Kenneth A Jacobson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1487225/publications.pdf

Version: 2024-02-01

776 papers 42,097 citations

93 h-index 158 g-index

817 all docs

817 docs citations

817 times ranked

23289 citing authors

#	Article	IF	CITATIONS
1	Adenosine receptors as therapeutic targets. Nature Reviews Drug Discovery, 2006, 5, 247-264.	46.4	1,243
2	International Union of Pharmacology LVIII: Update on the P2Y G Protein-Coupled Nucleotide Receptors: From Molecular Mechanisms and Pathophysiology to Therapy. Pharmacological Reviews, 2006, 58, 281-341.	16.0	1,147
3	International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and Classification of Adenosine Receptorsâ€"An Update. Pharmacological Reviews, 2011, 63, 1-34.	16.0	1,135
4	Structure of an Agonist-Bound Human A _{2A} Adenosine Receptor. Science, 2011, 332, 322-327.	12.6	783
5	UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature, 2007, 446, 1091-1095.	27.8	698
6	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G proteinâ€coupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	5.4	519
7	The Concise Guide to PHARMACOLOGY 2015/16: G proteinâ€coupled receptors. British Journal of Pharmacology, 2015, 172, 5744-5869.	5.4	507
8	Adenosine receptors: pharmacology, structure-activity relationships, and therapeutic potential. Journal of Medicinal Chemistry, 1992, 35, 407-422.	6.4	488
9	Coordinated Adenine Nucleotide Phosphohydrolysis and Nucleoside Signaling in Posthypoxic Endothelium. Journal of Experimental Medicine, 2003, 198, 783-796.	8.5	444
10	Characterization of the UDP-glucose receptor (re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family. Trends in Pharmacological Sciences, 2003, 24, 52-55.	8.7	382
11	Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1290-1308.	2.6	375
12	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein oupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	5 . 4	337
13	Purine and Pyrimidine (P2) Receptors as Drug Targets. Journal of Medicinal Chemistry, 2002, 45, 4057-4093.	6.4	334
14	Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature, 2014, 509, 115-118.	27.8	330
15	Towards a revised nomenclature for P1 and P2 receptors. Trends in Pharmacological Sciences, 1997, 18, 79-82.	8.7	315
16	Two disparate ligand-binding sites in the human P2Y1 receptor. Nature, 2015, 520, 317-321.	27.8	305
17	Adenosine A3 receptors: novel ligands and paradoxical effects. Trends in Pharmacological Sciences, 1998, 19, 184-191.	8.7	292
18	Agonist-bound structure of the human P2Y12 receptor. Nature, 2014, 509, 119-122.	27.8	279

#	Article	IF	CITATIONS
19	Adenosine A3 receptor stimulation and cerebral ischemia. European Journal of Pharmacology, 1994, 263, 59-67.	3.5	266
20	Structure-Activity Relationships of N6-Benzyladenosine-5'-uronamides as A3-Selective Adenosine Agonists. Journal of Medicinal Chemistry, 1994, 37, 636-646.	6.4	248
21	Adenosine receptor ligands: differences with acute versus chronic treatment. Trends in Pharmacological Sciences, 1996, 17, 108-113.	8.7	248
22	The Concise Guide to PHARMACOLOGY 2015/16: Overview. British Journal of Pharmacology, 2015, 172, 5729-5743.	5.4	220
23	2-Substitution of N6-Benzyladenosine-5'-uronamides Enhances Selectivity for A3 Adenosine Receptors. Journal of Medicinal Chemistry, 1994, 37, 3614-3621.	6.4	213
24	Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology, 2016, 104, 31-49.	4.1	213
25	Structure-Based Discovery of A _{2A} Adenosine Receptor Ligands. Journal of Medicinal Chemistry, 2010, 53, 3748-3755.	6.4	212
26	A physiological role of the adenosine A3 receptor: Sustained cardioprotection. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 6995-6999.	7.1	202
27	Pharmacological and therapeutic effects of A3 adenosine receptor agonists. Drug Discovery Today, 2012, 17, 359-366.	6.4	193
28	Anilide Derivatives of an 8-Phenylxanthine Carboxylic Congener Are Highly Potent and Selective Antagonists at Human A2BAdenosine Receptors. Journal of Medicinal Chemistry, 2000, 43, 1165-1172.	6.4	192
29	Site-directed Mutagenesis Identifies Residues Involved in Ligand Recognition in the Human A2a Adenosine Receptor. Journal of Biological Chemistry, 1995, 270, 13987-13997.	3.4	191
30	Competitive and selective antagonism of P2Y ₁ receptors by <i>N</i> ⁶ â€methyl 2′â€deoxyadenosine 3′,5′â€bisphosphate. British Journal of Pharmacology, 1998, 124, 1-3.	5.4	188
31	Synthesis, CoMFA Analysis, and Receptor Docking of 3,5-Diacyl-2,4-Dialkylpyridine Derivatives as Selective A3Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 1999, 42, 706-721.	6.4	187
32	Molecular architecture of G protein-coupled receptors. Drug Development Research, 1996, 37, 1-38.	2.9	180
33	Allosteric Coupling of Drug Binding and Intracellular Signaling in the A2A Adenosine Receptor. Cell, 2018, 172, 68-80.e12.	28.9	173
34	Increased Signaling via Adenosine A1 Receptors, Sleep Deprivation, Imipramine, and Ketamine Inhibit Depressive-like Behavior via Induction of Homer1a. Neuron, 2015, 87, 549-562.	8.1	168
35	Induction of Apoptosis in HL-60 Human Promyelocytic Leukemia Cells by Adenosine A3Receptor Agonists. Biochemical and Biophysical Research Communications, 1996, 219, 904-910.	2.1	166
36	Update of P2X receptor properties and their pharmacology: IUPHAR Review 30. British Journal of Pharmacology, 2021, 178, 489-514.	5.4	165

