
Alessandra Corsi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1487338/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	7.8	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	7.8	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	8.3	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
5	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314
6	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	8.9	2,022
7	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
8	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600
9	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	7.8	1,473
10	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224
11	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	8.3	1,090
12	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	8.3	1,049
13	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	4.0	1,029
14	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968
15	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	4.0	956
16	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	8.9	898
17	GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:mn> 150 </mml:mn> <mml:mtext>  </mml:mtext> cmml:mtext>   stretchy="false"> ㊙ </mml:mrow> . Physical Review</mml:math 	ml ma text>	<n&at:msub></n
18	Letters, 2020, 125, 101102. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature	31.4	825

Enhanced sensitivity of the LIG Photonics, 2013, 7, 613-619.

#	Article	IF	CITATIONS
19	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
20	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	8.9	728
21	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
22	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
23	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	8.3	566
24	Illuminating gravitational waves: A concordant picture of photons from a neutron star merger. Science, 2017, 358, 1559-1565.	12.6	559
25	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
26	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
27	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
28	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	8.3	406
29	A radio counterpart to a neutron star merger. Science, 2017, 358, 1579-1583.	12.6	390
30	Superluminal motion of a relativistic jet in the neutron-star merger GW170817. Nature, 2018, 561, 355-359.	27.8	381
31	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013.	4.0	355
32	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	4.7	315
33	The Discovery of the Electromagnetic Counterpart of GW170817: Kilonova AT 2017gfo/DLT17ck. Astrophysical Journal Letters, 2017, 848, L24.	8.3	309
34	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	27.8	303
35	A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817. Nature, 2018, 554, 207-210.	27.8	283
36	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	7.8	269

#	Article	IF	CITATIONS
37	Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation, 2012, 7, P03012-P03012.	1.2	257
38	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	8.3	230
39	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	8.3	210
40	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	7.8	194
41	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	8.3	189
42	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	4.0	188
43	Status of the Virgo project. Classical and Quantum Gravity, 2011, 28, 114002.	4.0	171
44	THE AFTERGLOW OF GRB 130427A FROM 1 TO 10 ¹⁶ GHz. Astrophysical Journal, 2014, 781, 37.	4.5	163
45	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	8.3	156
46	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	4.5	155
47	GAMMA-RAY BURST AFTERGLOW PLATEAUS AND GRAVITATIONAL WAVES: MULTI-MESSENGER SIGNATURE OF A MILLISECOND MAGNETAR?. Astrophysical Journal, 2009, 702, 1171-1178.	4.5	149
48	Status of Virgo. Classical and Quantum Gravity, 2008, 25, 114045.	4.0	148
49	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	8.3	146
50	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
51	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	4.5	131
52	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	4.5	125
53	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	7.8	119
54	A Turnover in the Radio Light Curve of GW170817. Astrophysical Journal Letters, 2018, 858, L15.	8.3	118

#	Article	IF	CITATIONS
55	Virgo status. Classical and Quantum Gravity, 2008, 25, 184001.	4.0	116
56	The bolometric light curves and physical parameters of stripped-envelope supernovae. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2973-3002.	4.4	115
57	A Strong Jet Signature in the Late-time Light Curve of GW170817. Astrophysical Journal Letters, 2018, 868, L11.	8.3	114
58	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	4.0	109
59	Light Curves of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory. Astrophysical Journal, 2018, 860, 100.	4.5	105
60	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	4.5	104
61	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D, 2019, 100, .	4.7	102
62	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	4.0	98
63	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	4.5	97
64	Short GRB 160821B: A Reverse Shock, a Refreshed Shock, and a Well-sampled Kilonova. Astrophysical Journal, 2019, 883, 48.	4.5	96
65	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	7.8	94
66	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	4.7	92
67	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	4.5	90
68	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	4.5	89
69	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	4.5	88
70	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	7.8	86
71	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	7.8	85
72	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	7.8	84

