Zhijun Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1487892/publications.pdf

Version: 2024-02-01

		66343	60623
85	8,489	42	81
papers	citations	h-index	g-index
85	85	85	12580
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Chronic Intermittent Hypoxia Exposure Alternative to Exercise Alleviates High-Fat-Diet-Induced Obesity and Fatty Liver. International Journal of Molecular Sciences, 2022, 23, 5209.	4.1	8
2	Discovery of Raf Family Is a Milestone in Deciphering the Ras-Mediated Intracellular Signaling Pathway. International Journal of Molecular Sciences, 2022, 23, 5158.	4.1	16
3	AMPâ€activated protein kinase β1 or β2 deletion enhances colon cancer cell growth and tumorigenesis. Acta Biochimica Et Biophysica Sinica, 2022, , .	2.0	0
4	Prevalence of comorbidity in Chinese patients with COVID-19: systematic review and meta-analysis of risk factors. BMC Infectious Diseases, 2021, 21, 200.	2.9	53
5	AMPK inhibits Smad3â€mediated autoinduction of TGFâ€Î²1 in gastric cancer cells. Journal of Cellular and Molecular Medicine, 2021, 25, 2806-2815.	3.6	13
6	Inonotus obliquus polysaccharides induces apoptosis of lung cancer cells and alters energy metabolism via the LKB1/AMPK axis. International Journal of Biological Macromolecules, 2020, 151, 1277-1286.	7.5	41
7	Preventive and (Neo)Adjuvant Therapeutic Effects of Metformin on Cancer., 2020,,.		3
8	Metformin attenuates traumaâ€induced heterotopic ossification via inhibition of Bone Morphogenetic Protein signalling. Journal of Cellular and Molecular Medicine, 2020, 24, 14491-14501.	3 . 6	7
9	The dichotomous role of TGF- \hat{l}^2 in controlling liver cancer cell survival and proliferation. Journal of Genetics and Genomics, 2020, 47, 497-512.	3.9	21
10	A Medical Pedagogy Reform by Integration of Biomedical Research into the Clinical Medicine Program. Medical Science Educator, 2020, 30, 1569-1576.	1.5	0
11	Transcriptional suppression of AMPK $\hat{1}\pm 1$ promotes breast cancer metastasis upon oncogene activation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8013-8021.	7.1	45
12	Dual Roles of the AMP-Activated Protein Kinase Pathway in Angiogenesis. Cells, 2019, 8, 752.	4.1	67
13	Contextual Regulation of TGF-Î ² Signaling in Liver Cancer. Cells, 2019, 8, 1235.	4.1	42
14	<scp>AMP</scp> â€activated protein kinase regulates cancer cell growth and metabolism via nuclear and mitochondria events. Journal of Cellular and Molecular Medicine, 2019, 23, 3951-3961.	3.6	29
15	Helicobacter pylori CagA promotes epithelial mesenchymal transition in gastric carcinogenesis via triggering oncogenic YAP pathway. Journal of Experimental and Clinical Cancer Research, 2018, 37, 280.	8.6	102
16	Metformin and berberine, two versatile drugs in treatment of common metabolic diseases. Oncotarget, 2018, 9, 10135-10146.	1.8	84
17	Negative regulation of TGF-β by AMPK and implications in the treatment of associated disorders. Acta Biochimica Et Biophysica Sinica, 2018, 50, 523-531.	2.0	18
18	Simvastatin suppresses the DNA replication licensing factor MCM7 and inhibits the growth of tamoxifen-resistant breast cancer cells. Scientific Reports, 2017, 7, 41776.	3.3	38

#	Article	IF	Citations
19	Simvastatin and Atorvastatin inhibit DNA replication licensing factor MCM7 and effectively suppress RB-deficient tumors growth. Cell Death and Disease, 2017, 8, e2673-e2673.	6.3	30
20	AMPK downregulates ALK2 via increasing the interaction between Smurf1 and Smad6, leading to inhibition of osteogenic differentiation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 2369-2377.	4.1	25
