Michael Marty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1492524/publications.pdf

Version: 2024-02-01

201674 133252 3,972 65 27 59 citations h-index g-index papers 88 88 88 4701 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bayesian Deconvolution of Mass and Ion Mobility Spectra: From Binary Interactions to Polydisperse Ensembles. Analytical Chemistry, 2015, 87, 4370-4376.	6.5	663
2	Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Research, 2020, 30, 678-692.	12.0	662
3	Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against M ^{pro} and cathepsin L. Science Advances, 2020, 6, .	10.3	297
4	High-resolution mass spectrometry of small molecules bound to membrane proteins. Nature Methods, 2016, 13, 333-336.	19.0	205
5	Ebselen, Disulfiram, Carmofur, PX-12, Tideglusib, and Shikonin Are Nonspecific Promiscuous SARS-CoV-2 Main Protease Inhibitors. ACS Pharmacology and Translational Science, 2020, 3, 1265-1277.	4.9	194
6	Discovery of SARS-CoV-2 Papain-like Protease Inhibitors through a Combination of High-Throughput Screening and a FlipGFP-Based Reporter Assay. ACS Central Science, 2021, 7, 1245-1260.	11.3	115
7	Expedited Approach toward the Rational Design of Noncovalent SARS-CoV-2 Main Protease Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 2848-2865.	6.4	102
8	Native Mass Spectrometry Characterization of Intact Nanodisc Lipoprotein Complexes. Analytical Chemistry, 2012, 84, 8957-8960.	6. 5	95
9	Probing the Lipid Annular Belt by Gasâ€Phase Dissociation of Membrane Proteins in Nanodiscs. Angewandte Chemie - International Edition, 2016, 55, 550-554.	13.8	95
10	Discovery of Di- and Trihaloacetamides as Covalent SARS-CoV-2 Main Protease Inhibitors with High Target Specificity. Journal of the American Chemical Society, 2021, 143, 20697-20709.	13.7	87
11	MetaUniDec: High-Throughput Deconvolution of Native Mass Spectra. Journal of the American Society for Mass Spectrometry, 2019, 30, 118-127.	2.8	85
12	The Effect of Detergent, Temperature, and Lipid on the Oligomeric State of MscL Constructs: Insights from Mass Spectrometry. Chemistry and Biology, 2015, 22, 593-603.	6.0	72
13	Native Mass Spectrometry of Membrane Proteins. Analytical Chemistry, 2021, 93, 583-597.	6.5	71
14	Interfacing Membrane Mimetics with Mass Spectrometry. Accounts of Chemical Research, 2016, 49, 2459-2467.	15.6	70
15	Chemical Additives Enable Native Mass Spectrometry Measurement of Membrane Protein Oligomeric State within Intact Nanodiscs. Journal of the American Chemical Society, 2019, 141, 1054-1061.	13.7	70
16	Structural basis of omega-3 fatty acid transport across the blood–brain barrier. Nature, 2021, 595, 315-319.	27.8	61
17	Nanodisc-solubilized membrane protein library reflects the membrane proteome. Analytical and Bioanalytical Chemistry, 2013, 405, 4009-4016.	3.7	56
18	A sliding selectivity scale for lipid binding to membrane proteins. Current Opinion in Structural Biology, 2016, 39, 54-60.	5 . 7	54

