
John Wharton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1490118/publications.pdf Version: 2024-02-01

Ιομή Μμλρτον

#	Article	IF	CITATIONS
1	Using the Plasma Proteome for Risk Stratifying Patients with Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1102-1111.	5.6	35
2	Mining the Plasma Proteome for Insights into the Molecular Pathology of Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1449-1460.	5.6	19
3	Bayesian Inference Associates Rare <i>KDR</i> Variants With Specific Phenotypes in Pulmonary Arterial Hypertension. Circulation Genomic and Precision Medicine, 2021, 14, .	3.6	29
4	The application of â€~omics' to pulmonary arterial hypertension. British Journal of Pharmacology, 2021, 178, 108-120.	5.4	18
5	Plasma metabolomics exhibit response to therapy in chronic thromboembolic pulmonary hypertension. European Respiratory Journal, 2021, 57, 2003201.	6.7	25
6	The pathophysiological role of novel pulmonary arterial hypertension gene <i>SOX17</i> . European Respiratory Journal, 2021, 58, 2004172.	6.7	16
7	A diagnostic miRNA signature for pulmonary arterial hypertension using a consensus machine learning approach. EBioMedicine, 2021, 69, 103444.	6.1	30
8	Deficiency of Axl aggravates pulmonary arterial hypertension via BMPR2. Communications Biology, 2021, 4, 1002.	4.4	3
9	Biological heterogeneity in idiopathic pulmonary arterial hypertension identified through unsupervised transcriptomic profiling of whole blood. Nature Communications, 2021, 12, 7104.	12.8	21
10	Characterization of <i>GDF2</i> Mutations and Levels of BMP9 and BMP10 in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 575-585.	5.6	80
11	Expression Quantitative Trait Locus Mapping in Pulmonary Arterial Hypertension. Genes, 2020, 11, 1247.	2.4	3
12	Whole-Blood RNA Profiles Associated with Pulmonary Arterial Hypertension and Clinical Outcome. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 586-594.	5.6	45
13	Mendelian randomisation analysis of red cell distribution width in pulmonary arterial hypertension. European Respiratory Journal, 2020, 55, 1901486.	6.7	26
14	Plasma metabolomics in chronic thromboembolic pulmonary hypertension. , 2020, , .		1
15	Multi-omic profiling in pulmonary arterial hypertension. , 2020, , .		0
16	The ADAMTS13–VWF axis is dysregulated in chronic thromboembolic pulmonary hypertension. European Respiratory Journal, 2019, 53, 1801805.	6.7	31
17	Traffic exposures, air pollution and outcomes in pulmonary arterial hypertension: a UK cohort study analysis. European Respiratory Journal, 2019, 53, 1801429.	6.7	31
18	Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis. Lancet Respiratory Medicine,the, 2019, 7, 227-238.	10.7	122

JOHN WHARTON

#	Article	IF	CITATIONS
19	Metabolic pathways associated with right ventricular adaptation to pulmonary hypertension: 3D analysis of cardiac magnetic resonance imaging. European Heart Journal Cardiovascular Imaging, 2019, 20, 668-676.	1.2	13
20	Reduced plasma levels of small HDL particles transporting fibrinolytic proteins in pulmonary arterial hypertension. Thorax, 2019, 74, 380-389.	5.6	34
21	Human PAH is characterized by a pattern of lipid-related insulin resistance. JCI Insight, 2019, 4, .	5.0	69
22	Late Breaking Abstract - Supplementation of iron in pulmonary hypertension (SIPHON): results from a randomised controlled crossover trial. , 2019, , .		0
23	Identification of rare sequence variation underlying heritable pulmonary arterial hypertension. Nature Communications, 2018, 9, 1416.	12.8	279
24	Recent advances in pulmonary arterial hypertension. F1000Research, 2018, 7, 1128.	1.6	27
25	3′-Deoxy-3′-[18F]Fluorothymidine Positron Emission Tomography Depicts Heterogeneous Proliferation Pathology in Idiopathic Pulmonary Arterial Hypertension Patient Lung. Circulation: Cardiovascular Imaging, 2018, 11, e007402.	2.6	14
26	Loss-of-Function <i>ABCC8</i> Mutations in Pulmonary Arterial Hypertension. Circulation Genomic and Precision Medicine, 2018, 11, e002087.	3.6	62
27	Fractal Analysis of Right Ventricular Trabeculae in Pulmonary Hypertension. Radiology, 2018, 288, 386-395.	7.3	23
28	Metabolomic Insights in Pulmonary Arterial Hypertension. Advances in Pulmonary Hypertension, 2018, 17, 103-109.	0.1	2
29	Machine Learning of Three-dimensional Right Ventricular Motion Enables Outcome Prediction in Pulmonary Hypertension: A Cardiac MR Imaging Study. Radiology, 2017, 283, 381-390.	7.3	161
30	Plasma proteome analysis in patients with pulmonary arterial hypertension: an observational cohort study. Lancet Respiratory Medicine,the, 2017, 5, 717-726.	10.7	99
31	Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients. Science Translational Medicine, 2017, 9, .	12.4	206
32	Phenotypic Characterization of <i>EIF2AK4</i> Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension. Circulation, 2017, 136, 2022-2033.	1.6	111
33	Plasma Metabolomics Implicates Modified Transfer RNAs and Altered Bioenergetics in the Outcomes of Pulmonary Arterial Hypertension. Circulation, 2017, 135, 460-475.	1.6	154
34	Why drugs fail in clinical trials in pulmonary arterial hypertension, and strategies to succeed in the future. , 2016, 164, 195-203.		37
35	Prolyl-4 Hydroxylase 2 (PHD2) Deficiency in Endothelial Cells and Hematopoietic Cells Induces Obliterative Vascular Remodeling and Severe Pulmonary Arterial Hypertension in Mice and Humans Through Hypoxia-Inducible Factor-2α. Circulation, 2016, 133, 2447-2458.	1.6	182
36	Endothelium-derived microparticles from chronically thromboembolic pulmonary hypertensive patients facilitate endothelial angiogenesis. Journal of Biomedical Science, 2016, 23, 4.	7.0	29

