John Wharton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1490118/publications.pdf

Version: 2024-02-01

58	3,742	28 h-index	52
papers	citations		g-index
62	62	62	4331 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Antiproliferative Effects of Phosphodiesterase Type 5 Inhibition in Human Pulmonary Artery Cells. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 105-113.	5 . 6	316
2	Identification of rare sequence variation underlying heritable pulmonary arterial hypertension. Nature Communications, 2018, 9, 1416.	12.8	279
3	Phosphodiesterase Type 5 as a Target for the Treatment of Hypoxia-Induced Pulmonary Hypertension. Circulation, 2003, 107, 3230-3235.	1.6	233
4	Histone Deacetylation Inhibition in Pulmonary Hypertension. Circulation, 2012, 126, 455-467.	1.6	222
5	Circulating Endothelial Progenitor Cells in Patients With Eisenmenger Syndrome and Idiopathic Pulmonary Arterial Hypertension. Circulation, 2008, 117, 3020-3030.	1.6	208
6	Iron Deficiency and Raised Hepcidin in Idiopathic Pulmonary Arterial Hypertension. Journal of the American College of Cardiology, 2011, 58, 300-309.	2.8	208
7	Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients. Science Translational Medicine, 2017, 9, .	12.4	206
8	Prolyl-4 Hydroxylase 2 (PHD2) Deficiency in Endothelial Cells and Hematopoietic Cells Induces Obliterative Vascular Remodeling and Severe Pulmonary Arterial Hypertension in Mice and Humans Through Hypoxia-Inducible Factor- $2\hat{l}\pm$. Circulation, 2016, 133, 2447-2458.	1.6	182
9	Machine Learning of Three-dimensional Right Ventricular Motion Enables Outcome Prediction in Pulmonary Hypertension: A Cardiac MR Imaging Study. Radiology, 2017, 283, 381-390.	7.3	161
10	Plasma Metabolomics Implicates Modified Transfer RNAs and Altered Bioenergetics in the Outcomes of Pulmonary Arterial Hypertension. Circulation, 2017, 135, 460-475.	1.6	154
11	Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis. Lancet Respiratory Medicine, the, 2019, 7, 227-238.	10.7	122
12	Phenotypic Characterization of <i>EIF2AK4</i> Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension. Circulation, 2017, 136, 2022-2033.	1.6	111
13	Plasma proteome analysis in patients with pulmonary arterial hypertension: an observational cohort study. Lancet Respiratory Medicine, the, 2017, 5, 717-726.	10.7	99
14	Iron Homeostasis and Pulmonary Hypertension. Circulation Research, 2015, 116, 1680-1690.	4.5	97
15	Characterization of <i>GDF2</i> Mutations and Levels of BMP9 and BMP10 in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 575-585.	5. 6	80
16	Nitric oxide synthase in human placenta and umbilical cord from normal, intrauterine growthâ€retarded and preâ€eclamptic pregnancies. British Journal of Pharmacology, 1995, 116, 3099-3109.	5.4	71
17	Human PAH is characterized by a pattern of lipid-related insulin resistance. JCI Insight, 2019, 4, .	5.0	69
18	Loss-of-Function <i>ABCC8</i> Mutations in Pulmonary Arterial Hypertension. Circulation Genomic and Precision Medicine, 2018, 11, e002087.	3.6	62

#	Article	IF	CITATIONS
19	Sequential development of angiotensin receptors and angiotensin I converting enzyme during angiogenesis in the rat subcutaneous sponge granuloma. British Journal of Pharmacology, 1997, 120, 1302-1311.	5.4	59
20	Angiotensin II activates MAPK and stimulates growth of human pulmonary artery smooth muscle via AT ₁ receptors. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L440-L448.	2.9	49
21	AT ₁ receptor characteristics of angiotensin analogue binding in human synovium. British Journal of Pharmacology, 1994, 112, 435-442.	5.4	47
22	<i>miR-21</i> /DDAH1 pathway regulates pulmonary vascular responses to hypoxia. Biochemical Journal, 2014, 462, 103-112.	3.7	45
23	Whole-Blood RNA Profiles Associated with Pulmonary Arterial Hypertension and Clinical Outcome. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 586-594.	5.6	45
24	Why drugs fail in clinical trials in pulmonary arterial hypertension, and strategies to succeed in the future. , 2016, 164, 195-203.		37
25	Using the Plasma Proteome for Risk Stratifying Patients with Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1102-1111.	5.6	35
26	Reduced plasma levels of small HDL particles transporting fibrinolytic proteins in pulmonary arterial hypertension. Thorax, 2019, 74, 380-389.	5.6	34
27	Differential localization of endothelin ET _{<scp>a</scp>} and ET _B binding sites in human placenta. British Journal of Pharmacology, 1993, 109, 544-552.	5.4	32
28	The ADAMTS13–VWF axis is dysregulated in chronic thromboembolic pulmonary hypertension. European Respiratory Journal, 2019, 53, 1801805.	6.7	31
29	Traffic exposures, air pollution and outcomes in pulmonary arterial hypertension: a UK cohort study analysis. European Respiratory Journal, 2019, 53, 1801429.	6.7	31
30	Recent insights into the pathogenesis and therapeutics of pulmonary hypertension. Clinical Science, 2002, 102, 253-268.	4.3	30
31	A diagnostic miRNA signature for pulmonary arterial hypertension using a consensus machine learning approach. EBioMedicine, 2021, 69, 103444.	6.1	30
32	Endothelium-derived microparticles from chronically thromboembolic pulmonary hypertensive patients facilitate endothelial angiogenesis. Journal of Biomedical Science, 2016, 23, 4.	7.0	29
33	Bayesian Inference Associates Rare <i>KDR</i> Variants With Specific Phenotypes in Pulmonary Arterial Hypertension. Circulation Genomic and Precision Medicine, 2021, 14, .	3.6	29
34	Organization of the guinea-pig uterine innervation. Distribution of immunoreactivities for different neuronal markers. Effects of chemical- and pregnancy-induced sympathectomy. The Histochemical Journal, 1988, 20, 290-300.	0.6	28
35	Recent advances in pulmonary arterial hypertension. F1000Research, 2018, 7, 1128.	1.6	27
36	Mendelian randomisation analysis of red cell distribution width in pulmonary arterial hypertension. European Respiratory Journal, 2020, 55, 1901486.	6.7	26