3

#	Article	IF	Citations
37	Activation of Hippocampal Adenosine A ₃ Receptors Produces a Desensitization of A ₁ Receptor-Mediated Responses in Rat Hippocampus. Journal of Neuroscience, 1997, 17, 607-614.	3.6	159
38	8-(3-Chlorostyryl)caffeine (CSC) is a selective A2 -adenosine antagonist in vitro and in vivo. FEBS Letters, 1993, 323, 141-144.	2.8	158
39	Derivatives of the Triazoloquinazoline Adenosine Antagonist (CGS15943) Are Selective for the Human A ₃ Receptor Subtype. Journal of Medicinal Chemistry, 1996, 39, 4142-4148.	6.4	154
40	Progress in the pursuit of therapeutic adenosine receptor antagonists. Medicinal Research Reviews, 2006, 26, 131-159.	10.5	154
41	Human P2Y1Receptor:Â Molecular Modeling and Site-Directed Mutagenesis as Tools To Identify Agonist and Antagonist Recognition Sites. Journal of Medicinal Chemistry, 1998, 41, 1456-1466.	6.4	153
42	New paradigms in GPCR drug discovery. Biochemical Pharmacology, 2015, 98, 541-555.	4.4	152
43	Structure-activity relationships of 8-styrylxanthines as A2-selective adenosine antagonists. Journal of Medicinal Chemistry, 1993, 36, 1333-1342.	6.4	151
44	Structural Determinants of A3Adenosine Receptor Activation:Â Nucleoside Ligands at the Agonist/Antagonist Boundary. Journal of Medicinal Chemistry, 2002, 45, 4471-4484.	6.4	151
45	Systematic Investigation of Polyamidoamine Dendrimers Surface-Modified with Poly(ethylene glycol) for Drug Delivery Applications: Synthesis, Characterization, and Evaluation of Cytotoxicity. Bioconjugate Chemistry, 2008, 19, 1660-1672.	3.6	151
46	Update of P2Y receptor pharmacology: IUPHAR Review 27. British Journal of Pharmacology, 2020, 177, 2413-2433.	5.4	151
47	Pharmacological characterization of novel A3 adenosine receptor-selective antagonists. Neuropharmacology, 1997, 36, 1157-1165.	4.1	150
48	Chronic caffeine alters the density of adenosine, adrenergic, cholinergic, GABA, and serotonin receptors and calcium channels in mouse brain. Cellular and Molecular Neurobiology, 1993, 13, 247-261.	3.3	149
49	Historical and Current Adenosine Receptor Agonists in Preclinical and Clinical Development. Frontiers in Cellular Neuroscience, 2019, 13, 124.	3.7	146
50	A role for central A3-adenosine receptors. FEBS Letters, 1993, 336, 57-60.	2.8	145
51	Adenosine A1 and A2 receptors: Structure–function relationships. Medicinal Research Reviews, 1992, 12, 423-471.	10.5	144
52	Diisothiocyanate derivatives as potent, insurmountable antagonists of P2Y6 nucleotide receptors. Biochemical Pharmacology, 2004, 67, 1763-1770.	4.4	142
53	Architecture of P2Y Nucleotide Receptors:  Structural Comparison Based on Sequence Analysis, Mutagenesis, and Homology Modeling. Journal of Medicinal Chemistry, 2004, 47, 5393-5404.	6.4	139
54	N6-Substituted adenosine derivatives: selectivity, efficacy, and species differences at A3 adenosine receptors. Biochemical Pharmacology, 2003, 65, 1675-1684.	4.4	136

