
Rich W Briggs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1489060/publications.pdf Version: 2024-02-01

PICH W RDICCS

#	Article	IF	CITATIONS
1	Deformation and Slip Along the Sunda Megathrust in the Great 2005 Nias-Simeulue Earthquake. Science, 2006, 311, 1897-1901.	12.6	284
2	Paleoseismic evidence of great surface rupture earthquakes along the Indian Himalaya. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	245
3	Superficial simplicity of the 2010 El Mayor–Cucapah earthquake of Baja California in Mexico. Nature Geoscience, 2011, 4, 615-618.	12.9	225
4	Rupture Kinematics of the 2005 Mw 8.6 Nias-Simeulue Earthquake from the Joint Inversion of Seismic and Geodetic Data. Bulletin of the Seismological Society of America, 2007, 97, S307-S322.	2.3	158
5	Complex rupture during the 12 January 2010 HaitiÂearthquake. Nature Geoscience, 2010, 3, 800-805.	12.9	157
6	Seismic hazard of the Enriquillo–Plantain Garden fault in Haiti inferred from palaeoseismology. Nature Geoscience, 2010, 3, 789-793.	12.9	97
7	Coral evidence for earthquake recurrence and an A.D. 1390–1455 cluster at the south end of the 2004 Aceh–Andaman rupture. Journal of Geophysical Research, 2010, 115, .	3.3	96
8	Rupture across arc segment and plate boundaries in the 1 April 2007 SolomonsÂearthquake. Nature Geoscience, 2008, 1, 253-257.	12.9	83
9	On- and off-fault deformation associated with the September 2013 Mw 7.7 Balochistan earthquake: Implications for geologic slip rate measurements. Tectonophysics, 2015, 660, 65-78.	2.2	82
10	Rapid Characterization of the 2015 <i>M</i> _w Â7.8 Gorkha, Nepal, Earthquake Sequence and Its Seismotectonic Context. Seismological Research Letters, 2015, 86, 1557-1567.	1.9	80
11	High tsunami frequency as a result of combined strike-slip faulting and coastal landslides. Nature Geoscience, 2010, 3, 783-788.	12.9	77
12	Time-varying interseismic strain rates and similar seismic ruptures on the Nias–Simeulue patch of the Sunda megathrust. Quaternary Science Reviews, 2015, 122, 258-281.	3.0	74
13	88 Hours: The U.S. Geological Survey National Earthquake Information Center Response to the 11 March 2011 Mw 9.0 Tohoku Earthquake. Seismological Research Letters, 2011, 82, 481-493.	1.9	70
14	Persistent termini of 2004―and 2005â€ŀike ruptures of the Sunda megathrust. Journal of Geophysical Research, 2012, 117, .	3.3	70
15	Highâ€Resolution Trench Photomosaics from Imageâ€Based Modeling: Workflow and Error Analysis. Bulletin of the Seismological Society of America, 2015, 105, 2354-2366.	2.3	70
16	Late Pleistocene and Early Holocene lakeâ€level fluctuations in the Lahontan Basin, Nevada: Implications for the distribution of archaeological sites. Geoarchaeology - an International Journal, 2008, 23, 608-643.	1.5	58
17	Uplift and subsidence reveal a nonpersistent megathrust rupture boundary (Sitkinak Island, Alaska). Geophysical Research Letters, 2014, 41, 2289-2296.	4.0	56
18	An updated stress map of the continental United States reveals heterogeneous intraplate stress. Nature Geoscience, 2018, 11, 433-437.	12.9	54