#	Article	IF	CITATIONS
73	Type Ibn Supernovae Show Photometric Homogeneity and Spectral Diversity at Maximum Light. Astrophysical Journal, 2017, 836, 158.	4.5	79
74	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	7.8	77
75	<i>Colloquium</i> : Multimessenger astronomy with gravitational waves and high-energy neutrinos. Reviews of Modern Physics, 2013, 85, 1401-1420.	45.6	76
76	A MULTI-WAVELENGTH INVESTIGATION OF THE RADIO-LOUD SUPERNOVA PTF11qcj AND ITS CIRCUMSTELLAR ENVIRONMENT. Astrophysical Journal, 2014, 782, 42.	4.5	76
77	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	4.0	73
78	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	4.7	73
79	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	8.3	73
80	Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Physical Review D, 2017, 95, .	4.7	72
81	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	4.5	72
82	DISCOVERY OF A COSMOLOGICAL, RELATIVISTIC OUTBURST VIA ITS RAPIDLY FADING OPTICAL EMISSION. Astrophysical Journal, 2013, 769, 130.	4.5	71
83	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	4.5	71
84	Bounding the time delay between high-energy neutrinos and gravitational-wave transients from gamma-ray bursts. Astroparticle Physics, 2011, 35, 1-7.	4.3	69
85	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
86	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D, 2020, 101, .	4.7	69
87	Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3. Astrophysical Journal, 2020, 905, 145.	4.5	69
88	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	7.8	68
89	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	7.8	68
90	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	4.5	66

#	Article	IF	CITATIONS
91	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	8.3	65
92	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	4.7	64
93	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	7.7	63
94	Measurements of Superattenuator seismic isolation by Virgo interferometer. Astroparticle Physics, 2010, 33, 182-189.	4.3	62
95	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	7.7	62
96	X-RAY EMISSION FROM SUPERNOVAE IN DENSE CIRCUMSTELLAR MATTER ENVIRONMENTS: A SEARCH FOR COLLISIONLESS SHOCKS. Astrophysical Journal, 2013, 763, 42.	4.5	61
97	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	4.5	61
98	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	4.5	60
99	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Physical Review D, 2019, 99, .	4.7	60
100	Noise from scattered light in Virgo's second science run data. Classical and Quantum Gravity, 2010, 27, 194011.	4.0	59
101	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	4.7	59
102	HIGH-ENERGY EMISSION COMPONENTS IN THE SHORT GRB 090510. Astrophysical Journal, 2010, 720, 1008-1015.	4.5	57
103	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	7.7	57
104	iPTF 16asu: A Luminous, Rapidly Evolving, and High-velocity Supernova. Astrophysical Journal, 2017, 851, 107.	4.5	57
105	Status of Virgo detector. Classical and Quantum Gravity, 2007, 24, S381-S388.	4.0	56
106	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	8.3	55
107	Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova: Pre-explosion Emission and a Rapidly Rising Luminous Transient. Astrophysical Journal, 2019, 887, 169.	4.5	55
108	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D, 2019, 100, .	4.7	54

#	Article	IF	CITATIONS
109	X-ray <i>Swift</i> observations of SN 2018cow. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 480, L146-L150.	3.3	53
110	The very energetic, broad-lined Type Ic supernova 2010ah (PTF10bzf) in the context of GRB/SNe. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2463-2473.	4.4	52
111	DISCOVERY AND REDSHIFT OF AN OPTICAL AFTERGLOW IN 71 deg ² : iPTF13bxl AND GRB 130702A. Astrophysical Journal Letters, 2013, 776, L34.	8.3	52
112	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
113	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	4.7	52
114	iPTF14yb: THE FIRST DISCOVERY OF A GAMMA-RAY BURST AFTERGLOW INDEPENDENT OF A HIGH-ENERGY TRIGGER. Astrophysical Journal Letters, 2015, 803, L24.	8.3	50
115	iPTF15dtg: a double-peaked Type Ic supernova from a massive progenitor. Astronomy and Astrophysics, 2016, 592, A89.	5.1	49
116	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	4.7	47
117	iPTF SEARCH FOR AN OPTICAL COUNTERPART TO GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 824, L24.	8.3	46
118	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	4.5	46
119	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97, .	4.7	46
120	An ASKAP Search for a Radio Counterpart to the First High-significance Neutron Star–Black Hole Merger LIGO/Virgo S190814bv. Astrophysical Journal Letters, 2019, 887, L13.	8.3	45
121	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44
122	THE NEEDLE IN THE 100 deg ² HAYSTACK: UNCOVERING AFTERGLOWS OF <i>FERMI</i> GRBs WITH THE PALOMAR TRANSIENT FACTORY. Astrophysical Journal, 2015, 806, 52.	4.5	43
123	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	4.0	42
124	RADIO OBSERVATIONS OF A SAMPLE OF BROAD-LINE TYPE IC SUPERNOVAE DISCOVERED BY PTF/IPTF: A SEARCH FOR RELATIVISTIC EXPLOSIONS. Astrophysical Journal, 2016, 830, 42.	4.5	42
125	Searches after Gravitational Waves Using ARizona Observatories (SAGUARO): System Overview and First Results from Advanced LIGO/Virgo's Third Observing Run. Astrophysical Journal Letters, 2019, 881, L26.	8.3	41
126	OPTICAL AND NEAR-INFRARED OBSERVATIONS OF SN 2013DX ASSOCIATED WITH GRB 130702A. Astrophysical Journal, 2016, 818, 79.	4.5	40