#	Article	IF	CITATIONS
55	MRS2500 [2-lodo-N6-methyl-(N)-methanocarba- $2\hat{a}\in^2$ -deoxyadenosine- $3\hat{a}\in^2$ -bisphosphate], a Potent, Selectivand Stable Antagonist of the Platelet P2Y1 Receptor with Strong Antithrombotic Activity in Mice. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 556-563.	ve, 2.5	135
56	Identification by Site-directed Mutagenesis of Residues Involved in Ligand Recognition and Activation of the Human A3 Adenosine Receptor. Journal of Biological Chemistry, 2002, 277, 19056-19063.	3.4	134
57	Structural Connection between Activation Microswitch and Allosteric Sodium Site in GPCR Signaling. Structure, 2018, 26, 259-269.e5.	3.3	134
58	Cerebral ischemia in gerbils: effects of acute and chronic treatment with adenosine A2A receptor agonist and antagonist. European Journal of Pharmacology, 1995, 287, 295-302.	3 . 5	133
59	Deoxyadenosine Bisphosphate Derivatives as Potent Antagonists at P2Y1Receptors. Journal of Medicinal Chemistry, 1998, 41, 183-190.	6.4	133
60	Activation of Th1 and Tc1 cell adenosine A2A receptors directly inhibits IL-2 secretion in vitro and IL-2-driven expansion in vivo. Blood, 2005, 105, 4707-4714.	1.4	133
61	The Role of Amino Acids in Extracellular Loops of the Human P2Y1 Receptor in Surface Expression and Activation Processes. Journal of Biological Chemistry, 1999, 274, 14639-14647.	3.4	132
62	P2Y nucleotide receptors: promise of therapeutic applications. Drug Discovery Today, 2010, 15, 570-578.	6.4	132
63	A3-adenosine receptors: Design of selective ligands and therapeutic prospects. Drugs of the Future, 1995, 20, 689.	0.1	132
64	Differential effects of P ₂ â€purinoceptor antagonists on phospholipase C†and adenylyl cyclaseâ€coupled P _{2Y} â€purinoceptors. British Journal of Pharmacology, 1994, 113, 614-620.	5.4	129
65	Synthesis, Biological Activity, and Molecular Modeling of Ribose-Modified Deoxyadenosine Bisphosphate Analogues as P2Y1Receptor Ligands. Journal of Medicinal Chemistry, 2000, 43, 829-842.	6.4	129
66	Methanocarba Analogues of Purine Nucleosides as Potent and Selective Adenosine Receptor Agonists. Journal of Medicinal Chemistry, 2000, 43, 2196-2203.	6.4	127
67	Structureâ^'Activity Relationships and Molecular Modeling of 3,5-Diacyl-2,4-dialkylpyridine Derivatives as Selective A3 Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 1998, 41, 3186-3201.	6.4	126
68	Role of the Extracellular Loops of G Protein-Coupled Receptors in Ligand Recognition:Â A Molecular Modeling Study of the Human P2Y1Receptor. Biochemistry, 1999, 38, 3498-3507.	2.5	125
69	2-Substitution of Adenine Nucleotide Analogues Containing a Bicyclo[3.1.0]hexane Ring System Locked in a Northern Conformation:Â Enhanced Potency as P2Y1Receptor Antagonists. Journal of Medicinal Chemistry, 2003, 46, 4974-4987.	6.4	125
70	Modeling the Adenosine Receptors:Â Comparison of the Binding Domains of A2AAgonists and Antagonists. Journal of Medicinal Chemistry, 2003, 46, 4847-4859.	6.4	125
71	Direct preconditioning of cultured chick ventricular myocytes. Novel functions of cardiac adenosine A2a and A3 receptors Journal of Clinical Investigation, 1996, 98, 1773-1779.	8.2	124
72	A Mutational Analysis of Residues Essential for Ligand Recognition at the Human P2Y ₁ Receptor. Molecular Pharmacology, 1997, 52, 499-507.	2.3	123

#	Article	IF	CITATIONS
73	Endogenous adenosine A3 receptor activation selectively alleviates persistent pain states. Brain, 2015, 138, 28-35.	7.6	120
74	Identification of potent, selective P2Y-purinoceptor agonists: structure-activity relationships for 2-thioether derivatives of adenosine 5'-triphosphate. Journal of Medicinal Chemistry, 1993, 36, 3937-3946.	6.4	116
75	Structure–activity relationships of thiazole and thiadiazole derivatives as potent and selective human adenosine A3 receptor antagonists. Bioorganic and Medicinal Chemistry, 2004, 12, 613-623.	3.0	115
76	Deficiency of adenosine deaminase 2 triggers adenosine-mediated NETosis and TNF production in patients with DADA2. Blood, 2019, 134, 395-406.	1.4	115
77	Functionalized congeners of 1,3-dialkylxanthines: preparation of analogs with high affinity for adenosine receptors. Journal of Medicinal Chemistry, 1985, 28, 1334-1340.	6.4	114
78	Spinal neuroimmune activation is independent of T-cell infiltration and attenuated by A3 adenosine receptor agonists in a model of oxaliplatin-induced peripheral neuropathy. Brain, Behavior, and Immunity, 2015, 44, 91-99.	4.1	114
79	[3H]xanthine amine congener of 1,3-dipropyl-8-phenylxanthine: an antagonist radioligand for adenosine receptors Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 4089-4093.	7.1	111
80	Synthesis and Biological Activities of Flavonoid Derivatives as A3 Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 1996, 39, 2293-2301.	6.4	111
81	A ₃ Adenosine Receptors as Modulators of Inflammation: From Medicinal Chemistry to Therapy. Medicinal Research Reviews, 2018, 38, 1031-1072.	10.5	111
82	Interactions of Flavonoids and Other Phytochemicals with Adenosine Receptors. Journal of Medicinal Chemistry, 1996, 39, 781-788.	6.4	110
83	Interaction of 1,4-Dihydropyridine and Pyridine Derivatives with Adenosine Receptors:  Selectivity for A3 Receptors. Journal of Medicinal Chemistry, 1996, 39, 2980-2989.	6.4	108
84	Small molecule blockers of the Alzheimer $\hat{Al^2}$ calcium channel potently protect neurons from $\hat{Al^2}$ cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3348-3353.	7.1	108
85	Xanthines as Adenosine Receptor Antagonists. Handbook of Experimental Pharmacology, 2011, , 151-199.	1.8	107
86	Derivatives of the Triazoloquinazoline Adenosine Antagonist (CGS 15943) Having High Potency at the Human A _{2B} and A ₃ Receptor Subtypes. Journal of Medicinal Chemistry, 1998, 41, 2835-2845.	6.4	106
87	Chronic administration of selective adenosine A1 receptor agonist or antagonist in cerebral ischemia. European Journal of Pharmacology, 1994, 256, 161-167.	3.5	104
88	Dihydropyridines as inhibitors of capacitative calcium entry in leukemic HL-60 cells. Biochemical Pharmacology, 2003, 65, 329-338.	4.4	103
89	Structure activity relationships for derivatives of adenosine-5?-triphosphate as agonists at P2 purinoceptors: Heterogeneity within P2x and P2y subtypes. Drug Development Research, 1994, 31, 206-219.	2.9	101
90	Adenosine A3Receptor Agonists Protect HL-60 and U-937 Cells from Apoptosis Induced by A3Antagonists. Biochemical and Biophysical Research Communications, 1997, 232, 317-322.	2.1	101

