Ingo Dierking

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1488638/publications.pdf Version: 2024-02-01

INCO DIEDRING

#	Article	IF	CITATIONS
1	Liquid crystal–carbon nanotube dispersions. Journal of Applied Physics, 2005, 97, 044309.	1.1	370
2	Aligning and Reorienting Carbon Nanotubes with Nematic Liquid Crystals. Advanced Materials, 2004, 16, 865-869.	11.1	329
3	Polymer Network-Stabilized Liquid Crystals. Advanced Materials, 2000, 12, 167-181.	11.1	293
4	Chiral Liquid Crystals: Structures, Phases, Effects. Symmetry, 2014, 6, 444-472.	1.1	161
5	Stabilising liquid crystalline Blue Phases. Soft Matter, 2012, 8, 4355.	1.2	101
6	Recent developments in polymer stabilised liquid crystals. Polymer Chemistry, 2010, 1, 1153.	1.9	96
7	Perspectives in Liquid-Crystal-Aided Nanotechnology and Nanoscience. Applied Sciences (Switzerland), 2019, 9, 2512.	1.3	95
8	Two-stage switching behavior of polymer stabilized cholesteric textures. Journal of Applied Physics, 1997, 81, 3007-3014.	1.1	94
9	Smectic-A*–smectic-C*transition in a ferroelectric liquid crystal without smectic layer shrinkage. Physical Review E, 1999, 60, 598-602.	0.8	92
10	Network morphology of polymer stabilized liquid crystals. Applied Physics Letters, 1997, 71, 2454-2456.	1.5	89
11	Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials. Nanomaterials, 2017, 7, 305.	1.9	89
12	Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures I. The influence of curing temperature. Liquid Crystals, 1998, 24, 387-395.	0.9	83
13	Magnetically steered liquid crystal-nanotube switch. Applied Physics Letters, 2005, 87, 233507.	1.5	70
14	Polymer network structure and electro-optic performance of polymer stabilized cholesteric textures II. The effect of UV curing conditions. Liquid Crystals, 1998, 24, 397-406.	0.9	65
15	Confocal Microscopy Study of Texture Transitions in a Polymer Stabilized Cholesteric Liquid Crystal. Physical Review Letters, 1997, 79, 3443-3446.	2.9	62
16	Investigations of the structure of a cholesteric phase with a temperature induced helix inversion and of the succeeding S _c â^— phase in thin liquid crystal cells. Liquid Crystals, 1993, 13, 45-55.	0.9	61
17	A review of textures of the TGBA* phase under different anchoring geometries. Liquid Crystals, 1999, 26, 83-95.	0.9	59
18	A comparison between size dependent paraelectric and ferroelectric BaTiO3 nanoparticle doped nematic and ferroelectric liquid crystals. Journal of Applied Physics, 2017, 121, .	1.1	59

#	Article	IF	CITATIONS
19	From colloids in liquid crystals to colloidal liquid crystals. Liquid Crystals, 2019, 46, 2057-2074.	0.9	58
20	Properties of a Thermotropic Nematic Liquid Crystal Doped with Graphene Oxide. Advanced Optical Materials, 2016, 4, 1541-1548.	3.6	56
21	Annihilation dynamics of umbilical defects in nematic liquid crystals under applied electric fields. Physical Review E, 2005, 71, 061709.	0.8	49
22	Anisotropy in the annihilation dynamics of umbilic defects in nematic liquid crystals. Physical Review E, 2012, 85, 021703.	0.8	47
23	Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide. Scientific Reports, 2016, 6, 31885.	1.6	46
24	Novel Trends in Lyotropic Liquid Crystals. Crystals, 2020, 10, 604.	1.0	46
25	Reorientation Dynamics of Liquid Crystal–Nanotube Dispersions. Japanese Journal of Applied Physics, 2008, 47, 6390-6393.	0.8	37
26	Horizontal chevron configurations in ferroelectric liquid crystal cells induced by high electric fields. Liquid Crystals, 1995, 19, 179-187.	0.9	35
27	Domain Growth Scaling at the Isotropic-to-Cholesteric Liquid Crystal Transition. Journal of Physical Chemistry B, 2000, 104, 10642-10646.	1.2	35
28	A Review of Polymer-Stabilized Ferroelectric Liquid Crystals. Materials, 2014, 7, 3568-3587.	1.3	35
29	Universal growth laws in liquid crystals far from equilibrium. Applied Physics A: Materials Science and Processing, 2001, 72, 307-310.	1.1	34
30	Electromigration of microspheres in nematic liquid crystals. Physical Review E, 2006, 73, 011702.	0.8	34
31	Dispersions of multi-wall carbon nanotubes in ferroelectric liquid crystals. European Physical Journal E, 2014, 37, 7.	0.7	34
32	Confinement effects on lyotropic nematic liquid crystal phases of graphene oxide dispersions. 2D Materials, 2017, 4, 041004.	2.0	34
33	Time resolved statistical analysis of liquid crystal nucleus growth from the isotropic melt. Physical Chemistry Chemical Physics, 2004, 6, 1745.	1.3	31
34	Properties of higher-ordered ferroelectric liquid crystal phases of a homologous series. Liquid Crystals, 1994, 17, 243-261.	0.9	27
35	The effect of a polymer network on smectic phase structure as probed by polarization measurements on a ferroelectric liquid crystal. European Physical Journal E, 2000, 2, 303-309.	0.7	27
36	Universal scaling laws for the anisotropic growth of SmA liquid crystal bâtonnets. Physica B: Condensed Matter, 2003, 325, 281-286.	1.3	27

