Torsten Dau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1490200/publications.pdf

Version: 2024-02-01

187 papers

6,346 citations

36 h-index 72 g-index

206 all docs

206 docs citations

206 times ranked 2355 citing authors

#	Article	IF	CITATIONS
1	Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers. Journal of the Acoustical Society of America, 1997, 102, 2892-2905.	1.1	513
2	A quantitative model of the â€~â€~effective'' signal processing in the auditory system. I. Model structure. Journal of the Acoustical Society of America, 1996, 99, 3615-3622.	1.1	474
3	Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration. Journal of the Acoustical Society of America, 1997, 102, 2906-2919.	1.1	288
4	Auditory brainstem responses with optimized chirp signals compensating basilar-membrane dispersion. Journal of the Acoustical Society of America, 2000, 107, 1530-1540.	1.1	274
5	Characterizing frequency selectivity for envelope fluctuations. Journal of the Acoustical Society of America, 2000, 108, 1181-1196.	1.1	235
6	The influence of carrier level and frequency on modulation and beat-detection thresholds for sinusoidal carriers. Journal of the Acoustical Society of America, 2000, 108, 723-734.	1.1	225
7	Predicting speech intelligibility based on the signal-to-noise envelope power ratio after modulation-frequency selective processing. Journal of the Acoustical Society of America, 2011, 130, 1475-1487.	1.1	224
8	Relations between frequency selectivity, temporal fine-structure processing, and speech reception in impaired hearing. Journal of the Acoustical Society of America, 2009, 125, 3328-3345.	1.1	193
9	Noise-robust cortical tracking of attended speech in real-world acoustic scenes. NeuroImage, 2017, 156, 435-444.	4.2	174
10	A computational model of human auditory signal processing and perception. Journal of the Acoustical Society of America, 2008, 124, 422-438.	1.1	157
11	A multi-resolution envelope-power based model for speech intelligibility. Journal of the Acoustical Society of America, 2013, 134, 436-446.	1.1	136
12	A quantitative model of the â€~â€~effective'' signal processing in the auditory system. II. Simulations and measurements. Journal of the Acoustical Society of America, 1996, 99, 3623-3631.	1.1	127
13	Searching for the optimal stimulus eliciting auditory brainstem responses in humans. Journal of the Acoustical Society of America, 2004, 116, 2213-2222.	1.1	106
14	The importance of cochlear processing for the formation of auditory brainstem and frequency following responses. Journal of the Acoustical Society of America, 2003, 113, 936-950.	1.1	97
15	Intrinsic envelope fluctuations and modulation-detection thresholds for narrow-band noise carriers. Journal of the Acoustical Society of America, 1999, 106, 2752-2760.	1.1	93
16	Within-channel cues in comodulation masking release (CMR): Experiments and model predictions using a modulation-filterbank model. Journal of the Acoustical Society of America, 1999, 106, 2733-2745.	1.1	90
17	The Danish hearing in noise test. International Journal of Audiology, 2011, 50, 202-208.	1.7	88
18	Masking patterns for sinusoidal and narrow-band noise maskers. Journal of the Acoustical Society of America, 1998, 104, 1023-1038.	1.1	76