#	Article	IF	Citations
91	Development of selective agonists and antagonists of P2Y receptors. Purinergic Signalling, 2009, 5, 75-89.	2.2	101
92	Emerging adenosine receptor agonists. Expert Opinion on Emerging Drugs, 2007, 12, 479-492.	2.4	100
93	Controlling murine and rat chronic pain through A ₃ adenosine receptor activation. FASEB Journal, 2012, 26, 1855-1865.	0.5	99
94	Adenosine-induced cell death: evidence for receptor-mediated signalling. Apoptosis: an International Journal on Programmed Cell Death, 1999, 4, 197-211.	4.9	98
95	5′-Phosphate and 5′-Phosphonate Ester Derivatives of (N)-Methanocarba Adenosine with in Vivo Cardioprotective Activity. Journal of Medicinal Chemistry, 2013, 56, 902-914.	6.4	98
96	Search for New Purine- and Ribose-Modified Adenosine Analogs as Selective Agonists and Antagonists at Adenosine Receptors. Journal of Medicinal Chemistry, 1995, 38, 1174-1188.	6.4	97
97	Quantitation of the P2Y1Receptor with a High Affinity Radiolabeled Antagonist. Molecular Pharmacology, 2002, 62, 1249-1257.	2.3	95
98	Induction of Novel Agonist Selectivity for the ADP-Activated P2Y1 Receptor Versus the ADP-Activated P2Y12 and P2Y13 Receptors by Conformational Constraint of an ADP Analog. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 1038-1043.	2.5	95
99	Synthesis of pyridoxal phosphate derivatives with antagonist activity at the P2Y13 receptor. Biochemical Pharmacology, 2005, 70, 266-274.	4.4	95
100	Positive Inotropic Effects by Uridine Triphosphate (UTP) and Uridine Diphosphate (UDP) via P2Y 2 and P2Y 6 Receptors on Cardiomyocytes and Release of UTP in Man During Myocardial Infarction. Circulation Research, 2006, 98, 970-976.	4.5	95
101	Behavioral characterization of mice lacking the A3 adenosine receptor: sensitivity to hypoxic neurodegeneration. Cellular and Molecular Neurobiology, 2003, 23, 431-447.	3.3	94
102	Stimulation of the P2X7 receptor kills rat retinal ganglion cells in vivo. Experimental Eye Research, 2010, 91, 425-432.	2.6	93
103	A3 adenosine receptor agonist prevents the development of paclitaxel-induced neuropathic pain by modulating spinal glial-restricted redox-dependent signaling pathways. Pain, 2014, 155, 2560-2567.	4.2	93
104	Species differences in structure-activity relationships of adenosine agonists and xanthine antagonists at brain A1 adenosine receptors. FEBS Letters, 1986, 209, 122-128.	2.8	92
105	Induction of Apoptosis in Cardiac Myocytes by an A3Adenosine Receptor Agonist. Experimental Cell Research, 1998, 243, 383-397.	2.6	91
106	Identification of the A2 adenosine receptor binding subunit by photoaffinity crosslinking. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 6572-6576.	7.1	90
107	Methanocarba Modification of Uracil and Adenine Nucleotides:Â High Potency of Northern Ring Conformation at P2Y1, P2Y2, P2Y4, and P2Y11but Not P2Y6Receptors. Journal of Medicinal Chemistry, 2002, 45, 208-218.	6.4	90
108	Evaluation of Homology Modeling of G-Protein-Coupled Receptors in Light of the A _{2A} Adenosine Receptor Crystallographic Structure. Journal of Medicinal Chemistry, 2009, 52, 3284-3292.	6.4	90