#	Article	IF	CITATIONS
37	A Lyotropic Chiral Smectic C Liquid Crystal with Polar Electrooptic Switching. Angewandte Chemie - International Edition, 2013, 52, 8934-8937.	7.2	27
38	Stabilization of the liquid crystalline blue phase by the addition of short-chain polystyrene. Soft Matter, 2013, 9, 4789.	1.2	27
39	Synergistic effect of graphene oxide and zoledronic acid for osteoporosis and cancer treatment. Scientific Reports, 2020, 10, 7827.	1.6	27
40	Nanomaterials in Liquid Crystals. Nanomaterials, 2018, 8, 453.	1.9	26
41	Stabilization of liquid crystal blue phases by carbon nanoparticles of varying dimensionality. Nanoscale Advances, 2020, 2, 2404-2409.	2.2	26
42	The Origin of the Helical Twist Inversion in Single Component Cholesteric Liquid Crystals. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1994, 49, 1081-1086.	0.7	23
43	New diastereomeric compound with cholesteric twist inversion. Liquid Crystals, 1995, 18, 443-449.	0.9	23
44	Horizontal chevron domain formation and smectic layer reorientation in SmC* liquid crystals stabilized by polymer networks. Liquid Crystals, 1999, 26, 1511-1519.	0.9	23
45	Dynamics of electrically driven solitons in nematic and cholesteric liquid crystals. Communications Physics, 2020, 3, .	2.0	23
46	Dielectric breakdown in liquid crystals. Journal Physics D: Applied Physics, 2001, 34, 806-813.	1.3	22
47	Elastic coupling in polymer stabilized ferroelectric liquid crystals. Journal Physics D: Applied Physics, 2008, 41, 155422.	1.3	22
48	Relationship Between the Electro-Optic Performance of Polymer-Stabilized Liquid-Crystal Devices and the Fractal Dimension of Their Network Morphology. Advanced Materials, 2003, 15, 152-156.	11.1	21
49	Experimental determination of the full Landau potential of bent-core doped ferroelectric liquid crystals. Physical Review E, 2005, 72, 041713.	0.8	21
50	Dynamics of the smectic layer reorientation of ferroelectric liquid crystals. Liquid Crystals, 1998, 24, 775-782.	0.9	20
51	On In-plane Smectic Layer Reorientation in Ferroelectric Liquid Crystal Cells. Japanese Journal of Applied Physics, 1998, 37, L57-L60.	0.8	20
52	Imaging liquid crystal defects. RSC Advances, 2013, 3, 26433.	1.7	20
53	Fractal and Non-Fractal Structure–Property Relationships of Polymer-Stabilized Liquid Crystals. Advanced Functional Materials, 2004, 14, 883-890.	7.8	19
54	Landau model for polymer-stabilized ferroelectric liquid crystals: Experiment and theory. Physical Review E, 2008, 78, 051703.	0.8	19

