Sue E Crawford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1491637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Replication of human noroviruses in stem cell–derived human enteroids. Science, 2016, 353, 1387-1393.	12.6	1,056
2	Rotavirus infection. Nature Reviews Disease Primers, 2017, 3, 17083.	30.5	419
3	Human Intestinal Enteroids: a New Model To Study Human Rotavirus Infection, Host Restriction, and Pathophysiology. Journal of Virology, 2016, 90, 43-56.	3.4	298
4	Prevention and cure of rotavirus infection via TLR5/NLRC4–mediated production of IL-22 and IL-18. Science, 2014, 346, 861-865.	12.6	188
5	Human enteroids as an <i>ex-vivo</i> model of host–pathogen interactions in the gastrointestinal tract. Experimental Biology and Medicine, 2014, 239, 1124-1134.	2.4	169
6	Autophagy hijacked through viroporin-activated calcium/calmodulin-dependent kinase kinase-β signaling is required for rotavirus replication. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3405-13.	7.1	142
7	Norwalk Virus RNA Is Infectious in Mammalian Cells. Journal of Virology, 2007, 81, 12238-12248.	3.4	141
8	Rotavirus Viremia and Extraintestinal Viral Infection in the Neonatal Rat Model. Journal of Virology, 2006, 80, 4820-4832.	3.4	125
9	Subunit Rotavirus Vaccine Administered Parenterally to Rabbits Induces Active Protective Immunity. Journal of Virology, 1998, 72, 9233-9246.	3.4	118
10	A paradox of transcriptional and functional innate interferon responses of human intestinal enteroids to enteric virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E570-E579.	7.1	112
11	Human Intestinal Enteroids: New Models to Study Gastrointestinal Virus Infections. Methods in Molecular Biology, 2017, 1576, 229-247.	0.9	112
12	Microbial Metabolic Capacity for Intestinal Folate Production and Modulation of Host Folate Receptors. Frontiers in Microbiology, 2019, 10, 2305.	3.5	95
13	Pathogenesis of Rotavirus Gastroenteritis. Novartis Foundation Symposium, 2008, 238, 82-100.	1.1	91
14	Detection of human norovirus in intestinal biopsies from immunocompromised transplant patients. Journal of General Virology, 2016, 97, 2291-2300.	2.9	85
15	Human Norovirus Cultivation in Nontransformed Stem Cell-Derived Human Intestinal Enteroid Cultures: Success and Challenges. Viruses, 2019, 11, 638.	3.3	84
16	Engineered Human Gastrointestinal Cultures to Study the Microbiome and Infectious Diseases. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 241-251.	4.5	82
17	Human organoid cultures: transformative new tools for human virus studies. Current Opinion in Virology, 2018, 29, 79-86.	5.4	78
18	New Insights and Enhanced Human Norovirus Cultivation in Human Intestinal Enteroids. MSphere, 2021. 6	2.9	78

SUE E CRAWFORD

#	Article	lF	CITATIONS
19	Bile acids and ceramide overcome the entry restriction for GII.3 human norovirus replication in human intestinal enteroids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1700-1710.	7.1	75
20	Heterotypic Protection and Induction of a Broad Heterotypic Neutralization Response by Rotavirus-Like Particles. Journal of Virology, 1999, 73, 4813-4822.	3.4	73
21	Human norovirus exhibits strain-specific sensitivity to host interferon pathways in human intestinal enteroids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23782-23793.	7.1	63
22	Lipid droplets form complexes with viroplasms and are crucial for rotavirus replication. Current Opinion in Virology, 2016, 19, 11-15.	5.4	51
23	Viroporin-mediated calcium-activated autophagy. Autophagy, 2013, 9, 797-798.	9.1	46
24	Fusobacterium nucleatum Adheres to Clostridioides difficile via the RadD Adhesin to Enhance Biofilm Formation in Intestinal Mucus. Gastroenterology, 2021, 160, 1301-1314.e8.	1.3	46
25	Phosphorylation cascade regulates the formation and maturation of rotaviral replication factories. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12015-E12023.	7.1	39
26	Structural basis of glycan interaction in gastroenteric viral pathogens. Current Opinion in Virology, 2014, 7, 119-127.	5.4	32
27	Identification of human single-chain antibodies with broad reactivity for noroviruses. Protein Engineering, Design and Selection, 2014, 27, 339-349.	2.1	28
28	Characterization of Cross-Reactive Norovirus-Specific Monoclonal Antibodies. Vaccine Journal, 2015, 22, 160-167.	3.1	27
29	COPII Vesicle Transport Is Required for Rotavirus NSP4 Interaction with the Autophagy Protein LC3 II and Trafficking to Viroplasms. Journal of Virology, 2019, 94, .	3.4	26
30	A Genetically Engineered Rotavirus NSP2 Phosphorylation Mutant Impaired in Viroplasm Formation and Replication Shows an Early Interaction between vNSP2 and Cellular Lipid Droplets. Journal of Virology, 2020, 94, .	3.4	26
31	Rotavirus-Induced Lipid Droplet Biogenesis Is Critical for Virus Replication. Frontiers in Physiology, 2022, 13, 836870.	2.8	20
32	Drivers of transcriptional variance in human intestinal epithelial organoids. Physiological Genomics, 2021, 53, 486-508.	2.3	17
33	2.7 Ã cryo-EM structure of rotavirus core protein VP3, a unique capping machine with a helicase activity. Science Advances, 2020, 6, eaay6410.	10.3	16
34	Mapping Broadly Reactive Norovirus Genogroup I and II Monoclonal Antibodies. Vaccine Journal, 2015, 22, 168-177.	3.1	15
35	Organoids to Dissect Gastrointestinal Virus–Host Interactions: What Have We Learned?. Viruses, 2021, 13, 999.	3.3	11
36	Novel fold of rotavirus glycan-binding domain predicted by AlphaFold2 and determined by X-ray crystallography. Communications Biology, 2022, 5, 419.	4.4	10

SUE E CRAWFORD

#	Article	IF	CITATIONS
37	Bile Goes Viral. Viruses, 2021, 13, 998.	3.3	7
38	Use of human tissue stem cell-derived organoid cultures to model enterohepatic circulation. American Journal of Physiology - Renal Physiology, 2021, 321, G270-G279.	3.4	7
39	Plasmid-based reverse genetics for probing phosphorylation-dependent viroplasm formation in rotaviruses. Virus Research, 2021, 291, 198193.	2.2	6
40	Depletion of the apical endosome in response to viruses and bacterial toxins provides cell-autonomous host defense at mucosal surfaces. Cell Host and Microbe, 2022, 30, 216-231.e5.	11.0	6
41	Cryo-EM Structure of Rotavirus VP3 Reveals Novel Insights into Its Role in RNA Capping and Endogenous Transcription. Springer Proceedings in Materials, 2021, , 211-220.	0.3	0