#	Article	IF	CITATIONS
109	[3H]MRS 1754, a selective antagonist radioligand for A2B adenosine receptors. Biochemical Pharmacology, 2001, 61, 657-663.	4.4	89
110	2â€Chloro N ⁶ â€methylâ€(N)â€methanocarbaâ€2â€2â€deoxyadenosineâ€3â€2,5â€2â€bisphosphate affinity P2Y ₁ receptor antagonist. British Journal of Pharmacology, 2002, 135, 2004-2010.	is a selec	tiye high
111	Introduction to Adenosine Receptors as Therapeutic Targets. Handbook of Experimental Pharmacology, 2009, , 1-24.	1.8	89
112	A Selective High-Affinity Antagonist of the P2Y ₁₄ Receptor Inhibits UDP-Glucose–Stimulated Chemotaxis of Human Neutrophils. Molecular Pharmacology, 2013, 84, 41-49.	2.3	89
113	6-Phenyl-1,4-dihydropyridine Derivatives as Potent and Selective A3Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 1996, 39, 4667-4675.	6.4	88
114	The A3Adenosine Receptor Mediates Cell Spreading, Reorganization of Actin Cytoskeleton, and Distribution of Bcl-xL: Studies in Human Astroglioma Cells. Biochemical and Biophysical Research Communications, 1997, 241, 297-304.	2.1	88
115	(N)-Methanocarba 2,N6-Disubstituted Adenine Nucleosides as Highly Potent and Selective A3Adenosine Receptor Agonists. Journal of Medicinal Chemistry, 2005, 48, 1745-1758.	6.4	88
116	Digitoxin mimics gene therapy with CFTR and suppresses hypersecretion of IL-8 from cystic fibrosis lung epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7693-7698.	7.1	87
117	Locomotor activity in mice during chronic treatment with caffeine and withdrawal. Pharmacology Biochemistry and Behavior, 1993, 44, 199-216.	2.9	86
118	The effects of adenosine A3 receptor stimulation on seizures in mice. European Journal of Pharmacology, 1995, 275, 23-29.	3.5	86
119	Structureâ^'Activity Relationships of 4-(Phenylethynyl)-6-phenyl-1,4- dihydropyridines as Highly Selective A3 Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 1997, 40, 2596-2608.	6.4	86
120	Structureâ^'Activity Relationships of Pyridoxal Phosphate Derivatives as Potent and Selective Antagonists of P2X1Receptors. Journal of Medicinal Chemistry, 2001, 44, 340-349.	6.4	86
121	Cardioprotective effects of adenosine A1 and A3 receptor activation during hypoxia in isolated rat cardiac myocytes. Molecular and Cellular Biochemistry, 2001, 217, 143-152.	3.1	86
122	A2B adenosine receptor blockade inhibits growth of prostate cancer cells. Purinergic Signalling, 2013, 9, 271-280.	2.2	86
123	Nucleotides Acting at P2Y Receptors: Connecting Structure and Function. Molecular Pharmacology, 2015, 88, 220-230.	2.3	86
124	Antiaggregatory activity in human platelets of potent antagonists of the P2Y1 receptor. Biochemical Pharmacology, 2004, 68, 1995-2002.	4.4	85
125	N6-Substituted D-4â€ ⁻ -Thioadenosine-5â€ ⁻ -methyluronamides:  Potent and Selective Agonists at the Human Adenosine Receptor. Journal of Medicinal Chemistry, 2003, 46, 3775-3777.	A3 6.4	83
126	Allosteric Modulation of A3 Adenosine Receptors by a Series of 3-(2-Pyridinyl)isoquinoline Derivatives. Molecular Pharmacology, 2001, 60, 1057-1063.	2.3	82