#	Article	IF	Citations
19	Spectro-temporal processing in the envelope-frequency domain. Journal of the Acoustical Society of America, 2002, 112, 2921-2931.	1.1	76
20	Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission. Journal of the Acoustical Society of America, 2012, 132, 3842-3848.	1.1	73
21	Effects of Sensorineural Hearing Loss on Cortical Synchronization to Competing Speech during Selective Attention. Journal of Neuroscience, 2020, 40, 2562-2572.	3.6	73
22	Impact of Background Noise and Sentence Complexity on Processing Demands during Sentence Comprehension. Frontiers in Psychology, 2016, 7, 345.	2.1	71
23	Towards a measure of auditory-filter phase response. Journal of the Acoustical Society of America, 2001, 110, 3169-3178.	1.1	65
24	Frequency specificity of chirp-evoked auditory brainstem responses. Journal of the Acoustical Society of America, 2002, 111, 1318-1329.	1.1	62
25	Development of a Danish speech intelligibility test. International Journal of Audiology, 2009, 48, 729-741.	1.7	62
26	External and internal limitations in amplitude-modulation processing. Journal of the Acoustical Society of America, 2004, 116, 478-490.	1.1	53
27	Characterizing auditory processing and perception in individual listeners with sensorineural hearing loss. Journal of the Acoustical Society of America, 2011, 129, 262-281.	1.1	52
28	Prediction of speech intelligibility based on an auditory preprocessing model. Speech Communication, 2010, 52, 678-692.	2.8	51
29	Investigating the Effect of Cochlear Synaptopathy on Envelope Following Responses Using a Model of the Auditory Nerve. JARO - Journal of the Association for Research in Otolaryngology, 2019, 20, 363-382.	1.8	48
30	Reconciling frequency selectivity and phase effects in masking. Journal of the Acoustical Society of America, 2001, 110, 1525-1538.	1.1	47
31	Auditory stream formation affects comodulation masking release retroactively. Journal of the Acoustical Society of America, 2009, 125, 2182-2188.	1.1	47
32	Predicting speech intelligibility based on a correlation metric in the envelope power spectrum domain. Journal of the Acoustical Society of America, 2016, 140, 2670-2679.	1.1	43
33	The representation of peripheral neural activity in the middle-latency evoked field of primary auditory cortex in humans. Hearing Research, 2002, 174, 19-31.	2.0	42
34	On the role of envelope fluctuation processing in spectral masking. Journal of the Acoustical Society of America, 2000, 108, 285-296.	1.1	41
35	Modeling comodulation masking release using an equalization-cancellation mechanism. Journal of the Acoustical Society of America, 2007, 121, 2111-2126.	1.1	41
36	Sound source localization with varying amount of visual information in virtual reality. PLoS ONE, 2019, 14, e0214603.	2.5	41

#	Article	IF	CITATIONS
37	Modulation detection interference: Effects of concurrent and sequential streaming. Journal of the Acoustical Society of America, 2001, 110, 402-408.	1.1	40
38	Masker phase effects in normal-hearing and hearing-impaired listeners: Evidence for peripheral compression at low signal frequencies. Journal of the Acoustical Society of America, 2004, 116, 2248-2257.	1.1	40
39	Pitch Discrimination in Musicians and Non-Musicians: Effects of Harmonic Resolvability and Processing Effort. JARO - Journal of the Association for Research in Otolaryngology, 2016, 17, 69-79.	1.8	40
40	Speech perception is similar for musicians and non-musicians across aÂwide range of conditions. Scientific Reports, 2019, 9, 10404.	3.3	40
41	Subcortical and cortical correlates of pitch discrimination: Evidence for two levels of neuroplasticity in musicians. NeuroImage, 2017, 163, 398-412.	4.2	36
42	Comparison of cochlear delay estimates using otoacoustic emissions and auditory brainstem responses. Journal of the Acoustical Society of America, 2009, 126, 1291-1301.	1.1	35
43	A Model of Electrically Stimulated Auditory Nerve Fiber Responses with Peripheral and Central Sites of Spike Generation. JARO - Journal of the Association for Research in Otolaryngology, 2017, 18, 323-342.	1.8	35
44	Cortical oscillations and entrainment in speech processing during working memory load. European Journal of Neuroscience, 2020, 51, 1279-1289.	2.6	34
45	Binaural pitch perception in normal-hearing and hearing-impaired listeners. Hearing Research, 2007, 223, 29-47.	2.0	32
46	The role of reverberation-related binaural cues in the externalization of speech. Journal of the Acoustical Society of America, 2015, 138, 1154-1167.	1.1	31
47	Modeling temporal and compressive properties of the normal and impaired auditory system. Hearing Research, 2001, 159, 132-149.	2.0	29
48	A neural circuit transforming temporal periodicity information into a rate-based representation in the mammalian auditory system. Journal of the Acoustical Society of America, 2007, 121, 310-326.	1.1	29
49	Modeling auditory evoked brainstem responses to transient stimuli. Journal of the Acoustical Society of America, 2012, 131, 3903-3913.	1.1	29
50	Listening through hearing aids affects spatial perception and speech intelligibility in normal-hearing listeners. Journal of the Acoustical Society of America, 2018, 144, 2896-2905.	1.1	29
51	Predicting the effects of periodicity on the intelligibility of masked speech: An evaluation of different modelling approaches and their limitations. Journal of the Acoustical Society of America, 2019, 146, 2562-2576.	1.1	28
52	Modeling auditory processing of amplitude modulation. Journal of the Acoustical Society of America, 1997, 101, 3061-3061.	1.1	28
53	Relation between derived-band auditory brainstem response latencies and behavioral frequency selectivity. Journal of the Acoustical Society of America, 2009, 126, 1878-1888.	1.1	27
54	Human cochlear tuning estimates from stimulus-frequency otoacoustic emissions. Journal of the Acoustical Society of America, 2011, 129, 3797-3807.	1.1	27