#	Article	IF	Citations
37	Plasma metabolomics exhibit response to therapy in chronic thromboembolic pulmonary hypertension. European Respiratory Journal, 2021, 57, 2003201.	6.7	25
38	$\hat{l}\pm 1$ -A680T Variant in GUCY1A3 as a Candidate Conferring Protection From Pulmonary Hypertension Among Kyrgyz Highlanders. Circulation: Cardiovascular Genetics, 2014, 7, 920-929.	5.1	23
39	Fractal Analysis of Right Ventricular Trabeculae in Pulmonary Hypertension. Radiology, 2018, 288, 386-395.	7.3	23
40	Biological heterogeneity in idiopathic pulmonary arterial hypertension identified through unsupervised transcriptomic profiling of whole blood. Nature Communications, 2021, 12, 7104.	12.8	21
41	Mining the Plasma Proteome for Insights into the Molecular Pathology of Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1449-1460.	5.6	19
42	The application of â€~omics' to pulmonary arterial hypertension. British Journal of Pharmacology, 2021, 178, 108-120.	5.4	18
43	Differences in the distribution and characteristics of tachykinin NK ₁ binding sites between human and guinea pig lung. British Journal of Pharmacology, 1994, 113, 1407-1415.	5.4	16
44	The pathophysiological role of novel pulmonary arterial hypertension gene <i>SOX17</i> . European Respiratory Journal, 2021, 58, 2004172.	6.7	16
45	$3\hat{a}\in^2$ -Deoxy- $3\hat{a}\in^2$ -[18F]Fluorothymidine Positron Emission Tomography Depicts Heterogeneous Proliferation Pathology in Idiopathic Pulmonary Arterial Hypertension Patient Lung. Circulation: Cardiovascular Imaging, 2018, 11, e007402.	2.6	14
46	Metabolic pathways associated with right ventricular adaptation to pulmonary hypertension: 3D analysis of cardiac magnetic resonance imaging. European Heart Journal Cardiovascular Imaging, 2019, 20, 668-676.	1.2	13
47	Identification of renal natriuretic peptide receptor subpopulations by use of the nonâ€peptide antagonist, HSâ€142â€1. British Journal of Pharmacology, 1994, 113, 931-939.	5.4	11
48	Differential Adrenomedullin Release and Endothelin Receptor Expression in Distinct Subpopulations of Human Airway Smooth-Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 2001, 25, 316-325.	2.9	3
49	Expression Quantitative Trait Locus Mapping in Pulmonary Arterial Hypertension. Genes, 2020, 11, 1247.	2.4	3
50	Deficiency of Axl aggravates pulmonary arterial hypertension via BMPR2. Communications Biology, 2021, 4, 1002.	4.4	3
51	Response to Letter Regarding Article, "Circulating Endothelial Progenitor Cells in Patients With Eisenmenger Syndrome and Idiopathic Pulmonary Arterial Hypertension― Circulation, 2009, 119, .	1.6	2
52	Metabolomic Insights in Pulmonary Arterial Hypertension. Advances in Pulmonary Hypertension, 2018, 17, 103-109.	0.1	2
53	Phosphodiesterase Inhibitors in the Treatment of Pulmonary Hypertension. , 2011, , 1477-1485.		1
54	Plasma metabolomics in chronic thromboembolic pulmonary hypertension. , 2020, , .		1

#	Article	IF	CITATIONS
55	Blood biomarkers. , 2011, , 146-158.		O
56	Abstract 202: The Role of Neutrophil Extracellular Traps in the Pathogenesis of Pulmonary Hypertension Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	0
57	Late Breaking Abstract - Supplementation of iron in pulmonary hypertension (SIPHON): results from a randomised controlled crossover trial. , 2019, , .		O
58	Multi-omic profiling in pulmonary arterial hypertension. , 2020, , .		0