#	Article	IF	CITATIONS
127	Imidazo[2,1-i]purin-5-ones and Related Tricyclic Water-Soluble Purine Derivatives: Potent A2A- and A3-Adenosine Receptor Antagonistsâ€. Journal of Medicinal Chemistry, 2002, 45, 3440-3450.	6.4	81
128	Identification of Essential Residues Involved in the Allosteric Modulation of the Human A3Adenosine Receptor. Molecular Pharmacology, 2003, 63, 1021-1031.	2.3	81
129	Discovery of a New Nucleoside Template for Human A3 Adenosine Receptor Ligands:  d-4â€⁻-Thioadenosine Derivatives without 4â€⁻-Hydroxymethyl Group as Highly Potent and Selective Antagonists. Journal of Medicinal Chemistry, 2007, 50, 3159-3162.	6.4	81
130	Effects of chronic administration of adenosine A1 receptor agonist and antagonist on spatial learning and memory. European Journal of Pharmacology, 1993, 249, 271-280.	3.5	80
131	Neoceptor Concept Based on Molecular Complementarity in GPCRs:  A Mutant Adenosine A3 Receptor with Selectively Enhanced Affinity for Amine-Modified Nucleosides. Journal of Medicinal Chemistry, 2001, 44, 4125-4136.	6.4	80
132	Activation of the A 3 adenosine receptor affects cell cycle progression and cell growth. Naunyn-Schmiedeberg's Archives of Pharmacology, 2000, 361, 225-234.	3.0	79
133	Identification of Acidic Residues in the Extracellular Loops of the Seven-transmembrane Domain of the Human Ca2+ Receptor Critical for Response to Ca2+ and a Positive Allosteric Modulator. Journal of Biological Chemistry, 2002, 277, 46622-46631.	3.4	79
134	Acyclic Analogues of Adenosine Bisphosphates as P2Y Receptor Antagonists:Â Phosphate Substitution Leads to Multiple Pathways of Inhibition of Platelet Aggregation. Journal of Medicinal Chemistry, 2002, 45, 5694-5709.	6.4	79
135	Functionalized congeners of adenosine: preparation of analogs with high affinity for A1-adenosine receptors. Journal of Medicinal Chemistry, 1985, 28, 1341-1346.	6.4	78
136	Heteromultimeric P2X1/2 Receptors Show a Novel Sensitivity to Extracellular pH. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 673-680.	2.5	78
137	Treatment of Dry Eye Syndrome with Orally Administered CF101. Ophthalmology, 2010, 117, 1287-1293.	5.2	78
138	G protein-coupled adenosine (P1) and P2Y receptors: ligand design and receptor interactions. Purinergic Signalling, 2012, 8, 419-436.	2.2	78
139	Modulation of Apoptosis by Adenosine in the Central Nervous System: a Possible Role for the A3Receptor Annals of the New York Academy of Sciences, 1997, 825, 11-22.	3.8	77
140	New Insights for Drug Design from the X-Ray Crystallographic Structures of G-Protein-Coupled Receptors. Molecular Pharmacology, 2012, 82, 361-371.	2.3	77
141	Induction of Apoptosis in Rat Cardiocytes by A3 Adenosine Receptor Activation and Its Suppression by Isoproterenol. Experimental Cell Research, 2000, 257, 111-126.	2.6	76
142	Structureâ-Activity Relationships at Human and Rat A2BAdenosine Receptors of Xanthine Derivatives Substituted at the 1-, 3-, 7-, and 8-Positions. Journal of Medicinal Chemistry, 2002, 45, 2131-2138.	6.4	76
143	A Region in the Seven-transmembrane Domain of the Human Ca2+ Receptor Critical for Response to Ca2+. Journal of Biological Chemistry, 2005, 280, 5113-5120.	3.4	76
144	Quantification of G _i -Mediated Inhibition of Adenylyl Cyclase Activity Reveals That UDP Is a Potent Agonist of the Human P2Y ₁₄ Receptor. Molecular Pharmacology, 2009, 76, 1341-1348.	2.3	76

#	Article	IF	CITATIONS
145	Structure-Guided Design of A ₃ Adenosine Receptor-Selective Nucleosides: Combination of 2-Arylethynyl and Bicyclo[3.1.0]hexane Substitutions. Journal of Medicinal Chemistry, 2012, 55, 4847-4860.	6.4	76
146	Effects of a Calcimimetic Compound and Naturally Activating Mutations on the Human $Ca < sup > 2 + < sup > Receptor and on Ca < sup > 2 + < sup > Receptor Metabotropic Glutamate Chimeric Receptors. Endocrinology, 2000, 141, 4156-4163.$	2.8	75
147	Extracellular nucleotides induce vasodilatation in human arteries via prostaglandins, nitric oxide and endothelium-derived hyperpolarising factor. British Journal of Pharmacology, 2003, 138, 1451-1458.	5.4	7 5
148	Human P2Y6 Receptor:  Molecular Modeling Leads to the Rational Design of a Novel Agonist Based on a Unique Conformational Preference. Journal of Medicinal Chemistry, 2005, 48, 8108-8111.	6.4	75
149	Structureâ^'Activity Relationships of Uridine 5â€~-Diphosphate Analogues at the Human P2Y6Receptor. Journal of Medicinal Chemistry, 2006, 49, 5532-5543.	6.4	75
150	Structureâ^'Activity Relationship of (<i>N</i>)-Methanocarba Phosphonate Analogues of 5′-AMP as Cardioprotective Agents Acting Through a Cardiac P2X Receptor. Journal of Medicinal Chemistry, 2010, 53, 2562-2576.	6.4	75
151	Apoptosis by 2-chloro-2′-deoxy-adenosine and 2-chloro-adenosine in human peripheral blood mononuclear cells. Neurochemistry International, 1998, 32, 493-504.	3.8	74
152	Synthesis, Biological Properties, and Molecular Modeling Investigation of the First Potent, Selective, and Water-Soluble Human A3 Adenosine Receptor Antagonist. Journal of Medicinal Chemistry, 2002, 45, 3579-3582.	6.4	74
153	Synthesis and potency of novel uracil nucleotides and derivatives as P2Y2 and P2Y6 receptor agonists. Bioorganic and Medicinal Chemistry, 2008, 16, 6319-6332.	3.0	74
154	Acyclic and Cyclopropyl Analogues of Adenosine Bisphosphate Antagonists of the P2Y1Receptor:Â Structureâ [^] Activity Relationships and Receptor Docking. Journal of Medicinal Chemistry, 2001, 44, 3092-3108.	6.4	73
155	Conformational changes involved in G-protein-coupled-receptor activation. Trends in Pharmacological Sciences, 2008, 29, 616-625.	8.7	73
156	Species differences in ligand affinity at central A3-adenosine receptors. Drug Development Research, 1994, 33, 51-59.	2.9	72
157	Structure-Activity Relationships of 9-Alkyladenine and Ribose-Modified Adenosine Derivatives at Rat A3 Adenosine Receptors. Journal of Medicinal Chemistry, 1995, 38, 1720-1735.	6.4	72
158	Activation of A3Adenosine Receptor Protects Against Doxorubicin-induced Cardiotoxicity. Journal of Molecular and Cellular Cardiology, 2001, 33, 1249-1261.	1.9	72
159	Techniques: Recent developments in computer-aided engineering of GPCR ligands using the human adenosine A3 receptor as an example. Trends in Pharmacological Sciences, 2005, 26, 44-51.	8.7	72
160	Renal Intercalated Cells Sense and Mediate Inflammation via the P2Y14 Receptor. PLoS ONE, 2015, 10, e0121419.	2.5	72
161	Site-directed mutagenesis studies of human A2A adenosine receptors. Biochemical Pharmacology, 2000, 60, 661-668.	4.4	71
162	8-Cyclopentyl-1,3-dipropylxanthine and Other Xanthines Differentially Bind to the Wild-Type and Î"F508 Mutant First Nucleotide Binding Fold (NBF-1) Domains of the Cystic Fibrosis Transmembrane Conductance Regulator. Biochemistry, 1997, 36, 6455-6461.	2.5	70

