
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1489429/publications.pdf Version: 2024-02-01

Ι λησιιλριλ Ηλορι

#	Article	IF	CITATIONS
1	Right predominant electrical remodeling in a pure model of pulmonary hypertension promotes reentrant arrhythmias. Heart Rhythm, 2022, 19, 113-124.	0.7	8
2	Novel Insights into the Therapeutic Potential of Lung-Targeted Gene Transfer in the Most Common Respiratory Diseases. Cells, 2022, 11, 984.	4.1	10
3	Space flight associated changes in astronauts' plasmaâ€derived small extracellular vesicle microRNA: Biomarker identification. Clinical and Translational Medicine, 2022, 12, .	4.0	6
4	Long-Term Effects of Very Low Dose Particle Radiation on Gene Expression in the Heart: Degenerative Disease Risks. Cells, 2021, 10, 387.	4.1	9
5	Molecular and Genetic Profiling for Precision Medicines in Pulmonary Arterial Hypertension. Cells, 2021, 10, 638.	4.1	11
6	Pathophysiology and pharmacological management of pulmonary and cardiovascular features of COVID-19. Journal of Molecular and Cellular Cardiology, 2021, 153, 72-85.	1.9	12
7	Regulation of the Methylation and Expression Levels of the BMPR2 Gene by SIN3a as a Novel Therapeutic Mechanism in Pulmonary Arterial Hypertension. Circulation, 2021, 144, 52-73.	1.6	38
8	Comorbidities, sequelae, blood biomarkers and their associated clinical outcomes in the Mount Sinai Health System COVID-19 patients. PLoS ONE, 2021, 16, e0253660.	2.5	18
9	Retrospective analysis of demographic factors in COVID-19 patients entering the Mount Sinai Health System. PLoS ONE, 2021, 16, e0254707.	2.5	10
10	Combination Therapy with STAT3 Inhibitor Enhances SERCA2a-Induced BMPR2 Expression and Inhibits Pulmonary Arterial Hypertension. International Journal of Molecular Sciences, 2021, 22, 9105.	4.1	10
11	Cellâ€Free Mitochondrial DNA as a Potential Biomarker for Astronauts' Health. Journal of the American Heart Association, 2021, 10, e022055.	3.7	22
12	Emerging Role of Exosomal Long Non-coding RNAs in Spaceflight-Associated Risks in Astronauts. Frontiers in Genetics, 2021, 12, 812188.	2.3	7
13	A novel secreted-cAMP pathway inhibits pulmonary hypertension via a feed-forward mechanism. Cardiovascular Research, 2020, 116, 1500-1513.	3.8	15
14	AAV1.SERCA2a Gene Therapy Reverses Pulmonary Fibrosis by Blocking the STAT3/FOXM1 Pathway and Promoting the SNON/SKI Axis. Molecular Therapy, 2020, 28, 394-410.	8.2	23
15	Induction and Characterization of Pulmonary Hypertension in Mice using the Hypoxia/SU5416 Model. Journal of Visualized Experiments, 2020, , .	0.3	3
16	Targeting epigenetic mechanisms as an emerging therapeutic strategy in pulmonary hypertension disease. Vascular Biology (Bristol, England), 2020, 2, R17-R34.	3.2	21
17	Current and emerging therapeutic approaches to pulmonary hypertension. Reviews in Cardiovascular Medicine, 2020, 21, 163.	1.4	51
18	Lung-targeted SERCA2a Gene Therapy: From Discovery to Therapeutic Application in Bleomycin-Induced Pulmonary Fibrosis. Journal of Cellular Immunology, 2020, 2, 149-156.	0.8	2