#	Article	IF	Citations
55	Spatial Hearing with Incongruent Visual or Auditory Room Cues. Scientific Reports, 2016, 6, 37342.	3.3	27
56	Relating binaural pitch perception to the individual listener's auditory profile. Journal of the Acoustical Society of America, 2012, 131, 2968-2986.	1.1	26
57	Sources of variability in consonant perception of normal-hearing listeners. Journal of the Acoustical Society of America, 2015, 138, 1253-1267.	1.1	26
58	Relations between perceptual measures of temporal processing, auditory-evoked brainstem responses and speech intelligibility in noise. Hearing Research, 2011, 280, 30-37.	2.0	25
59	Relationship between masking release in fluctuating maskers and speech reception thresholds in stationary noise. Journal of the Acoustical Society of America, 2012, 132, 1655-1666.	1.1	25
60	The effect of interaural-level-difference fluctuations on the externalization of sound. Journal of the Acoustical Society of America, 2013, 134, 1232-1241.	1.1	25
61	Binaural processing of modulated interaural level differences. Journal of the Acoustical Society of America, 2008, 123, 1017-1029.	1.1	24
62	Experimental Evidence for a Cochlear Source of the Precedence Effect. JARO - Journal of the Association for Research in Otolaryngology, 2013, 14, 767-779.	1.8	23
63	Binaural dereverberation based on interaural coherence histograms. Journal of the Acoustical Society of America, 2013, 133, 2767-2777.	1.1	23
64	Effects of hearing-aid dynamic range compression on spatial perception in a reverberant environment. Journal of the Acoustical Society of America, 2017, 141, 2556-2568.	1.1	23
65	Effects of Musical Training and Hearing Loss on Fundamental Frequency Discrimination and Temporal Fine Structure Processing: Psychophysics and Modeling. JARO - Journal of the Association for Research in Otolaryngology, 2019, 20, 263-277.	1.8	23
66	Requirements for the evaluation of computational speech segregation systems. Journal of the Acoustical Society of America, 2014, 136, EL398-EL404.	1.1	21
67	Auditory brainstem response latency in forward masking, a marker of sensory deficits in listeners with normal hearing thresholds. Hearing Research, 2017, 346, 34-44.	2.0	21
68	Data-Driven Approach for Auditory Profiling and Characterization of Individual Hearing Loss. Trends in Hearing, 2018, 22, 233121651880740.	1.3	21
69	A comparative study of eight human auditory models of monaural processing. Acta Acustica, 2022, 6, 17.	1.0	21
70	Predicting binaural speech intelligibility using the signal-to-noise ratio in the envelope power spectrum domain. Journal of the Acoustical Society of America, 2016, 140, 192-205.	1.1	20
71	Robust Data-Driven Auditory Profiling Towards Precision Audiology. Trends in Hearing, 2020, 24, 233121652097353.	1.3	20
72	Modulation masking produced by complex tone modulators. Journal of the Acoustical Society of America, 2003, 114, 2135-2146.	1.1	19