21	Metformin inhibits ALK1-mediated angiogenesis via activation of AMPK. Oncotarget, 2017, 8, 32794-32806.	1.8	28
22	Nek2A phosphorylates and stabilizes SuFu: A new strategy of Gli2/Hedgehog signaling regulatory mechanism. Cellular Signalling, 2016, 28, 1304-1313.	3.6	15
23	Helicobacter pylori Infection Aggravates Diet-induced Insulin Resistance in Association With Gut Microbiota of Mice. EBioMedicine, 2016, 12, 247-254.	6.1	29
24	Phosphatidylethanolamine binding protein 4 (PEBP4) is a secreted protein and has multiple functions. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1682-1689.	4.1	23
25	LKB1/AMPK inhibits TGF- \hat{l}^2 1 production and the TGF- \hat{l}^2 signaling pathway in breast cancer cells. Tumor Biology, 2016, 37, 8249-8258.	1.8	41
26	Negative regulation of Bmi-1 by AMPK and implication in cancer progression. Oncotarget, 2016, 7, 6188-6200.	1.8	27
27	MLK3 Phophorylates AMPK Independently of LKB1. PLoS ONE, 2015, 10, e0123927.	2.5	24
28	Phosphorylation and inactivation of PTEN at residues Ser380/Thr382/383 induced by <i>Helicobacter pylori</i> promotes gastric epithelial cell survival through PI3K/Akt pathway. Oncotarget, 2015, 6, 31916-31926.	1.8	46
29	Metformin, an Old Drug, Brings a New Era to Cancer Therapy. Cancer Journal (Sudbury, Mass), 2015, 21, 70-74.	2.0	43
30	AMPK Inhibits the Stimulatory Effects of TGF- $\langle i \rangle \hat{l}^2 \langle i \rangle$ on Smad2/3 Activity, Cell Migration, and Epithelial-to-Mesenchymal Transition. Molecular Pharmacology, 2015, 88, 1062-1071.	2.3	69
31	AMP-Activated Protein Kinase Induces p53 by Phosphorylating MDMX and Inhibiting Its Activity. Molecular and Cellular Biology, 2014, 34, 148-157.	2.3	86
32	Reduced expression of PTEN and increased PTEN phosphorylation at residue Ser380 in gastric cancer tissues: A novel mechanism of PTEN inactivation. Clinics and Research in Hepatology and Gastroenterology, 2013, 37, 72-79.	1.5	51
33	ATM and LKB1 dependent activation of AMPK sensitizes cancer cells to etoposide-induced apoptosis. Cancer Letters, 2013, 328, 114-119.	7.2	41
34	MEK1–ERKs signal cascade is required for the replication of Enterovirus 71 (EV71). Antiviral Research, 2012, 93, 110-117.	4.1	57
35	Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB Journal, 2011, 25, 1664-1679.	0.5	261
36	AMPK Phosphorylates and Inhibits SREBP Activity to Attenuate Hepatic Steatosis and Atherosclerosis in Diet-Induced Insulin-Resistant Mice. Cell Metabolism, 2011, 13, 376-388.	16.2	1,356

#	Article	IF	CITATIONS
37	Lysyl Oxidase, A Critical Intra- and Extra-Cellular Target in the Lung for Cigarette Smoke Pathogenesis. International Journal of Environmental Research and Public Health, 2011, 8, 161-184.	2.6	27
38	LITAF and TNFSF15, two downstream targets of AMPK, exert inhibitory effects on tumor growth. Oncogene, 2011, 30, 1892-1900.	5.9	61
39	SIRT1 controls lipolysis in adipocytes via FOXO1-mediated expression of ATGL. Journal of Lipid Research, 2011, 52, 1693-1701.	4.2	144
40	AMPK exerts dual regulatory effects on the PI3K pathway. Journal of Molecular Signaling, 2010, 5, 1.	0.5	114
41	AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncology, 2010, 6, 457-470.	2.4	338
42	Distinct effects of knocking down MEK1 and MEK2 on replication of herpes simplex virus type 2. Virus Research, 2010, 150, 22-27.	2.2	30
43	Statin's Excitoprotection Is Mediated by sAPP and the Subsequent Attenuation of Calpain-Induced Truncation Events, Likely via Rho-ROCK Signaling. Journal of Neuroscience, 2009, 29, 11226-11236.	3.6	43