RICH W BRIGGS

#	Article	IF	CITATIONS
19	Late Pleistocene and Late Holocene Lake Highstands in the Pyramid Lake Subbasin of Lake Lahontan, Nevada, USA. Quaternary Research, 2005, 64, 257-263.	1.7	50
20	Coseismic slip and early afterslip of the 2015 Illapel, Chile, earthquake: Implications for frictional heterogeneity and coastal uplift. Journal of Geophysical Research: Solid Earth, 2016, 121, 6172-6191.	3.4	46
21	Paleoseismic transect across the northern Great Basin. Journal of Geophysical Research, 2005, 110, .	3.3	43
22	Tsunami recurrence in the eastern Alaska-Aleutian arc: A Holocene stratigraphic record from Chirikof Island, Alaska. , 2015, 11, 1172-1203.		42
23	Unusually large tsunamis frequent a currently creeping part of the Aleutian megathrust. Geophysical Research Letters, 2016, 43, 76-84. Ball-and-socket tectonic rotation during the 2013 <mml:math< td=""><td>4.0</td><td>41</td></mml:math<>	4.0	41
24	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:msub><mml:mrow><mml:mi mathvariant="normal">M</mml:mi </mml:mrow><mml:mrow><mml:mi mathvariant="normal">w</mml:mi </mml:mrow></mml:msub> <mml:msub><td>4.4</td><td>40</td></mml:msub>	4.4	40
25	earthquake. Earth and Planetary Science Letters, 2014, 403, 210-216. Offset Channels May Not Accurately Record Strikeâ€Slip Fault Displacement: Evidence From Landscape Evolution Models. Journal of Geophysical Research: Solid Earth, 2019, 124, 13427-13451.	3.4	39
26	Little late Holocene strain accumulation and release on the Aleutian megathrust below the Shumagin Islands, Alaska. Geophysical Research Letters, 2014, 41, 2359-2367.	4.0	38
27	Beach ridges as paleoseismic indicators of abrupt coastal subsidence during subduction zone earthquakes, and implications for Alaska-Aleutian subduction zone paleoseismology, southeast coast of the Kenai Peninsula, Alaska. Quaternary Science Reviews, 2015, 113, 147-158.	3.0	32
28	Persistent elastic behavior above a megathrust rupture patch: Nias island, West Sumatra. Journal of Geophysical Research, 2008, 113, .	3.3	31
29	Variable normal-fault rupture behavior, northern Lost River fault zone, Idaho, USA. , 2019, 15, 1869-1892.		29
30	Surface Rupture and Distributed Deformation Revealed by Optical Satellite Imagery: The Intraplate 2016 M w 6.0 Petermann Ranges Earthquake, Australia. Geophysical Research Letters, 2019, 46, 10394-10403.	4.0	27
31	Concealed Quaternary strikeâ€slip fault resolved with airborne lidar and seismic reflection: The Grizzly Valley fault system, northern Walker Lane, California. Journal of Geophysical Research: Solid Earth, 2013, 118, 3753-3766.	3.4	26
32	Gravitational body forces focus North American intraplate earthquakes. Nature Communications, 2017, 8, 14314.	12.8	26
33	Relaxing Segmentation on the Wasatch Fault Zone: Impact on Seismic Hazard. Bulletin of the Seismological Society of America, 2020, 110, 83-109.	2.3	25
34	Combining Conflicting Bayesian Models to Develop Paleoseismic Records: An Example from the Wasatch Fault Zone, Utah. Bulletin of the Seismological Society of America, 2018, 108, 3180-3201.	2.3	24
35	Late Pleistocene fault slip rate, earthquake recurrence, and recency of slip along the Pyramid Lake fault zone, northern Walker Lane, United States. Journal of Geophysical Research, 2004, 109, .	3.3	23
36	Late Quaternary Slipâ€Rate Variations along the Warm Springs Valley Fault System, Northern Walker Lane, California–Nevada Border. Bulletin of the Seismological Society of America, 2013, 103, 542-558.	2.3	23