#	Article	IF	Citations
73	Influence of cochlear traveling wave and neural adaptation on auditory brainstem responses. Hearing Research, 2005, 205, 53-67.	2.0	19
74	Improving Speech Intelligibility by Hearing Aid Eye-Gaze Steering: Conditions With Head Fixated in a Multitalker Environment. Trends in Hearing, 2018, 22, 233121651881438.	1.3	19
75	The benefit of combining a deep neural network architecture with ideal ratio mask estimation in computational speech segregation to improve speech intelligibility. PLoS ONE, 2018, 13, e0196924.	2.5	18
76	Influence of talker discontinuity on cortical dynamics of auditory spatial attention. NeuroImage, 2018, 179, 548-556.	4.2	18
77	Validation of a Virtual Sound Environment System for Testing Hearing Aids. Acta Acustica United With Acustica, 2016, 102, 547-557.	0.8	18
78	The effects of neural synchronization and peripheral compression on the acoustic-reflex threshold. Journal of the Acoustical Society of America, 2005, 117, 3016-3027.	1.1	17
79	The role of spectral detail in the binaural transfer function on perceived externalization in a reverberant environment. Journal of the Acoustical Society of America, 2016, 139, 2992-3000.	1.1	17
80	Accuracy of averaged auditory brainstem response amplitude and latency estimates. International Journal of Audiology, 2018, 57, 345-353.	1.7	17
81	Signal-to-Noise-Ratio-Aware Dynamic Range Compression in Hearing Aids. Trends in Hearing, 2018, 22, 233121651879090.	1.3	17
82	A speech-based computational auditory signal processing and perception model. Journal of the Acoustical Society of America, 2019, 146, 3306-3317.	1.1	17
83	Temporal suppression of the click-evoked otoacoustic emission level-curve. Journal of the Acoustical Society of America, 2011, 129, 1452-1463.	1.1	16
84	Modeling within- and across-channel processes in comodulation masking release. Journal of the Acoustical Society of America, 2013, 133, 350-364.	1.1	16
85	A Danish open-set speech corpus for competing-speech studies. Journal of the Acoustical Society of America, 2014, 135, 407-420.	1.1	16
86	The role of auditory spectro-temporal modulation filtering and the decision metric for speech intelligibility prediction. Journal of the Acoustical Society of America, 2014, 135, 3502-3512.	1.1	16
87	Effects of manipulating the signal-to-noise envelope power ratio on speech intelligibility. Journal of the Acoustical Society of America, 2015, 137, 1401-1410.	1.1	16
88	The role of temporal fine structure information for the low pitch of high-frequency complex tones. Journal of the Acoustical Society of America, 2011, 129, 282-292.	1.1	15
89	Effects of Slow- and Fast-Acting Compression on Hearing-Impaired Listeners' Consonant–Vowel Identification in Interrupted Noise. Trends in Hearing, 2018, 22, 233121651880087.	1.3	15
90	Measuring and modeling speech intelligibility in real and loudspeaker-based virtual sound environments. Hearing Research, 2019, 377, 307-317.	2.0	15

#	Article	IF	CITATIONS
91	Effects of concurrent and sequential streaming in comodulation masking release., 2005,, 334-342.		13
92	Revisiting perceptual compensation for effects of reverberation in speech identification. Journal of the Acoustical Society of America, 2010, 128, 3088-3094.	1.1	13
93	Effects of tonotopicity, adaptation, modulation tuning, and temporal coherence in "primitive― auditory stream segregation. Journal of the Acoustical Society of America, 2014, 135, 323-333.	1.1	13
94	Inversion of auditory spectrograms, traditional spectrograms, and other envelope representations. IEEE/ACM Transactions on Audio Speech and Language Processing, 2014, , 1-1.	5.8	13
95	Speech Intelligibility Evaluation for Mobile Phones. Acta Acustica United With Acustica, 2015, 101, 1016-1025.	0.8	13
96	Preserving spatial perception in rooms using direct-sound driven dynamic range compression. Journal of the Acoustical Society of America, 2017, 141, 4556-4566.	1.1	13
97	Contribution of envelope periodicity to release from speech-on-speech masking. Journal of the Acoustical Society of America, 2013, 134, 2197-2204.	1.1	12
98	Investigating Interaural Frequency-Place Mismatches via Bimodal Vowel Integration. Trends in Hearing, 2014, 18, 233121651456059.	1.3	12
99	Temporal Fine-Structure Coding and Lateralized Speech Perception in Normal-Hearing and Hearing-Impaired Listeners. Trends in Hearing, 2016, 20, 233121651666096.	1.3	12
100	Real-time estimation of eye gaze by in-ear electrodes. , 2017, 2017, 4086-4089.		12
101	Predicting Speech Intelligibility Based on Across-Frequency Contrast in Simulated Auditory-Nerve Fluctuations. Acta Acustica United With Acustica, 2018, 104, 914-917.	0.8	12
102	Computational speech segregation based on an auditory-inspired modulation analysis. Journal of the Acoustical Society of America, 2014, 136, 3350-3359.	1.1	11
103	Cascaded Amplitude Modulations in Sound Texture Perception. Frontiers in Neuroscience, 2017, 11, 485.	2.8	11
104	Auditory Stream Segregation and Selective Attention for Cochlear Implant Listeners: Evidence From Behavioral Measures and Event-Related Potentials. Frontiers in Neuroscience, 2018, 12, 581.	2.8	11
105	Auditory Tests for Characterizing Hearing Deficits in Listeners With Various Hearing Abilities: The BEAR Test Battery. Frontiers in Neuroscience, 2021, 15, 724007.	2.8	11
106	Effects of Hearing Loss and Fast-Acting Compression on Amplitude Modulation Perception and Speech Intelligibility. Ear and Hearing, 2019, 40, 45-54.	2.1	10
107	On the use of envelope following responses to estimate peripheral level compression in the auditory system. Scientific Reports, 2021, 11, 6962.	3.3	9
108	Representation of Auditory-Filter Phase Characteristics in the Cortex of Human Listeners. Journal of Neurophysiology, 2008, 99, 1152-1162.	1.8	8