#	Article	IF	CITATIONS
163	Activation of the A2A adenosine receptor inhibits nitric oxide production in glial cells. FEBS Letters, 1998, 429, 139-142.	2.8	69
164	A3Adenosine Receptors in Human Astrocytoma Cells: Agonist-Mediated Desensitization, Internalization, and Down-Regulation. Molecular Pharmacology, 2002, 62, 1373-1384.	2.3	69
165	2-Triazole-Substituted Adenosines:Â A New Class of Selective A3Adenosine Receptor Agonists, Partial Agonists, and Antagonists. Journal of Medicinal Chemistry, 2006, 49, 7373-7383.	6.4	69
166	Interactions of Flavones and Other Phytochemicals with Adenosine Receptors. Advances in Experimental Medicine and Biology, 2002, 505, 163-171.	1.6	69
167	Effects of N6-cyclopentyl adenosine and 8-cyclopentyl-1,3-dipropylxanthine on induced seizures in mice. European Journal of Pharmacology, 1993, 249, 265-270.	3.5	68
168	Synthesis and Biological Activity of a New Series of N6-Arylcarbamoyl, 2-(Ar)alkynyl-N6-arylcarbamoyl, and N6-Carboxamido Derivatives of Adenosine-5â€⁻-N-ethyluronamide as A1 and A3 Adenosine Receptor Agonists. Journal of Medicinal Chemistry, 1998, 41, 3174-3185.	6.4	68
169	Structureâ^'Activity Relationships of 2-Chloro-N6-substituted-4 -thioadenosine-5 -uronamides as Highly Potent and Selective Agonists at the Human A3Adenosine Receptor. Journal of Medicinal Chemistry, 2006, 49, 273-281.	6.4	68
170	UDP-glucose acting at P2Y14 receptors is a mediator of mast cell degranulation. Biochemical Pharmacology, 2010, 79, 873-879.	4.4	68
171	CF102 an A ₃ adenosine receptor agonist mediates antiâ€tumor and antiâ€inflammatory effects in the liver. Journal of Cellular Physiology, 2011, 226, 2438-2447.	4.1	68
172	Engagement of the GABA to KCC2 Signaling Pathway Contributes to the Analgesic Effects of A ₃ AR Agonists in Neuropathic Pain. Journal of Neuroscience, 2015, 35, 6057-6067.	3.6	68
173	Penetration of adenosine antagonists into mouse brain as determined by ex vivo binding. Biochemical Pharmacology, 1992, 43, 889-894.	4.4	67
174	Mutagenesis Reveals Structureâ^'Activity Parallels between Human A2A Adenosine Receptors and Biogenic Amine G Protein-Coupled Receptors. Journal of Medicinal Chemistry, 1997, 40, 2588-2595.	6.4	67
175	1,3-dialkylxanthine derivatives having high potency as antagonists at human A2B adenosine receptors. Drug Development Research, 1999, 47, 45-53.	2.9	67
176	Targeted deletion of adenosine A ₃ receptors augments adenosine-induced coronary flow in isolated mouse heart. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H2183-H2189.	3.2	67
177	CysLT1 leukotriene receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors. Biochemical Pharmacology, 2005, 71, 115-125.	4.4	67
178	Phospholipase C and cAMP-dependent positive inotropic effects of ATP in mouse cardiomyocytes via P2Y-like receptors. Journal of Molecular and Cellular Cardiology, 2005, 39, 223-230.	1.9	67
179	The A3 adenosine receptor agonist CF502 inhibits the PI3K, PKB/Akt and NF-κB signaling pathway in synoviocytes from rheumatoid arthritis patients and in adjuvant-induced arthritis rats. Biochemical Pharmacology, 2008, 76, 482-494.	4.4	67
180	Chemotherapy-induced pain is promoted by enhanced spinal adenosine kinase levels through astrocyte-dependent mechanisms. Pain, 2018, 159, 1025-1034.	4.2	67