#	Article	IF	CITATIONS
19	CXCR4 Cardiac Specific Knockout Mice Develop a Progressive Cardiomyopathy. International Journal of Molecular Sciences, 2019, 20, 2267.	4.1	21
20	The Left Pneumonectomy Combined with Monocrotaline or Sugen as a Model of Pulmonary Hypertension in Rats. Journal of Visualized Experiments, 2019, , .	0.3	10
21	Intra-tracheal gene delivery of aerosolized SERCA2a to the lung suppresses ventricular arrhythmias in a model of pulmonary arterial hypertension. Journal of Molecular and Cellular Cardiology, 2019, 127, 20-30.	1.9	23
22	Pulmonary hypertension arising from left heart disease causes intrapulmonary venous arterialization in rats. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 281-282.	0.8	6
23	SDF-1 induces TNF-mediated apoptosis in cardiac myocytes. Apoptosis: an International Journal on Programmed Cell Death, 2018, 23, 79-91.	4.9	47
24	Pulmonary Artery Hypertension Model in Rats by Monocrotaline Administration. Methods in Molecular Biology, 2018, 1816, 233-241.	0.9	23
25	The Sugen 5416/Hypoxia Mouse Model of Pulmonary Arterial Hypertension. Methods in Molecular Biology, 2018, 1816, 243-252.	0.9	17
26	Direct measurement of left atrial and pulmonary artery pressure in rats with pulmonary hypertension. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 1161-1163.	0.8	4
27	Safety and longâ€ŧerm efficacy of AAV1.SERCA2a using nebulizer delivery in a pig model of pulmonary hypertension. Pulmonary Circulation, 2018, 8, 1-4.	1.7	18
28	Abstract 277: Lung Gene Transfer With Sarcoplasmic Reticulum Calcium ATPase Prevent Disease Progression in Pulmonary Arterial Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	2.4	0
29	Abstract 510: Extracellular cAMP as a Novel Therapeutic Strategy in Pulmonary Arterial Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	2.4	0
30	Abstract 447: The Role of Extracellular cAMP in the Pathogenesis of Pulmonary Arterial Hypertension. Circulation Research, 2018, 123, .	4.5	0
31	Inhaled Gene Transfer for Pulmonary Circulation. Methods in Molecular Biology, 2017, 1521, 339-349.	0.9	7
32	CXCR4 and CXCR7 play distinct roles in cardiac lineage specification and pharmacologic β-adrenergic response. Stem Cell Research, 2017, 23, 77-86.	0.7	20
33	Intratracheal Gene Delivery of SERCA2a Ameliorates Chronic Post-Capillary Pulmonary Hypertension. Journal of the American College of Cardiology, 2016, 67, 2032-2046.	2.8	62
34	Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nature Communications, 2016, 7, 11853.	12.8	406
35	Inhalable delivery of AAV-based MRP4/ABCC4 silencing RNA prevents monocrotaline-induced pulmonary hypertension. Molecular Therapy - Methods and Clinical Development, 2015, 2, 14065.	4.1	5
36	Combination Proximal Pulmonary Artery Coiling and Distal Embolization Induces Chronic Elevations in Pulmonary Artery Pressure in Swine. PLoS ONE, 2015, 10, e0124526.	2.5	15

#	Article	IF	CITATIONS
37	Deletion of CXCR4 in cardiomyocytes exacerbates cardiac dysfunction following isoproterenol administration. Gene Therapy, 2014, 21, 496-506.	4.5	25
38	Synergistic Role of Protein Phosphatase Inhibitor 1 and Sarco/Endoplasmic Reticulum Ca ²⁺ -ATPase in the Acquisition of the Contractile Phenotype of Arterial Smooth Muscle Cells. Circulation, 2014, 129, 773-785.	1.6	20
39	Characterization of right ventricular remodeling and failure in a chronic pulmonary hypertension model. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1204-H1215.	3.2	82
40	A calcium-sensitive promoter construct for gene therapy. Gene Therapy, 2013, 20, 248-254.	4.5	15
41	SERCA2a gene transfer prevents intimal proliferation in an organ culture of human internal mammary artery. Gene Therapy, 2013, 20, 396-406.	4.5	18
42	Efficient transduction of vascular smooth muscle cells with a translational AAV2.5 vector: a new perspective for in-stent restenosis gene therapy. Gene Therapy, 2013, 20, 901-912.	4.5	20
43	AAV9.I-1c Delivered via Direct Coronary Infusion in a Porcine Model of Heart Failure Improves Contractility and Mitigates Adverse Remodeling. Circulation: Heart Failure, 2013, 6, 310-317.	3.9	64
44	Therapeutic Efficacy of AAV1.SERCA2a in Monocrotaline-Induced Pulmonary Arterial Hypertension. Circulation, 2013, 128, 512-523.	1.6	97
45	Benefit of SERCA2a Gene Transfer to Vascular Endothelial and Smooth Muscle Cells: A New Aspect in Therapy of Cardiovascular Diseases. Current Vascular Pharmacology, 2013, 11, 465-479.	1.7	20
46	Concomitant Intravenous Nitroglycerin With Intracoronary Delivery of AAV1.SERCA2a Enhances Gene Transfer in Porcine Hearts. Molecular Therapy, 2012, 20, 565-571.	8.2	34
47	Myocyte-Depleted Engineered Cardiac Tissues Support Therapeutic Potential of Mesenchymal Stem Cells. Tissue Engineering - Part A, 2012, 18, 1322-1333.	3.1	48
48	The role of cAMP/PKA signaling enhancer Protein Phosphatase Inhibitor 1 (lâ€1) in the control of Ca2+ cycling and signaling in VSMCs. FASEB Journal, 2012, 26, .	0.5	0
49	Calcium Cycling Proteins and Their Association With Heart Failure. Clinical Pharmacology and Therapeutics, 2011, 90, 620-624.	4.7	34
50	Aortic Implantation of Mesenchymal Stem Cells after Aneurysm Injury in a Porcine Model. Journal of Surgical Research, 2011, 170, e179-e188.	1.6	27
51	SERCA2a controls the mode of agonist-induced intracellular Ca2+ signal, transcription factor NFAT and proliferation in human vascular smooth muscle cells. Journal of Molecular and Cellular Cardiology, 2011, 50, 621-633.	1.9	55
52	Long-term in vivo resistin overexpression induces myocardial dysfunction and remodeling in rats. Journal of Molecular and Cellular Cardiology, 2011, 51, 144-155.	1.9	70
53	Delivery of gelfoam-enabled cells and vectors into the pericardial space using a percutaneous approach in a porcine model. Gene Therapy, 2011, 18, 979-985.	4.5	54
54	Critical Role for Stromal Interaction Molecule 1 in Cardiac Hypertrophy. Circulation, 2011, 124, 796-805.	1.6	144