#	Article	IF	Citations
109	The influence of masker type on early reflection processing and speech intelligibility (L). Journal of the Acoustical Society of America, 2013, 133, 13-16.	1.1	8
110	Predicting consonant recognition and confusions in normal-hearing listeners. Journal of the Acoustical Society of America, 2017, 141, 1051-1064.	1.1	8
111	The Role of Place Cues in Voluntary Stream Segregation for Cochlear Implant Users. Trends in Hearing, 2018, 22, 233121651775026.	1.3	8
112	Spectro-temporal Processing of Speech – An Information-Theoretic Framework. , 2007, , 517-523.		8
113	Age-related reduction in frequency-following responses as a potential marker of cochlear neural degeneration. Hearing Research, 2022, 414, 108411.	2.0	8
114	Estimation of cochlear response times using lateralization of frequency-mismatched tones. Journal of the Acoustical Society of America, 2009, 126, 1302-1311.	1.1	7
115	Detection and Identification of Monaural and Binaural Pitch Contours in Dyslexic Listeners. JARO - Journal of the Association for Research in Otolaryngology, 2010, 11, 515-524.	1.8	7
116	Environment-aware ideal binary mask estimation using monaural cues. , 2013, , .		7
117	Complex-Tone Pitch Discrimination in Listeners With Sensorineural Hearing Loss. Trends in Hearing, 2016, 20, 233121651665579.	1.3	7
118	Absolute Eye Gaze Estimation With Biosensors in Hearing Aids. Frontiers in Neuroscience, 2019, 13, 1294.	2.8	7
119	The effect of spatial energy spread on sound image size and speech intelligibility. Journal of the Acoustical Society of America, 2020, 147, 1368-1378.	1.1	7
120	Towards Auditory Profile-Based Hearing-Aid Fitting: Fitting Rationale and Pilot Evaluation. Audiology Research, 2021, 11, 10-21.	1.8	7
121	Temporal suppression and augmentation of click-evoked otoacoustic emissions. Hearing Research, 2008, 246, 23-35.	2.0	6
122	Assessing the efficacy of hearing-aid amplification using a phoneme test. Journal of the Acoustical Society of America, 2017, 141, 1739-1748.	1.1	6
123	The Role of Temporal Cues in Voluntary Stream Segregation for Cochlear Implant Users. Trends in Hearing, 2018, 22, 233121651877322.	1.3	6
124	Supra-threshold perception and neural representation of tones presented in noise in conditions of masking release. PLoS ONE, 2019, 14, e0222804.	2.5	6
125	Effect of Noise Reduction Gain Errors on Simulated Cochlear Implant Speech Intelligibility. Trends in Hearing, 2019, 23, 233121651982593.	1.3	6
126	Forward Masking: Temporal Integration or Adaptation?. , 2007, , 165-174.		6