44	Antidiabetic drug metformin (Glucophage ^R) increases biogenesis of Alzheimer's amyloid peptides via up-regulating <i>BACE1</i> transcription. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3907-3912.	7.1	347
45	Inactivation of AMPK alters gene expression and promotes growth of prostate cancer cells. Oncogene, 2009, 28, 1993-2002.	5.9	111
46	Characterization of Ser338 Phosphorylation for Raf-1 Activation. Journal of Biological Chemistry, 2008, 283, 31429-31437.	3.4	58
47	The Mammalian Target of Rapamycin Complex 1 Regulates Leptin Biosynthesis in Adipocytes at the Level of Translation: The Role of the $5\hat{a}\in^2$ -Untranslated Region in the Expression of Leptin Messenger Ribonucleic Acid. Molecular Endocrinology, 2008, 22, 2260-2267.	3.7	20
48	Palmitate modulates intracellular signaling, induces endoplasmic reticulum stress, and causes apoptosis in mouse 3T3-L1 and rat primary preadipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E576-E586.	3.5	213
49	Regulation of RKIP binding to the N-region of the Raf-1 kinase. FEBS Letters, 2006, 580, 6405-6412.	2.8	43
50	AMPK regulation of the growth of cultured human keratinocytes. Biochemical and Biophysical Research Communications, 2006, 349, 519-524.	2.1	15
51	UPREGULATION OF 14-3-3 ISOFORMS IN ACUTE RAT MYOCARDIAL INJURIES INDUCED BY BURN AND LIPOPOLYSACCHARIDE. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 374-380.	1.9	22
52	$14\text{-}3\text{-}3\hat{1}^3$ binds to MDMX that is phosphorylated by UV-activated Chk1, resulting in p53 activation. EMBO Journal, 2006, 25, 1207-1218.	7.8	113
53	Interleukin-6 Regulation of AMP-Activated Protein Kinase: Potential Role in the Systemic Response to Exercise and Prevention of the Metabolic Syndrome. Diabetes, 2006, 55, S48-S54.	0.6	158
54	Mixed-lineage kinase 3 regulates B-Raf through maintenance of the B-Raf/Raf-1 complex and inhibition by the NF2 tumor suppressor protein. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4463-4468.	7.1	84

#	Article	IF	CITATIONS
55	Identification of Raf-1 S471 as a Novel Phosphorylation Site Critical for Raf-1 and B-Raf Kinase Activities and for MEK Binding. Molecular Biology of the Cell, 2005, 16, 4733-4744.	2.1	33
56	AMPK, the metabolic syndrome and cancer. Trends in Pharmacological Sciences, 2005, 26, 69-76.	8.7	392
57	Metabolic and hormonal interactions between muscle and adipose tissue. Proceedings of the Nutrition Society, 2004, 63, 381-385.	1.0	56
58	AMPK activity is diminished in tissues of IL-6 knockout mice: the effect of exercise. Biochemical and Biophysical Research Communications, 2004, 320, 449-454.	2.1	242
59	AMP-activated protein kinase activators can inhibit the growth of prostate cancer cells by multiple mechanisms. Biochemical and Biophysical Research Communications, 2004, 321, 161-167.	2.1	247
60	MEK inhibition and phosphorylation of serine 4 on B23 are two coincident events in mitosis. Biochemical and Biophysical Research Communications, 2004, 321, 675-680.	2.1	11
61	Photoreceptor Protection by Cardiotrophin-1 in Transgenic Rats with the Rhodopsin Mutation S334ter., 2003, 44, 4069.		29
62	Erbin Suppresses the MAP Kinase Pathway. Journal of Biological Chemistry, 2003, 278, 1108-1114.	3.4	102
63	Phosphorylation of 338SSYY341 Regulates Specific Interaction between Raf-1 and MEK1. Journal of Biological Chemistry, 2002, 277, 44996-45003.	3.4	33
64	14-3-3 Facilitates Insulin-Stimulated Intracellular Trafficking of Insulin Receptor Substrate 1. Molecular Endocrinology, 2002, 16, 552-562.	3.7	49
