 18, 352-366.	6.4	49
13	Schizophrenia-Related Microdeletion Impairs Emotional Memory through MicroRNA-Dependent Disruption of Thalamic Inputs to the Amygdala. Cell Reports, 2017, 19, 1532-1544.	6.4	14
14	Mitochondria in complex psychiatric disorders: Lessons from mouse models of 22q11.2 deletion syndrome. BioEssays, 2017, 39, 1600177.	2.5	33
15	Fast, Simple Calcium Imaging Segmentation with Fully Convolutional Networks. Lecture Notes in Computer Science, 2017, , 285-293.	1.3	22
16	Restoring auditory cortex plasticity in adult mice by restricting thalamic adenosine signaling. Science, 2017, 356, 1352-1356.	12.6	40
17	Thalamic miR-338-3p mediates auditory thalamocortical disruption and its late onset in models of 22q11.2 microdeletion. Nature Medicine, 2017, 23, 39-48.	30.7	55
18	Msh2 deficiency leads to dysmyelination of the corpus callosum, impaired locomotion and altered sensory function in mice. Scientific Reports, 2016, 6, 30757.	3.3	3

#	Article	IF	Citations
19	SCYL2 Protects CA3 Pyramidal Neurons from Excitotoxicity during Functional Maturation of the Mouse Hippocampus. Journal of Neuroscience, 2015, 35, 10510-10522.	3.6	15
20	A Synaptic Function Approach to Investigating Complex Psychiatric Diseases. Neuroscientist, 2014, 20, 257-271.	3.5	22
21	Non-coding RNA regulation of synaptic plasticity and memory: Implications for aging. Ageing Research Reviews, 2014, 17, 34-42.	10.9	42
22	Specific disruption of thalamic inputs to the auditory cortex in schizophrenia models. Science, 2014, 344, 1178-1182.	12.6	107
23	FMRP Regulates Neurotransmitter Release and Synaptic Information Transmission by Modulating Action Potential Duration via BK Channels. Neuron, 2013, 78, 205.	8.1	8
24	Presynaptic Gating of Postsynaptic Synaptic Plasticity. Neuroscientist, 2013, 19, 465-478.	3. 5	28
25	FMRP Regulates Neurotransmitter Release and Synaptic Information Transmission by Modulating Action Potential Duration via BK Channels. Neuron, 2013, 77, 696-711.	8.1	307
26	Forward Suppression in the Auditory Cortex Is Caused by the Ca _v 3.1 Calcium Channel-Mediated Switch from Bursting to Tonic Firing at Thalamocortical Projections. Journal of Neuroscience, 2013, 33, 18940-18950.	3.6	30
27	Thalamocortical Long-Term Potentiation Becomes Gated after the Early Critical Period in the Auditory Cortex. Journal of Neuroscience, 2013, 33, 7345-7357.	3.6	63
28	Age-Dependent MicroRNA Control of Synaptic Plasticity in 22q11 Deletion Syndrome and Schizophrenia. Journal of Neuroscience, 2012, 32, 14132-14144.	3.6	108
29	Pten deletion causes mTorc1-dependent ectopic neuroblast differentiation without causing uniform migration defects. Development (Cambridge), 2012, 139, 3422-3431.	2.5	37
30	Hydroxyurea therapy of a murine model of sickle cell anemia inhibits the progression of pneumococcal disease by down-modulating E-selectin. Blood, 2012, 119, 1915-1921.	1.4	29
31	Coactivation of thalamic and cortical pathways induces input timing–dependent plasticity in amygdala. Nature Neuroscience, 2012, 15, 113-122.	14.8	52
32	Phosphatase and tensin homologue (PTEN) regulates synaptic plasticity independently of its effect on neuronal morphology and migration. Journal of Physiology, 2012, 590, 777-792.	2.9	82
33	Pten deletion causes mTorc1-dependent ectopic neuroblast differentiation without causing uniform migration defects. Journal of Cell Science, 2012, 125, e1-e1.	2.0	0
34	Retinoblastoma (Rb) regulates laminar dendritic arbor reorganization in retinal horizontal neurons. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21111-21116.	7.1	4
35	Presynaptic Gating of Postsynaptically Expressed Plasticity at Mature Thalamocortical Synapses. Journal of Neuroscience, 2011, 31, 16012-16025.	3.6	57
36	Impaired Locomotor Learning and Altered Cerebellar Synaptic Plasticity in <i>pep-19/pcp4</i> -Null Mice. Molecular and Cellular Biology, 2011, 31, 2838-2844.	2.3	66