#	Article	IF	CITATIONS
55	Fractal Growth Patterns in Liquid Crystals. ChemPhysChem, 2001, 2, 59-62.	1.0	18
56	Electro-optic properties of polymer-stabilized ferroelectric liquid crystals before, during and after photo-polymerization. Journal of Optics, 2009, 11, 024022.	1.5	18
57	Dynamic dissipative solitons in nematics with positive anisotropies. Soft Matter, 2020, 16, 5325-5333.	1.2	18
58	A New Twist on Chirality: Formation of Chiral Phases from Achiral Molecules in "Banana―Liquid Crystals through Elastic Deformations. Angewandte Chemie - International Edition, 2010, 49, 29-30.	7.2	17
59	Smectic layer instabilities in liquid crystals. Soft Matter, 2015, 11, 819-837.	1.2	17
60	Formation characteristics of horizontal chevron structures in ferroelectric liquid crystal cells. Liquid Crystals, 1998, 24, 769-774.	0.9	16
61	Chiral dopant induced twist grain boundary phases. Liquid Crystals, 2001, 28, 165-170.	0.9	16
62	Growth laws for the phase ordering dynamics of theB1phase of a bent-core liquid crystal. Physical Review E, 2004, 70, 021703.	0.8	16
63	Quench depth dependence of liquid crystal nucleus growth: A time resolved statistical analysis. Physica B: Condensed Matter, 2005, 358, 339-347.	1.3	16
64	Thermotropic liquid crystals with low-dimensional carbon allotropes. Nano Express, 2021, 2, 012002.	1.2	16
65	Fractal dimensionality of polymer networks formed by photopolymerization in a liquid crystal medium. Journal Physics D: Applied Physics, 2002, 35, 2520-2525.	1.3	14
66	The Nematic and Cholesteric Phases. , 0, , 51-74.		14
67	Dielectric spectroscopy of Polymer Stabilised Ferroelectric Liquid Crystals. European Physical Journal E, 2009, 30, 265-74.	0.7	14
68	Annihilation dynamics of topological defects induced by microparticles in nematic liquid crystals. Soft Matter, 2019, 15, 8749-8757.	1.2	14
69	Electromigration of microspheres in ferroelectric smectic liquid crystals. Physical Review E, 2007, 76, 021707.	0.8	13
70	Polymer stabilisation of twisted smectic liquid crystal defect states. Soft Matter, 2009, 5, 835-841.	1.2	13
71	Ordering of ferromagnetic nanoparticles in nematic liquid crystals. Soft Matter, 2017, 13, 4636-4643.	1.2	13
72	The role of ionic contamination in the in-plane smectic layer reorientation process. Ferroelectrics, 1998, 211, 165-175.	0.3	12

#	Article	IF	CITATIONS
73	Synchrotron x-ray study of the smectic layer directional instability. Physical Review E, 2000, 61, 1593-1598.	0.8	12
74	Fractal growth of the liquid crystalline B2 phase of a bent-core mesogen. Journal of Physics Condensed Matter, 2001, 13, 1353-1360.	0.7	12
75	Quantitative experimental determination of the Landau-potential of chiral enantiomer doped ferroelectric liquid crystals. European Physical Journal E, 2005, 18, 373-381.	0.7	12
76	Liquid crystalline textures and polymer morphologies resulting from electropolymerisation in liquid crystal phases. Journal of Materials Chemistry C, 2015, 3, 8018-8023.	2.7	12
77	Modular synthesis of unsymmetrical [1]benzothieno[3,2- <i>b</i>][1]benzothiophene molecular semiconductors for organic transistors. Chemical Science, 2022, 13, 421-429.	3.7	12
78	Experimental investigations of a chiral smectic glassâ€forming liquid crystal. Liquid Crystals, 2008, 35, 1015-1022.	0.9	11
79	Dependence of the smectic C layer reorientation on liquid crystalline polymorphism. Ferroelectrics, 1998, 211, 259-270.	0.3	10
80	Fractal growth of a conventional calamitic liquid crystal. Physical Review E, 2004, 70, 051701.	0.8	10
81	Chirality enhancement through addition of achiral molecules. Chemical Communications, 2010, 46, 1467.	2.2	10
82	Lyotropic Liquid Crystals from Colloidal Suspensions of Graphene Oxide. Crystals, 2019, 9, 455.	1.0	10
83	Liquid crystal–ferrofluid emulsions. Soft Matter, 2020, 16, 6021-6031.	1.2	10
84	Electrically Driven Formation and Dynamics of Skyrmionic Solitons in Chiral Nematics. Physical Review Applied, 2021, 15, .	1.5	10
85	Continuous Versus Limited Smectic Liquid Crystal Layer Rotation. Japanese Journal of Applied Physics, 1998, 37, L525-L527.	0.8	9
86	The influence of surface treatment on the in-plane smectic layer reorientation. Ferroelectrics, 1998, 215, 11-22.	0.3	9
87	The Fluid Smectic Phases. , 0, , 91-122.		9
88	Liquid crystalline fractals: dilatation invariant growth structures in the phase ordering process of 'banana-phases'. Liquid Crystals Today, 2003, 12, 1-10.	2.3	9
89	Sudden ridge collapse in the stress relaxation of thin crumpled polymer films. Physical Review E, 2008, 77, 051608.	0.8	9
90	Terahertz spectroscopy across liquid crystalline phase transitions. Applied Physics Letters, 2016, 108, 051908.	1.5	9