#	Article	IF	CITATIONS
127	STUDYING THE WARM HOT INTERGALACTIC MEDIUM WITH GAMMA-RAY BURSTS. Astrophysical Journal, 2009, 697, 328-344.	4.5	38
128	The CUORE cryostat: An infrastructure for rare event searches at millikelvin temperatures. Cryogenics, 2019, 102, 9-21.	1.7	38
129	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	4.7	37
130	Observational Constraints on Multimessenger Sources of Gravitational Waves and High-Energy Neutrinos. Physical Review Letters, 2011, 107, 251101.	7.8	36
131	EVIDENCE FOR A COMPACT WOLF-RAYET PROGENITOR FOR THE TYPE Ic SUPERNOVA PTF 10vgv. Astrophysical Journal Letters, 2012, 747, L5.	8.3	36
132	The gamma-ray burst 050904: evidence for a termination shock?. Astronomy and Astrophysics, 2007, 462, 565-573.	5.1	34
133	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	4.0	34
134	PTF 10bzf (SN 2010ah): A BROAD-LINE Ic SUPERNOVA DISCOVERED BY THE PALOMAR TRANSIENT FACTORY. Astrophysical Journal, 2011, 741, 76.	4.5	33
135	Continued Radio Observations of GW170817 3.5 yr Post-merger. Astrophysical Journal Letters, 2021, 914, L20.	8.3	33
136	Evidence for dust destruction from the early-time colour change of GRBÂ120119A. Monthly Notices of the Royal Astronomical Society, 2014, 440, 1810-1823.	4.4	32
137	The puzzling case of GRBÂ990123: prompt emission andÂbroad-bandÂafterglow modeling. Astronomy and Astrophysics, 2005, 438, 829-840.	5.1	31
138	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	4.7	31
139	Gravitational wave background from sub-luminous GRBs: prospects for second- and third-generation detectors. Monthly Notices of the Royal Astronomical Society, 2011, 410, 2123-2136.	4.4	30
140	An Empirical Limit on the Kilonova Rate from the DLT40 One Day Cadence Supernova Survey. Astrophysical Journal Letters, 2017, 851, L48.	8.3	30
141	A Tale of Two Transients: GW 170104 and GRBÂ170105A. Astrophysical Journal, 2017, 845, 152.	4.5	29
142	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	4.5	29
143	Search for gravitational waves associated with GRB 050915a using the Virgo detector. Classical and Quantum Gravity, 2008, 25, 225001.	4.0	28
144	The Seismic Superattenuators of the Virgo Gravitational Waves Interferometer. Journal of Low Frequency Noise Vibration and Active Control, 2011, 30, 63-79.	2.9	28