#	Article	IF	Citations
19	Structural principles that enable oligomeric small heat-shock protein paralogs to evolve distinct functions. Science, 2018, 359, 930-935.	12.6	51
20	Dissecting the role of the CRMP2–neurofibromin complex on pain behaviors. Pain, 2017, 158, 2203-2221.	4.2	50
21	Interpretation and Deconvolution of Nanodisc Native Mass Spectra. Journal of the American Society for Mass Spectrometry, 2014, 25, 269-277.	2.8	48
22	Validating Enterovirus D68-2A ^{pro} as an Antiviral Drug Target and the Discovery of Telaprevir as a Potent D68-2A ^{pro} Inhibitor. Journal of Virology, 2019, 93, .	3.4	44
23	Engineering Nanodisc Scaffold Proteins for Native Mass Spectrometry. Analytical Chemistry, 2017, 89, 11189-11192.	6.5	43
24	Interfacing Lipid Bilayer Nanodiscs and Silicon Photonic Sensor Arrays for Multiplexed Protein–Lipid and Protein–Membrane Protein Interaction Screening. Analytical Chemistry, 2013, 85, 2970-2976.	6.5	42
25	Unraveling the Composition and Behavior of Heterogeneous Lipid Nanodiscs by Mass Spectrometry. Analytical Chemistry, 2016, 88, 6199-6204.	6.5	40
26	Native Mass Spectrometry of Antimicrobial Peptides in Lipid Nanodiscs Elucidates Complex Assembly. Analytical Chemistry, 2019, 91, 9284-9291.	6.5	39
27	GNPS Dashboard: collaborative exploration of mass spectrometry data in the web browser. Nature Methods, 2022, 19, 134-136.	19.0	35
28	Ultra-thin layer MALDI mass spectrometry of membrane proteins in nanodiscs. Analytical and Bioanalytical Chemistry, 2012, 402, 721-729.	3.7	31
29	Imidazole Derivatives Improve Charge Reduction and Stabilization for Native Mass Spectrometry. Analytical Chemistry, 2019, 91, 14765-14772.	6.5	31
30	Nanoscale Synaptic Membrane Mimetic Allows Unbiased High Throughput Screen That Targets Binding Sites for Alzheimer's-Associated Aβ Oligomers. PLoS ONE, 2015, 10, e0125263.	2.5	28
31	Revealing the Specificity of a Range of Antimicrobial Peptides in Lipid Nanodiscs by Native Mass Spectrometry. Biochemistry, 2020, 59, 2135-2142.	2.5	25
32	A Universal Score for Deconvolution of Intact Protein and Native Electrospray Mass Spectra. Analytical Chemistry, 2020, 92, 4395-4401.	6.5	23
33	Measuring Remodeling of the Lipid Environment Surrounding Membrane Proteins with Lipid Exchange and Native Mass Spectrometry. Analytical Chemistry, 2020, 92, 5666-5669.	6.5	21
34	Expanding the Types of Lipids Amenable to Native Mass Spectrometry of Lipoprotein Complexes. Journal of the American Society for Mass Spectrometry, 2019, 30, 1416-1425.	2.8	20
35	Assembly of Model Membrane Nanodiscs for Native Mass Spectrometry. Analytical Chemistry, 2021, 93, 5972-5979.	6.5	20
36	Scratching the surface: native mass spectrometry of peripheral membrane protein complexes. Biochemical Society Transactions, 2020, 48, 547-558.	3.4	20