65	Interaction between Active Pak1 and Raf-1 Is Necessary for Phosphorylation and Activation of Raf-1. Journal of Biological Chemistry, 2002, 277, 4395-4405.	3.4	105
66	Regulation of AChR Clustering by Dishevelled Interacting with MuSK and PAK1. Neuron, 2002, 35, 489-505.	8.1	221
67	Inactivation of Ras function by allele-specific peptide aptamers. Oncogene, 2002, 21, 5753-5757.	5. 9	30
68	Hyperglycemia and Insulin Resistance: Possible Mechanisms. Annals of the New York Academy of Sciences, 2002, 967, 43-51.	3.8	123
69	14-3-3 Facilitates Insulin-Stimulated Intracellular Trafficking of Insulin Receptor Substrate 1. Molecular Endocrinology, 2002, 16, 552-562.	3.7	15
70	Extracellular ATP stimulates an inhibitory pathway towards growth factor-induced cRaf-1 and MEKK activation in astrocyte cultures. Journal of Neurochemistry, 2001, 77, 1001-1009.	3.9	31
71	Microtubule Integrity Regulates Pak Leading to Ras-independent Activation of Raf-1. Journal of Biological Chemistry, 2001, 276, 25157-25165.	3.4	41
72	Ras Activation of the Raf Kinase: Tyrosine Kinase Recruitment of the MAP Kinase Cascade. Endocrine Reviews, 2001, 56, 127-156.	6.7	323

#	Article	IF	CITATIONS
73	P _{2Y} purinoceptor subtypes recruit different Mek activators in astrocytes. British Journal of Pharmacology, 2000, 129, 927-936.	5.4	91
74	Raf-1/MEK/MAPK Pathway Is Necessary for the G2/M Transition Induced by Nocodazole. Journal of Biological Chemistry, 2000, 275, 31876-31882.	3.4	93
75	Calyculin A-induced Vimentin Phosphorylation Sequesters 14-3-3 and Displaces Other 14-3-3 Partners in Vivo. Journal of Biological Chemistry, 2000, 275, 29772-29778.	3.4	134
76	Hyperglycemia inhibits insulin activation of Akt/protein kinase B but not phosphatidylinositol 3-kinase in rat skeletal muscle. Diabetes, 1999, 48, 658-663.	0.6	97
77	A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity. Nature, 1998, 394, 88-92.	27.8	442
78	Actin-biding Protein-280 Binds the Stress-activated Protein Kinase (SAPK) Activator SEK-1 and Is Required for Tumor Necrosis Factor- $\hat{1}_{\pm}$ Activation of SAPK in Melanoma Cells. Journal of Biological Chemistry, 1997, 272, 2620-2628.	3.4	147
79	An Intact Raf Zinc Finger Is Required for Optimal Binding to Processed Ras and for Ras-Dependent Raf Activation In Situ. Molecular and Cellular Biology, 1997, 17, 46-53.	2.3	125
80	Oligomerization activates c-Raf-1 through a Ras-dependent mechanism. Nature, 1996, 383, 181-185.	27.8	241
81	Induction of Acetylcholine Receptor Gene Expression by ARIA Requires Activation of Mitogen-activated Protein Kinase. Journal of Biological Chemistry, 1996, 271, 19752-19759.	3.4	94
82	Identification of the 14.3.3 \hat{I} Domains Important for Self-association and Raf Binding. Journal of Biological Chemistry, 1995, 270, 23681-23687.	3.4	91
83	Association of USF and c-Myc with a helix-loop-helix-consensus motif in the core promoter of the murine type II beta regulatory subunit gene of cyclic adenosine 3', 5'-monophosphate-dependent protein kinase Molecular Endocrinology, 1994, 8, 1163-1174.	3.7	12
84	Phosphorylation of the regulatory subunit of type II beta cAMP-dependent protein kinase by cyclin B/p34cdc2 kinase impairs its binding to microtubule-associated protein 2 Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 5418-5422.	7.1	42
85	Molecular cloning and characterization of the promoter region of the mouse regulatory subunit $RII\hat{I}^2$ of type II cAMP-dependent protein kinase. Biochemical and Biophysical Research Communications, 1991, 178, 221-226.	2.1	17