#	Article	IF	Citations
127	On the possibility of a place code for the low pitch of high-frequency complex tones. Journal of the Acoustical Society of America, 2012, 132, 3883-3895.	1.1	5
128	Modelling Speech Intelligibility in Adverse Conditions. Advances in Experimental Medicine and Biology, 2013, 787, 343-351.	1.6	5
129	Viscoelastic Nonlinear Resonator with Gas-Filled Cavities. Acta Acustica United With Acustica, 2015, 101, 915-919.	0.8	5
130	Can place-specific cochlear dispersion be represented by auditory steady-state responses?. Hearing Research, 2016, 335, 76-82.	2.0	5
131	Localization of broadband sounds carrying interaural time differences: Effects of frequency, reference location, and interaural coherence. Journal of the Acoustical Society of America, 2018, 144, 2225-2237.	1.1	5
132	Investigating the Effects of Four Auditory Profiles on Speech Recognition, Overall Quality, and Noise Annoyance With Simulated Hearing-Aid Processing Strategies. Trends in Hearing, 2020, 24, 233121652096086.	1.3	5
133	Investigating time-efficiency of forward masking paradigms for estimating basilar membrane input-output characteristics. PLoS ONE, 2017, 12, e0174776.	2.5	5
134	Auditory profiling and hearing-aid satisfaction in hearing-aid candidates. Danish Medical Journal, 2016, 63, .	0.5	5
135	MODELING THE â€~EFFECTIVE' BINAURAL SIGNAL PROCESSING IN DETECTION EXPERIMENTS. , 1999, , 207-2	210.	4
136	Auditory Processing Models. , 2008, , 175-196.		4
137	Can a Static Nonlinearity Account for the Dynamics of Otoacoustic Emission Suppression?., 2011, 1403, 257-263.		4
138	The impact of exploiting spectro-temporal context in computational speech segregation. Journal of the Acoustical Society of America, 2018, 143, 248-259.	1.1	4
139	On the Cost of Introducing Speech-Like Properties to a Stimulus for Auditory Steady-State Response Measurements. Trends in Hearing, 2018, 22, 233121651878930.	1.3	4
140	A method for realistic, conversational signal-to-noise ratio estimation. Journal of the Acoustical Society of America, 2021, 149, 1559-1566.	1.1	4
141	Audiometric profiles and patterns of benefit: a data-driven analysis of subjective hearing difficulties and handicaps. International Journal of Audiology, 2022, 61, 301-310.	1.7	4
142	Speech intelligibility in a realistic virtual sound environment. Journal of the Acoustical Society of America, 2021, 149, 2791-2801.	1.1	4
143	MODELING ACROSS-FREQUENCY PROCESSING OF AMPLITUDE MODULATION. , 1999, , 229-234.		4
144	Scene-Aware Dynamic-Range Compression in Hearing Aids. Modern Acoustics and Signal Processing, 2020, , 763-799.	0.8	4

#	Article	IF	CITATIONS
145	Effects of diotic fringes on interaural disparity detection (L). Journal of the Acoustical Society of America, 2012, 132, 2959-2962.	1.1	3
146	Refining a model of hearing impairment using speech psychophysics. Journal of the Acoustical Society of America, 2014, 135, EL179-EL185.	1.1	3
147	Predicting effects of hearing-instrument signal processing on consonant perception. Journal of the Acoustical Society of America, 2017, 142, 3216-3226.	1.1	3
148	Auditory Stream Segregation Can Be Modeled by Neural Competition in Cochlear Implant Listeners. Frontiers in Computational Neuroscience, 2019, 13, 42.	2.1	3
149	The impact of noise power estimation on speech intelligibility in cochlear-implant speech coding strategies. Journal of the Acoustical Society of America, 2019, 145, 818-821.	1.1	3
150	Comparing the Influence of Spectro-Temporal Integration in Computational Speech Segregation. , 0, , .		3
151	A Danish Nonsense Word Corpus for Phoneme Recognition Measurements. Acta Acustica United With Acustica, 2019, 105, 183-194.	0.8	3
152	A Functional Point-Neuron Model Simulating Cochlear Nucleus Ideal Onset Responses. Journal of Computational Neuroscience, 2005, 19, 239-253.	1.0	2
153	The Effect of a Voice Activity Detector on the Speech Enhancement Performance of the Binaural Multichannel Wiener Filter. Eurasip Journal on Audio, Speech, and Music Processing, 2010, 2010, 1-12.	2.1	2
154	Spectral integration of interaural time differences in auditory localization. Proceedings of Meetings on Acoustics, 2013 , , .	0.3	2
155	Single channel speech enhancement in the modulation domain: New insights in the modulation channel selection framework. , 2015 , , .		2
156	Effect of harmonic rank on sequential sound segregation. Hearing Research, 2018, 367, 161-168.	2.0	2
157	Perceptual Evaluation of Signal-to-Noise-Ratio-Aware Dynamic Range Compression in Hearing Aids. Trends in Hearing, 2020, 24, 233121652093053.	1.3	2
158	No interaction between fundamental-frequency differences and spectral region when perceiving speech in a speech background. PLoS ONE, 2021, 16, e0249654.	2.5	2
159	The effect of hearing aid dynamic range compression on speech intelligibility in a realistic virtual sound environment. Journal of the Acoustical Society of America, 2022, 151, 232-241.	1.1	2
160	Broadband Amplification as Tinnitus Treatment. Brain Sciences, 2022, 12, 719.	2.3	2
161	Comparison of level discrimination, increment detection, and comodulation masking release in the audio- and envelope-frequency domains. Journal of the Acoustical Society of America, 2007, 121, 2168-2181.	1.1	1
162	Digital Signal Processing for Hearing Instruments. Eurasip Journal on Advances in Signal Processing, 2009, 2009, .	1.7	1