#	Article	IF	CITATIONS
91	Recent Progresses on Experimental Investigations of Topological and Dissipative Solitons in Liquid Crystals. Crystals, 2022, 12, 94.	1.0	9
92	Electric-field-induced transport of microspheres in the isotropic and chiral nematic phase of liquid crystals. Physical Review E, 2017, 95, 022703.	0.8	8
93	Kibble–Zurek Scaling during Defect Formation in a Nematic Liquid Crystal. ChemPhysChem, 2017, 18, 812-816.	1.0	8
94	Phase ordering kinetics of liquid crystalline twist grain boundary TGBA* phases. Journal of Physics Condensed Matter, 2000, 12, 8035-8040.	0.7	7
95	A bentâ€core dopantâ€induced smectic A* twist stateâ€. Liquid Crystals, 2006, 33, 257-265.	0.9	7
96	Liquid crystals, fractals and art. Liquid Crystals Today, 2012, 21, 54-65.	2.3	7
97	Electrically tunable collective motion of dissipative solitons in chiral nematic films. Nature Communications, 2022, 13, 2122.	5.8	7
98	Crystallisation of a bent-core liquid crystal mesogen. Physica B: Condensed Matter, 2001, 304, 51-59.	1.3	6
99	Other Liquid Crystal Phases. , 0, , 145-153.		6
100	Rotation of topological defects by trapped micro-rods in the nematic phase of a liquid crystal. Journal of Molecular Liquids, 2018, 267, 315-321.	2.3	6
101	Hybrid molecular/mineral lyotropic liquid crystal system of CTAB and graphene oxide in water. Carbon, 2021, 173, 105-114.	5.4	6
102	Electrically driven formation and dynamics of Pac-Man solitons in smectic A liquid crystals. Materials Advances, 0, , .	2.6	6
103	An Injectable In Situ Depot-Forming Lipidic Lyotropic Liquid Crystal System for Localized Intratumoral Drug Delivery. Molecular Pharmaceutics, 2022, 19, 831-842.	2.3	6
104	Pyroelectric measurements on selected compounds with rich liquid crystalline polymorphism. Ferroelectrics, 1997, 193, 1-19.	0.3	5
105	Soft Crystal Phases and Crystallization. , 0, , 141-144.		5
106	Probing the material properties and phase transitions of ferroelectric liquid crystals by determination of the Landau potential. European Physical Journal E, 2008, 25, 385-393.	0.7	5
107	Phase transitions and separations in a distorted liquid crystalline mixture. Journal of Chemical Physics, 2015, 143, 064907.	1.2	5
108	Carbon Allotropes as ITO Electrode Replacement Materials in Liquid Crystal Devices. Journal of Carbon Research, 2020, 6, 80.	1.4	5