#	Article	IF	CITATIONS
145	Searching for the radio remnants of short-duration gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1708-1720.	4.4	28
146	An Upper Limit on the Linear Polarization Fraction of the GW170817 Radio Continuum. Astrophysical Journal Letters, 2018, 861, L10.	8.3	27
147	The Panchromatic Afterglow of GW170817: The Full Uniform Data Set, Modeling, Comparison with Previous Results, and Implications. Astrophysical Journal, 2021, 922, 154.	4.5	27
148	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	4.5	26
149	SN 2020bvc: A Broad-line Type Ic Supernova with a Double-peaked Optical Light Curve and a Luminous X-Ray and Radio Counterpart. Astrophysical Journal, 2020, 902, 86.	4.5	25
150	Searches after Gravitational Waves Using ARizona Observatories (SAGUARO): Observations and Analysis from Advanced LIGO/Virgo's Third Observing Run. Astrophysical Journal, 2021, 912, 128.	4.5	24
151	iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger. Astrophysical Journal, 2017, 847, 54.	4.5	23
152	STUDYING THE WARM-HOT INTERGALACTIC MEDIUM IN EMISSION. Astrophysical Journal, 2011, 734, 91.	4.5	21
153	RADIO FOLLOW-UP OF GRAVITATIONAL-WAVE TRIGGERS DURING ADVANCED LIGO O1. Astrophysical Journal Letters, 2016, 829, L28.	8.3	21
154	Target-of-opportunity Observations of Gravitational-wave Events with Vera C. Rubin Observatory. Astrophysical Journal, Supplement Series, 2022, 260, 18.	7.7	21
155	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3a. Astrophysical Journal, 2021, 915, 86.	4.5	20
156	Gravitational waves by gamma-ray bursts and the Virgo detector: the case of GRB 050915a. Classical and Quantum Gravity, 2007, 24, S671-S679.	4.0	19
157	EDGE: Explorer of diffuse emission and gamma-ray burst explosions. Experimental Astronomy, 2009, 23, 67-89.	3.7	19
158	PTF 12gzk—A RAPIDLY DECLINING, HIGH-VELOCITY TYPE Ic RADIO SUPERNOVA. Astrophysical Journal, 2013, 778, 63.	4.5	18
159	HAPPY BIRTHDAY <i>SWIFT</i> : ULTRA-LONG GRB 141121A AND ITS BROADBAND AFTERGLOW. Astrophysical Journal, 2015, 812, 122.	4.5	18
160	Binary black hole mergers within the LIGO horizon: statistical properties and prospects for detecting electromagnetic counterparts. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4228-4240.	4.4	18
161	Optical Follow-up of Gravitational-wave Events during the Second Advanced LIGO/VIRGO Observing Run with the DLT40 Survey. Astrophysical Journal, 2019, 875, 59.	4.5	18
162	The Double-peaked Radio Light Curve of Supernova PTF11qcj. Astrophysical Journal, 2019, 872, 201.	4.5	17

#	Article	IF	CITATIONS
163	Lock acquisition of the Virgo gravitational wave detector. Astroparticle Physics, 2008, 30, 29-38.	4.3	16
164	Cross-correlation method for intermediate-duration gravitational wave searches associated with gamma-ray bursts. Physical Review D, 2016, 93, .	4.7	16
165	The Late-time Afterglow Evolution of Long Gamma-Ray Bursts GRB 160625B and GRB 160509A. Astrophysical Journal, 2020, 894, 43.	4.5	16
166	GRB 160625B: Evidence for a Gaussian-shaped Jet. Astrophysical Journal, 2020, 904, 166.	4.5	16
167	EARLY-TIME VLA OBSERVATIONS AND BROADBAND AFTERGLOW ANALYSIS OF THE <i>FERMI</i> /LAT DETECTED GRB 130907A. Astrophysical Journal, 2015, 810, 31.	4.5	15
168	Coincidence analysis between periodic source candidates in C6 and C7 Virgo data. Classical and Quantum Gravity, 2007, 24, S491-S499.	4.0	13
169	First joint gravitational wave search by the AURIGA–EXPLORER–NAUTILUS–Virgo Collaboration. Classical and Quantum Gravity, 2008, 25, 205007.	4.0	13
170	Performance of the Virgo interferometer longitudinal control system during the second science run. Astroparticle Physics, 2011, 34, 521-527.	4.3	13
171	Radio forensics could unmask nearby off-axis gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4150-4159.	4.4	12
172	Automatic Alignment for the first science run of the Virgo interferometer. Astroparticle Physics, 2010, 33, 131-139.	4.3	11
173	The Broad-lined Ic Supernova ZTF18aaqjovh (SN 2018bvw): An Optically Discovered Engine-driven Supernova Candidate with Luminous Radio Emission. Astrophysical Journal, 2020, 893, 132.	4.5	11
174	Improving the timing precision for inspiral signals found by interferometric gravitational wave detectors. Classical and Quantum Gravity, 2007, 24, S617-S625.	4.0	10
175	Cleaning the Virgo sampled data for the search of periodic sources of gravitational waves. Classical and Quantum Gravity, 2009, 26, 204002.	4.0	10
176	Gamma-ray burst jets in supernovae. New Astronomy Reviews, 2021, 92, 101614.	12.8	10
177	Analysis of noise lines in the Virgo C7 data. Classical and Quantum Gravity, 2007, 24, S433-S443.	4.0	9
178	Status of coalescing binaries search activities in Virgo. Classical and Quantum Gravity, 2007, 24, 5767-5775.	4.0	9
179	The JAGWAR Prowls LIGO/Virgo O3 Paper I: Radio Search of a Possible Multimessenger Counterpart of the Binary Black Hole Merger Candidate S191216ap. Astrophysical Journal, 2021, 911, 77.	4.5	9
180	Noise studies during the first Virgo science run and after. Classical and Quantum Gravity, 2008, 25, 184003.	4.0	8

