Shay Geula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1490664/publications.pdf Version: 2024-02-01

SHAV CELLA

#	Article	IF	CITATIONS
1	Principles of signaling pathway modulation for enhancing human naive pluripotency induction. Cell Stem Cell, 2021, 28, 1549-1565.e12.	11.1	78
2	Context-dependent functional compensation between Ythdf m ⁶ A reader proteins. Genes and Development, 2020, 34, 1373-1391.	5.9	158
3	Stage-specific requirement for Mettl3-dependent m6A mRNA methylation during haematopoietic stem cell differentiation. Nature Cell Biology, 2019, 21, 700-709.	10.3	172
4	m6A modification controls the innate immune response to infection by targeting type I interferons. Nature Immunology, 2019, 20, 173-182.	14.5	317
5	The Role of m6A/m-RNA Methylation in Stress Response Regulation. Neuron, 2018, 99, 389-403.e9.	8.1	293
6	Neutralizing Gatad2a-Chd4-Mbd3/NuRD Complex Facilitates Deterministic Induction of Naive Pluripotency. Cell Stem Cell, 2018, 23, 412-425.e10.	11.1	59
7	m ⁶ A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes and Development, 2017, 31, 990-1006.	5.9	448
8	m ⁶ A mRNA methylation facilitates resolution of naÃ ⁻ ve pluripotency toward differentiation. Science, 2015, 347, 1002-1006.	12.6	1,288
9	Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors. Nature Biotechnology, 2015, 33, 769-774.	17.5	124
10	Derivation of novel human ground state naive pluripotent stem cells. Nature, 2013, 504, 282-286.	27.8	924
11	Deterministic direct reprogramming of somatic cells to pluripotency. Nature, 2013, 502, 65-70.	27.8	471
12	Structure-based analysis of VDAC1: N-terminus location, translocation, channel gating and association with anti-apoptotic proteins. Biochemical Journal, 2012, 444, 475-485.	3.7	87
13	Structure-based Analysis of VDAC1 Protein. Journal of Biological Chemistry, 2012, 287, 2179-2190.	3.4	73
14	The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature, 2012, 488, 409-413.	27.8	322
15	VDAC1 cysteine residues: topology and function in channel activity and apoptosis. Biochemical Journal, 2010, 427, 445-454.	3.7	43
16	VDAC1 Cysteine Residues: Topology and Function in Channel Activity and Apoptosis. Biophysical Journal, 2010, 98, 466a.	0.5	0
17	Neutralizing Gatad2a-Chd4-Mbd3 Axis within the NuRD Complex Facilitates Deterministic Induction of Naive Pluripotency. SSRN Electronic Journal, 0, , .	0.4	0