JOHN WHARTON

#	Article	IF	CITATIONS
37	Iron Homeostasis and Pulmonary Hypertension. Circulation Research, 2015, 116, 1680-1690.	4.5	97
38	Abstract 202: The Role of Neutrophil Extracellular Traps in the Pathogenesis of Pulmonary Hypertension Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	0
39	α1-A680T Variant in GUCY1A3 as a Candidate Conferring Protection From Pulmonary Hypertension Among Kyrgyz Highlanders. Circulation: Cardiovascular Genetics, 2014, 7, 920-929.	5.1	23
40	<i>miR-21</i> /DDAH1 pathway regulates pulmonary vascular responses to hypoxia. Biochemical Journal, 2014, 462, 103-112.	3.7	45
41	Histone Deacetylation Inhibition in Pulmonary Hypertension. Circulation, 2012, 126, 455-467.	1.6	222
42	Iron Deficiency and Raised Hepcidin in Idiopathic Pulmonary Arterial Hypertension. Journal of the American College of Cardiology, 2011, 58, 300-309.	2.8	208
43	Phosphodiesterase Inhibitors in the Treatment of Pulmonary Hypertension. , 2011, , 1477-1485.		1
44	Blood biomarkers. , 2011, , 146-158.		0
45	Response to Letter Regarding Article, "Circulating Endothelial Progenitor Cells in Patients With Eisenmenger Syndrome and Idiopathic Pulmonary Arterial Hypertension― Circulation, 2009, 119, .	1.6	2
46	Circulating Endothelial Progenitor Cells in Patients With Eisenmenger Syndrome and Idiopathic Pulmonary Arterial Hypertension. Circulation, 2008, 117, 3020-3030.	1.6	208
47	Antiproliferative Effects of Phosphodiesterase Type 5 Inhibition in Human Pulmonary Artery Cells. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 105-113.	5.6	316
48	Phosphodiesterase Type 5 as a Target for the Treatment of Hypoxia-Induced Pulmonary Hypertension. Circulation, 2003, 107, 3230-3235.	1.6	233
49	Recent insights into the pathogenesis and therapeutics of pulmonary hypertension. Clinical Science, 2002, 102, 253-268.	4.3	30
50	Differential Adrenomedullin Release and Endothelin Receptor Expression in Distinct Subpopulations of Human Airway Smooth-Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 2001, 25, 316-325.	2.9	3
51	Angiotensin II activates MAPK and stimulates growth of human pulmonary artery smooth muscle via AT ₁ receptors. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L440-L448.	2.9	49
52	Sequential development of angiotensin receptors and angiotensin I converting enzyme during angiogenesis in the rat subcutaneous sponge granuloma. British Journal of Pharmacology, 1997, 120, 1302-1311.	5.4	59
53	Nitric oxide synthase in human placenta and umbilical cord from normal, intrauterine growthâ€retarded and preâ€eclamptic pregnancies. British Journal of Pharmacology, 1995, 116, 3099-3109.	5.4	71
54	AT ₁ receptor characteristics of angiotensin analogue binding in human synovium. British Journal of Pharmacology, 1994, 112, 435-442.	5.4	47

JOHN WHARTON

#	Article	IF	CITATIONS
55	Identification of renal natriuretic peptide receptor subpopulations by use of the nonâ€peptide antagonist, HSâ€142â€1. British Journal of Pharmacology, 1994, 113, 931-939.	5.4	11
56	Differences in the distribution and characteristics of tachykinin NK ₁ binding sites between human and guinea pig lung. British Journal of Pharmacology, 1994, 113, 1407-1415.	5.4	16
57	Differential localization of endothelin ET _{<scp>a</scp>} and ET _B binding sites in human placenta. British Journal of Pharmacology, 1993, 109, 544-552.	5.4	32
58	Organization of the guinea-pig uterine innervation. Distribution of immunoreactivities for different neuronal markers. Effects of chemical- and pregnancy-induced sympathectomy. The Histochemical Journal, 1988, 20, 290-300.	0.6	28