#	Article	IF	CITATIONS
163	Cochlear Contributions to the Precedence Effect. Advances in Experimental Medicine and Biology, 2013, 787, 283-291.	1.6	1
164	Modelling human auditory evoked brainstem responses to speech syllables. Proceedings of Meetings on Acoustics, 2013, , .	0.3	1
165	Effects of Expanding Envelope Fluctuations on Consonant Perception in Hearing-Impaired Listeners. Trends in Hearing, 2018, 22, 233121651877529.	1.3	1
166	Assessing the effects of hearing-aid compression on auditory spectral and temporal resolution using an auditory modeling framework. Acoustical Science and Technology, 2020, 41, 214-222.	0.5	1
167	Modeling auditory processing of AM detection and discrimination for sensorineural hearingâ€impaired listeners. Journal of the Acoustical Society of America, 1996, 100, 2632-2632.	1.1	1
168	ON THE RELATIONSHIP BETWEEN AUDITORY EVOKED POTENTIALS AND PSYCHOPHYSICAL LOUDNESS. , 1999, , 59-62.		1
169	Guided ecological momentary assessment in real and virtual sound environments. Journal of the Acoustical Society of America, 2021, 150, 2695-2704.	1.1	1
170	Sources of Variability in Consonant Perception and Implications for Speech Perception Modeling. Advances in Experimental Medicine and Biology, 2016, 894, 437-446.	1.6	1
171	Identification and Discrimination of Sound Textures in Hearing-Impaired and Older Listeners. Trends in Hearing, 2021, 25, 233121652110656.	1.3	1
172	Temporal suppression of long-latency click-evoked otoacoustic emissions. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 1932-6.	0.5	0
173	The role of across-frequency envelope processing for speech intelligibility. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0
174	The role of high-frequency envelope fluctuations for speech masking release. Proceedings of Meetings on Acoustics, 2013 , , .	0.3	0
175	Efficient estimates of cochlear hearing loss parameters in individual listeners. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0
176	Perception of a Sung Vowel as a Function of Frequency-Modulation Rate and Excursion in Listeners With Normal Hearing and Hearing Impairment. Journal of Speech, Language, and Hearing Research, 2014, 57, 1961-1971.	1.6	0
177	Individual Hearing Loss. Trends in Hearing, 2016, 20, 233121651665589.	1.3	O
178	Adaptive Processes in Hearing. Trends in Hearing, 2018, 22, 233121651876226.	1.3	0
179	Hearing: Psychophysics, Physiology, and Models. Acta Acustica United With Acustica, 2018, 104, 741-747.	0.8	O
180	Effects of Fast-Acting Hearing-Aid Compression on Audibility, Forward Masking and Speech Perception. , 2018, , .		0

#	Article	IF	Citations
181	Exploiting Non-Negative Matrix Factorization for Binaural Sound Localization in the Presence of Directional Interference. , $2021, \ldots$		0
182	Comparison of Behavioral and Physiological Measures of the Status of the Cochlear Nonlinearity. Trends in Hearing, 2021, 25, 233121652110161.	1.3	0
183	Objective and Behavioral Estimates of Cochlear Response Times in Normal-Hearing and Hearing-Impaired Human Listeners. , 2010, , 597-607.		0
184	A physiologically inspired model of auditory stream segregation based on a temporal coherence analysis. Proceedings of Meetings on Acoustics, $2013, , .$	0.3	0
185	The effect of compression on tuning estimates in a simple nonlinear auditory filter model. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0
186	Maximum acceptable vibrato excursion as a function of vibrato rate in musicians and non-musicians. Proceedings of Meetings on Acoustics, 2014, , .	0.3	0
187	PSYCHOPHYSICAL TUNING IN AUDITORY AM-PROCESSING. , 1999, , 73-76.		O