#	Article	IF	CITATIONS
37	Dysregulation of Presynaptic Calcium and Synaptic Plasticity in a Mouse Model of 22q11 Deletion Syndrome. Journal of Neuroscience, 2010, 30, 15843-15855.	3.6	68
38	Dendritic locations and dendritic spine morphology determine effectiveness of thalamocortical pathways in the auditory cortex. , 2009, , .		O
39	Connectivity Patterns Revealed by Mapping of Active Inputs on Dendrites of Thalamorecipient Neurons in the Auditory Cortex. Journal of Neuroscience, 2009, 29, 6406-6417.	3.6	80
40	Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature, 2009, 457, 603-607.	27.8	617
41	Phosphatase and tensin homolog, deleted on chromosome 10 deficiency in brain causes defects in synaptic structure, transmission and plasticity, and myelination abnormalities. Neuroscience, 2008, 151, 476-488.	2.3	170
42	Dissecting the Components of Long-Term Potentiation. Neuroscientist, 2008, 14, 598-608.	3.5	67
43	Orphan Glutamate Receptor δ1 Subunit Required for High-Frequency Hearing. Molecular and Cellular Biology, 2007, 27, 4500-4512.	2.3	53
44	Differentiated Horizontal Interneurons Clonally Expand to Form Metastatic Retinoblastoma in Mice. Cell, 2007, 131, 378-390.	28.9	174
45	Slow Presynaptic and Fast Postsynaptic Components of Compound Long-Term Potentiation. Journal of Neuroscience, 2007, 27, 11510-11521.	3.6	87
46	A Perivascular Niche for Brain Tumor Stem Cells. Cancer Cell, 2007, 11, 69-82.	16.8	1,994
46	A Perivascular Niche for Brain Tumor Stem Cells. Cancer Cell, 2007, 11, 69-82. Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. Nature Neuroscience, 2005, 8, 1586-1594.	14.8	1,994 237
	Transcriptional and behavioral interaction between 22q11.2 orthologs modulates		
47	Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. Nature Neuroscience, 2005, 8, 1586-1594. Genetic evidence for a protein-kinase-A-mediated presynaptic component in NMDA-receptor-dependent forms of long-term synaptic potentiation. Proceedings of the National Academy of Sciences of the	14.8	237
47	Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. Nature Neuroscience, 2005, 8, 1586-1594. Genetic evidence for a protein-kinase-A-mediated presynaptic component in NMDA-receptor-dependent forms of long-term synaptic potentiation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9365-9370. stathmin, a Gene Enriched in the Amygdala, Controls Both Learned and Innate Fear. Cell, 2005, 123,	14.8 7.1	237
48	Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. Nature Neuroscience, 2005, 8, 1586-1594. Genetic evidence for a protein-kinase-A-mediated presynaptic component in NMDA-receptor-dependent forms of long-term synaptic potentiation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9365-9370. stathmin, a Gene Enriched in the Amygdala, Controls Both Learned and Innate Fear. Cell, 2005, 123, 697-709. Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. Proceedings of the National Academy of Sciences of the United States of	14.8 7.1 28.9	237 62 217
47 48 49 50	Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. Nature Neuroscience, 2005, 8, 1586-1594. Genetic evidence for a protein-kinase-A-mediated presynaptic component in NMDA-receptor-dependent forms of long-term synaptic potentiation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9365-9370. stathmin, a Gene Enriched in the Amygdala, Controls Both Learned and Innate Fear. Cell, 2005, 123, 697-709. Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16665-16670. Calcium Release from Presynaptic Ryanodine-Sensitive Stores Is Required for Long-Term Depression at	14.8 7.1 28.9 7.1	237 62 217 213
47 48 49 50 51	Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. Nature Neuroscience, 2005, 8, 1586-1594. Genetic evidence for a protein-kinase-A-mediated presynaptic component in NMDA-receptor-dependent forms of long-term synaptic potentiation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9365-9370. stathmin, a Gene Enriched in the Amygdala, Controls Both Learned and Innate Fear. Cell, 2005, 123, 697-709. Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16665-16670. Calcium Release from Presynaptic Ryanodine-Sensitive Stores Is Required for Long-Term Depression at Hippocampal CA3-CA3 Pyramidal Neuron Synapses. Journal of Neuroscience, 2004, 24, 9612-9622. Heterosynaptic Dopamine Neurotransmission Selects Sets of Corticostriatal Terminals. Neuron, 2004,	14.8 7.1 28.9 7.1 3.6	237 62 217 213

#	Article	IF	CITATIONS
55	Visualization of changes in presynaptic function during long-term synaptic plasticity. Nature Neuroscience, 2001, 4, 711-717.	14.8	287
56	Plasma membrane recycling and flow in growing neurites. Neuroscience, 2000, 97, 185-194.	2.3	29
57	Neurotransmitter Secretion along Growing Nerve Processes: Comparison with Synaptic Vesicle Exocytosis. Journal of Cell Biology, 1999, 144, 507-518.	5.2	94
58	Distribution of neurotransmitter secretion in growing axons. Neuroscience, 1999, 90, 975-984.	2.3	29
59	Dynamics of Axonal Microtubules Regulate the Topology of New Membrane Insertion into the Growing Neurites. Journal of Cell Biology, 1998, 143, 1077-1086.	5.2	92
60	Effects of prostaglandins E1 and E2 on cultured smooth muscle cells and strips of rat aorta. Prostaglandins, 1994, 47, 353-365.	1.2	14