#	Article	IF	CITATIONS
55	Expression of cardiac specific genes and functional testing of engineered cardiac tissues. FASEB Journal, 2011, 25, 1127.3.	0.5	Ο
56	Mechanoelectrical remodeling and arrhythmias during progression of hypertrophy. FASEB Journal, 2010, 24, 451-463.	0.5	41
57	SERCA2a Gene Transfer Enhances eNOS Expression and Activity in Endothelial Cells. Molecular Therapy, 2010, 18, 1284-1292.	8.2	61
58	Sarcoplasmic reticulum Ca ²⁺ ATPase as a therapeutic target for heart failure. Expert Opinion on Biological Therapy, 2010, 10, 29-41.	3.1	146
59	Mesenchymal Stem Cells Enhance Contractile Function of Myocyte-Depleted Engineered Cardiac Tissues. Journal of Cardiac Failure, 2010, 16, S11.	1.7	0
60	KChIP2 attenuates cardiac hypertrophy through regulation of Ito and intracellular calcium signaling. Journal of Molecular and Cellular Cardiology, 2010, 48, 1169-1179.	1.9	37
61	Gene Remodeling in Type 2 Diabetic Cardiomyopathy and Its Phenotypic Rescue with SERCA2a. PLoS ONE, 2009, 4, e6474.	2.5	29
62	Long-Term Cardiac-Targeted RNA Interference for the Treatment of Heart Failure Restores Cardiac Function and Reduces Pathological Hypertrophy. Circulation, 2009, 119, 1241-1252.	1.6	200
63	Basal Ca2+ Entry Controls NFAT Transcriptional Activity, Proliferation And Migration Of Human Vascular Smooth Muscle Cells. Biophysical Journal, 2009, 96, 165a.	0.5	0
64	Reversal of Cardiac Dysfunction After Long-Term Expression of SERCA2a by Gene Transfer in a Pre-Clinical Model of Heart Failure. Journal of the American College of Cardiology, 2008, 51, 1112-1119.	2.8	295
65	Delayed erythropoietin therapy reduces post-MI cardiac remodeling only at a dose that mobilizes endothelial progenitor cells. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H522-H529.	3.2	85
66	Transcription of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase typeÂ3 gene, ATP2A3, is regulated by the calcineurin/NFAT pathway in endothelial cells. Biochemical Journal, 2006, 394, 27-33.	3.7	30
67	Sarco/Endoplasmic Reticulum Ca 2+ -ATPase Gene Transfer Reduces Vascular Smooth Muscle Cell Proliferation and Neointima Formation in the Rat. Circulation Research, 2005, 97, 488-495.	4.5	93
68	Basal Transcription of the Mouse Sarco(endo)plasmic Reticulum Ca2+-ATPase Type 3 Gene in Endothelial Cells Is Controlled by Ets-1 and Sp1. Journal of Biological Chemistry, 2002, 277, 36471-36478.	3.4	23
69	Spaceflight-Associated Changes of snoRNAs in Peripheral Blood Mononuclear Cells and Plasma Exosomes—A Pilot Study. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	4
70	Astronauts Plasma-Derived Exosomes Induced Aberrant EZH2-Mediated H3K27me3 Epigenetic Regulation of the Vitamin D Receptor. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	0