#	Article	IF	CITATIONS
181	Radio Observations of SN2004dk with VLITE Confirm Late-time Rebrightening. Astrophysical Journal, 2021, 923, 32.	4.5	8
182	The Real-Time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. IEEE Transactions on Nuclear Science, 2008, 55, 302-310.	2.0	7
183	Gamma-ray burst afterglow plateaus and gravitational waves. Classical and Quantum Gravity, 2009, 26, 204016.	4.0	6
184	Automatic Alignment system during the second science run of the Virgo interferometer. Astroparticle Physics, 2011, 34, 327-332.	4.3	6
185	ORIGIN: metal creation and evolution from the cosmic dawn. Experimental Astronomy, 2012, 34, 519-549.	3.7	6
186	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. IEEE Transactions on Nuclear Science, 2008, 55, 225-232.	2.0	5
187	Search for Radio Remnants of Nearby Off-axis Gamma-Ray Bursts in a Sample of Swift/BAT Events. Astrophysical Journal, 2021, 908, 63.	4.5	5
188	An Optimized Radio Follow-up Strategy for Stripped-envelope Core-collapse Supernovae. Astrophysical Journal, 2020, 889, 36.	4.5	5
189	Data quality studies for burst analysis of Virgo data acquired during Weekly Science Runs. Classical and Quantum Gravity, 2007, 24, S415-S422.	4.0	4
190	THE VIRGO INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION. International Journal of Modern Physics D, 2011, 20, 2075-2079.	2.1	4
191	A targeted search for repeating fast radio bursts associated with gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2020, 501, 541-547.	4.4	4
192	Gravitational waves and gamma-ray bursts. Proceedings of the International Astronomical Union, 2011, 7, 142-149.	0.0	3
193	Radio Follow-up of a Candidate Î ³ -Ray Transient in the Sky Localization Area of GW170608. Astrophysical Journal, 2019, 884, 16.	4.5	3
194	Optimized Radio Follow-up of Binary Neutron-star Mergers. Astrophysical Journal, 2018, 867, 135.	4.5	2
195	Multiwaveform cross-correlation search method for intermediate-duration gravitational waves from gamma-ray bursts. Physical Review D, 2019, 100, .	4.7	2
196	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
197	VLBI Observations of Supernova PTF11qcj: Direct Constraints on the Size of the Radio Ejecta. Astrophysical Journal, 2021, 910, 16.	4.5	1
198	A cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo. Classical and Quantum Gravity, 2008, 25, 114046.	4.0	0

#	Article	IF	CITATIONS
199	The INTEGRAL view of Gamma-Ray Bursts. Advances in Space Research, 2011, 47, 1374-1386.	2.6	0