3

#	Article	IF	Citations
37	UniDecCD: Deconvolution of Charge Detection-Mass Spectrometry Data. Analytical Chemistry, 2021, 93, 14722-14729.	6.5	19
38	Eliminating Artifacts in Electrospray Deconvolution with a SoftMax Function. Journal of the American Society for Mass Spectrometry, 2019, 30, 2174-2177.	2.8	17
39	Nonlinear Analyte Concentration Gradients for One-Step Kinetic Analysis Employing Optical Microring Resonators. Analytical Chemistry, 2012, 84, 5556-5564.	6.5	16
40	Combining tandem mass spectrometry with ion mobility separation to determine the architecture of polydisperse proteins. International Journal of Mass Spectrometry, 2015, 377, 663-671.	1.5	16
41	Structural and mechanistic insights into amyloidâ€Î² and αâ€synuclein fibril formation and polyphenol inhibitor efficacy in phospholipid bilayers. FEBS Journal, 2022, 289, 215-230.	4.7	16
42	Probing the structure of nanodiscs using surface-induced dissociation mass spectrometry. Chemical Communications, 2020, 56, 15651-15654.	4.1	14
43	Cryo-EM structure of arabinosyltransferase EmbB from Mycobacterium smegmatis. Nature Communications, 2020, 11, 3396.	12.8	14
44	Investigating the Lipid Selectivity of Membrane Proteins in Heterogeneous Nanodiscs. Analytical Chemistry, 2022, 94, 8497-8505.	6.5	14
45	Native mass spectrometry reveals the simultaneous binding of lipids and zinc to rhodopsin. International Journal of Mass Spectrometry, 2021, 460, 116477.	1.5	13
46	Rapid LC–MS Method for Accurate Molecular Weight Determination of Membrane and Hydrophobic Proteins. Analytical Chemistry, 2018, 90, 13616-13623.	6.5	12
47	Influenza AM2 Channel Oligomerization Is Sensitive to Its Chemical Environment. Analytical Chemistry, 2021, 93, 16273-16281.	6.5	12
48	Simulating a Time-of-Flight Mass Spectrometer: A LabView Exercise. Journal of Chemical Education, 2013, 90, 239-243.	2.3	11
49	Nanodiscs and mass spectrometry: Making membranes fly. International Journal of Mass Spectrometry, 2020, 458, 116436.	1.5	10
50	Copper-Free Click Enabled Triazabutadiene for Bioorthogonal Protein Functionalization. Bioconjugate Chemistry, 2021, 32, 254-258.	3.6	8
51	Directâ€MS analysis of antibodyâ€antigen complexes. Proteomics, 2021, 21, e2000300.	2.2	8
52	Surface Modified Nano-Electrospray Needles Improve Sensitivity for Native Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2022, 33, 1031-1037.	2.8	8
53	Deconvolving Native and Intact Protein Mass Spectra with UniDec. Methods in Molecular Biology, 2022, , 159-180.	0.9	6
54	Probing the Lipid Annular Belt by Gasâ€Phase Dissociation of Membrane Proteins in Nanodiscs. Angewandte Chemie, 2016, 128, 560-564.	2.0	5

#	Article	IF	CITATIONS
55	Albumin Conjugates of Thiosemicarbazone and Imidazoleâ€2â€thione Prochelators: Iron Coordination and Antiproliferative Activity. ChemMedChem, 2021, 16, 2764-2768.	3.2	5
56	Protein Modification via Mild Photochemical Isomerization of Triazenes to Release Aryl Diazonium Ions. Bioconjugate Chemistry, 2021, 32, 2432-2438.	3.6	5
57	Lipids and EGCG Affect α-Synuclein Association and Disruption of Nanodiscs. Biochemistry, 2022, 61, 1014-1021.	2.5	5
58	Lipid tails modulate antimicrobial peptide membrane incorporation and activity. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183870.	2.6	4
59	Investigating Antimicrobial Peptide–Membrane Interactions Using Fast Photochemical Oxidation of Peptides in Nanodiscs. Journal of the American Society for Mass Spectrometry, 2022, 33, 62-67.	2.8	4
60	Suzuki Coupling of Protected Aryl Diazonium Ions: Expanding the Knowledge of Triazabutadiene Compatible Reactions. Organic Letters, 2021, 23, 1851-1855.	4.6	3
61	Illuminating Individual Membrane Protein Complexes with Mass Photometry. CheM, 2021, 7, 16-17.	11.7	2
62	Fourier-Transform Approach for Reconstructing Macromolecular Mass Defect Profiles. Journal of the American Society for Mass Spectrometry, 2022, 33, 172-180.	2.8	2
63	Allosteric differences dictate GroEL complementation of <i>E.Âcoli</i> . FASEB Journal, 2022, 36, e22198.	0.5	1
64	Measuring the Stoichiometry of Antimicrobial Peptides in Nanodiscs with Native Mass Spectrometry. Biophysical Journal, 2019, 116, 85a-86a.	0.5	0
65	Mass spectrometry-based approaches to understanding α-synuclein-lipid interactions. Biophysical Journal, 2022, 121, 80a.	0.5	O