#	Article	IF	CITATIONS
109	Dependence of the SmC* layer reorientation dynamics on enantiomeric excess. Ferroelectrics, 1999, 227, 97-104.	0.3	4
110	2-dimensional fractally homogeneous distribution of liquid crystalline nuclei in the isotropic melt. Europhysics Letters, 2001, 55, 40-44.	0.7	4
111	Determination of the Landau potential of chiral enantiomer ferroelectric liquid crystal mixtures. Soft Matter, 2007, 3, 207-213.	1.2	4
112	Permeation flow associated with the smectic layer directional instability. Ferroelectrics, 1999, 234, 171-182.	0.3	3
113	Polarizing Microscopy. , 0, , 33-42.		3
114	The Blue Phases. , 0, , 43-50.		3
115	Growth models of pure supercooled materials. Physical Review E, 2008, 77, 031610.	0.8	3
116	Carbon nanotubes in thermotropic low molar mass liquid crystals. Series in Sof Condensed Matter, 2016, , 603-630.	0.1	3
117	A study of the continuous layer rotation dynamics in ferroelectric SMC* liquid crystals. Ferroelectrics, 2001, 256, 103-111.	0.3	2
118	The SmC* Subphases. , 0, , 123-134.		2
119	Fractal scaling of surface degradation patterns formed by dielectric breakdown of liquid-crystal Hele-Shaw cells. Europhysics Letters, 2004, 67, 464-469.	0.7	2
120	Science for the small and the tall, the young and the old. Liquid Crystals Today, 2018, 27, 2-6.	2.3	2
121	B7 Liquid Crystal Filament Growth in Presence of Carbon Nanotubes. ChemPhysChem, 2019, 20, 116-122.	1.0	2
122	Voronoi patterns in liquid crystal textures. Journal of Molecular Liquids, 2021, 335, 116553.	2.3	2
123	Confinement effects on lyotropic nematic liquid crystal phases of graphene oxide dispersions. 2D Materials, 2017, 4, .	2.0	2
124	Polarization reversal current characteristics of horizontal chevron ferroelectric liquid crystal cells. Ferroelectrics, 1997, 198, 41-47.	0.3	1
125	The Hexatic Phases. , 0, , 135-139.		1
126	Growth of a SmA* phase in the microconfinement of a polymer network. Liquid Crystals, 2008, 35, 507-512.	0.9	1

#	Article	IF	CITATIONS
127	Editor's interview. Liquid Crystals Today, 2011, 20, 116-119.	2.3	1
128	Liquid Crystals arrive back home at their birthplace. Liquid Crystals Today, 2012, 21, 47-48.	2.3	1
129	Report on the XXI Czech–Polish seminar. Liquid Crystals Today, 2014, 23, 88-90.	2.3	1
130	Science of the present meets the life of the past. Liquid Crystals Today, 2016, 25, 10-11.	2.3	1
131	Annihilation dynamics of reverse tilt domains in nematic liquid crystals. Journal of Molecular Liquids, 2020, 313, 113547.	2.3	1
132	A dynamical model for fractal and compact growth in supercooled systems. Journal of Physics Communications, 2020, 4, 045017.	0.5	1
133	Can liquid crystal Blue Phase textures be described by Voronoi tessellations?. Liquid Crystals, 2021, 48, 689-698.	0.9	1
134	Surface Anchoring and Elasticity. , 0, , 21-32.		0
135	Appendix A: Structural Formulas of Some of the Compounds Used in the Texture Studies. , 0, , 155-161.		0
136	Appendix B: Summary of the Most Commonly Observed Natural Textures of Different Liquid Crystal Phases (Numbers Indicate Respective Plates). , 0, , 163-166.		0
137	Twist Grain Boundary Phases. , 0, , 75-90.		0
138	Commemorative issue ofLiquid Crystalsfor Alfred Saupe. Liquid Crystals Today, 2011, 20, 126-126.	2.3	0
139	Liquid Crystals do â€~The Big Bang'. Liquid Crystals Today, 2011, 20, 123-125.	2.3	0
140	The 2010 Royal Society Summer Science Exhibition. Liquid Crystals Today, 2011, 20, 38-40.	2.3	0
141	A special issue ofLiquid Crystalsto commemorate Professor Pierre-Gilles de Gennes. Liquid Crystals Today, 2011, 20, 61-61.	2.3	Ο
142	Polymer stabilized liquid crystal devices at THz frequencies. , 2012, , .		0
143	Advertising liquid crystals to the Humboldt Foundation. Liquid Crystals Today, 2015, 24, 96-97.	2.3	0
144	Editor's interview with Czech and Polish liquid crystal representatives, Alexey Bubnov (A.B.) and Wiktor Piecek (W.P.). Liquid Crystals Today, 2015, 24, 30-33.	2.3	0

#	Article	IF	CITATIONS
145	Prof Cliff Jones awarded the Katharine Burr Blodgett Medal and Prize. Liquid Crystals Today, 2017, 26, 115-115.	2.3	0
146	Report on the annual meeting of the British Liquid Crystal Society (BLCS). Liquid Crystals Today, 2018, 27, 38-40.	2.3	0
147	SNAIA 2018, Smart Nanomaterials: advances, innovation and applications. Liquid Crystals Today, 2019, 28, 46-47.	2.3	0