RICH W BRIGGS

#	Article	IF	CITATIONS
37	Latest Quaternary paleoseismology and evidence of distributed dextral shear along the Mohawk Valley fault zone, northern Walker Lane, California. Journal of Geophysical Research: Solid Earth, 2014, 119, 5014-5032.	3.4	23
38	Vertical Coseismic Offsets Derived From Highâ€Resolution Stereogrammetric DSM Differencing: The 2013 Baluchistan, Pakistan Earthquake. Journal of Geophysical Research: Solid Earth, 2019, 124, 6039-6055.	3.4	21
39	A randomâ€walk algorithm for modeling lithospheric density and the role of body forces in the evolution of the <scp>M</scp> idcontinent <scp>R</scp> ift. Geochemistry, Geophysics, Geosystems, 2015, 16, 4084-4107.	2.5	20
40	Holocene earthquakes and right-lateral slip on the left-lateral Darrington–Devils Mountain fault zone, northern Puget Sound, Washington. , 2014, 10, 1482-1500.		17
41	Updating the USGS seismic hazard maps for Alaska. Quaternary Science Reviews, 2015, 113, 39-47.	3.0	17
42	A paleoseismic transect across the northwestern Basin and Range Province, northwestern Nevada and northeastern California, USA. , 2017, 13, 782-810.		15
43	Evidence for frequent, large tsunamis spanning locked and creeping parts of the Aleutian megathrust. Bulletin of the Geological Society of America, 2019, 131, 707-729.	3.3	15
44	Paleoseismic and Slip-Rate Observations along the Honey Lake Fault Zone, Northeastern California, USA. Bulletin of the Seismological Society of America, 2008, 98, 1730-1736.	2.3	14
45	Refining fault slip rates using multiple displaced terrace risers—An example from the Honey Lake fault, NE California, USA. Earth and Planetary Science Letters, 2017, 477, 134-146.	4.4	14
46	Four Major Holocene Earthquakes on the Reelfoot Fault Recorded by Sackungen in the New Madrid Seismic Zone, USA. Journal of Geophysical Research: Solid Earth, 2019, 124, 3105-3126.	3.4	13
47	Late Pleistocene and Holocene Paleoearthquake Activity of the Olinghouse Fault Zone, Nevada. Bulletin of the Seismological Society of America, 2005, 95, 1301-1313.	2.3	12
48	Terrestrial cosmogenic surface exposure dating of glacial and associated landforms in the Ruby Mountains-East Humboldt Range of central Nevada and along the northeastern flank of the Sierra Nevada. Geomorphology, 2016, 268, 72-81.	2.6	11
49	Evidence for Late Quaternary Deformation Along Crowleys Ridge, New Madrid Seismic Zone. Tectonics, 2020, 39, e2019TC005746.	2.8	11
50	Changing impacts of Alaska-Aleutian subduction zone tsunamis in California under future sea-level rise. Nature Communications, 2021, 12, 7119.	12.8	10
51	Holocene earthquake history and slip rate of the southern Teton fault, Wyoming, USA. Bulletin of the Geological Society of America, 2020, 132, 1566-1586.	3.3	9
52	Coseismic Sackungen in the New Madrid Seismic Zone, USA. Geophysical Research Letters, 2018, 45, 13,258.	4.0	8
53	Coral 13 C/ 12 C records of vertical seafloor displacement during megathrust earthquakes west of Sumatra. Earth and Planetary Science Letters, 2015, 432, 461-471.	4.4	7
54	Quick and Dirty (and Accurate) 3D Paleoseismic Trench Models Using Coded Scale Bars. Seismological Research Letters, 2021, 92, 3526-3537.	1.9	6

RICH W BRIGGS

#	Article	IF	CITATIONS
55	Megathrusts and mountain building. Nature Geoscience, 2016, 9, 346-348.	12.9	4
56	Introduction to the special issue on the 25 April 2015 Mw 7.8 Gorkha (Nepal) earthquake. Tectonophysics, 2017, 714-715, 1-3.	2.2	4
57	Low Footwall Accelerations and Variable Surface Rupture Behavior on the Fort Sage Mountains Fault, Northeast California. Bulletin of the Seismological Society of America, 2013, 103, 157-168.	2.3	3
58	Seismic Reflection Imaging of the Lowâ€Angle Panamint Normal Fault System, Eastern California. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020243.	3.4	3
59	Quaternary Reelfoot Fault Deformation in the Obion River Valley, Tennessee, USA. Tectonics, 2021, 40, e2019TC005990.	2.8	2
60	FOUR MAJOR HOLOCENE EARTHQUAKES ON THE REELFOOT FAULT, NEW MADRID SEISMIC ZONE. , 2018, , .		2
61	STEPS: Slip Time Earthquake Path Simulations Applied to the San Andreas and Toe Jam Hill Faults to Redefine Geologic Slip Rate Uncertainty. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009848.	2.5	2
62	Mid- to Late-Quaternary Geomorphic and Paleoseismic Event History, Cheraw Fault, Southeastern Colorado. Bulletin of the Seismological Society of America, 2022, 112, 1742-1772.	2.3	2
63	Geophysical Constraints on the Crustal Architecture of the Transtensional Warm Springs Valley Fault Zone, Northern Walker Lane, Western Nevada, USA. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020757.	3.4	0