#	Article	IF	CITATIONS
181	International Union of Basic and Clinical Pharmacology. CXII: Adenosine Receptors: A Further Update. Pharmacological Reviews, 2022, 74, 340-372.	16.0	67
182	Structure-Activity Relationships of 1,3-Dialkylxanthine Derivatives at Rat A3 Adenosine Receptors. Journal of Medicinal Chemistry, 1994, 37, 3373-3382.	6.4	66
183	Direct Activation of Cystic Fibrosis Transmembrane Conductance Regulator Channels by 8-Cyclopentyl-1,3-dipropylxanthine (CPX) and 1,3-Diallyl-8-cyclohexylxanthine (DAX). Journal of Biological Chemistry, 1998, 273, 5727-5734.	3.4	66
184	The Cross-Species A3Adenosine-Receptor Antagonist MRS 1292 Inhibits Adenosine-Triggered Human Nonpigmented Ciliary Epithelial Cell Fluid Release and Reduces Mouse Intraocular Pressure. Current Eye Research, 2005, 30, 747-754.	1.5	66
185	Activity of novel adenine nucleotide derivatives as agonists and antagonists at recombinant rat P2X receptors. Drug Development Research, 2000, 49, 253-259.	2.9	65
186	Distinct cardioprotective effects of adenosine mediated by differential coupling of receptor subtypes to phospholipases C and D. FASEB Journal, 2000, 14, 1423-1431.	0.5	65
187	Allosteric Modulation of the Adenosine Family of Receptors. Mini-Reviews in Medicinal Chemistry, 2005, 5, 545-553.	2.4	65
188	"Reversine―and Its 2-Substituted Adenine Derivatives as Potent and Selective A3Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2005, 48, 4910-4918.	6.4	65
189	Structureâ^'Activity Relationship of Uridine 5â€~-Diphosphoglucose Analogues as Agonists of the Human P2Y14Receptor. Journal of Medicinal Chemistry, 2007, 50, 2030-2039.	6.4	65
190	Rhodopsin and the Others: A Historical Perspective on Structural Studies of G Protein-Coupled Receptors. Current Pharmaceutical Design, 2009, 15, 3994-4002.	1.9	65
191	Molecular Docking Screening Using Agonist-Bound GPCR Structures: Probing the A _{2A} Adenosine Receptor. Journal of Chemical Information and Modeling, 2015, 55, 550-563.	5.4	65
192	Purinergic Signaling in Mast Cell Degranulation and Asthma. Frontiers in Pharmacology, 2017, 8, 947.	3.5	65
193	Non-xanthine heterocycles: Activity as antagonists of A1 and A2-adenosine receptors. Biochemical Pharmacology, 1988, 37, 655-664.	4.4	64
194	Chronic adenosine A1 receptor agonist and antagonist: effect on receptor density and induced seizures in mice. European Journal of Pharmacology, 1994, 253, 95-99.	3.5	64
195	A Pyridoxine Cyclic Phosphate and Its 6-Azoaryl Derivative Selectively Potentiate and Antagonize Activation of P2X1 Receptors. Journal of Medicinal Chemistry, 1998, 41, 2201-2206.	6.4	64
196	Molecular probes for extracellular adenosine receptors. Biochemical Pharmacology, 1987, 36, 1697-1707.	4.4	63
197	Hemodynamic effects and histamine release elicited by the selective adenosine A3 receptor agonist 2-Cl-IB-MECA in conscious rats. European Journal of Pharmacology, 1996, 308, 311-314.	3.5	63
198	Cardiac myocytes rendered ischemia resistant by expressing the human adenosine A 1 or A 3 receptor. FASEB Journal, 1998, 12, 1785-1792.	0.5	63

#	Article	IF	CITATIONS
199	Selective Allosteric Enhancement of Agonist Binding and Function at Human A3 Adenosine Receptors by a Series of Imidazoquinoline Derivatives. Molecular Pharmacology, 2002, 62, 81-89.	2.3	63
200	Functionalized congeners of 1,3-dipropyl-8-phenylxanthine: Potent antagonists for adenosine receptors that modulate membrane adenylate cyclase in pheochromocytoma cells, platelets and fat cells. Life Sciences, 1986, 38, 797-807.	4.3	62
201	Fluorine-18 labeled insulin: a prosthetic group methodology for incorporation of a positron emitter into peptides and proteins. Biochemistry, 1989, 28, 4801-4806.	2.5	62
202	Novel therapeutics acting via purine receptors. Biochemical Pharmacology, 1991, 41, 1399-1410.	4.4	62
203	Angiotensin II-induced apoptosis in rat cardiomyocyte culture: a possible role of AT1 and AT2 receptors. Journal of Hypertension, 2001, 19, 1681-1689.	0.5	62
204	Adenine Nucleotide Analogues Locked in a Northern Methanocarba Conformation:  Enhanced Stability and Potency as P2Y1 Receptor Agonists. Journal of Medicinal Chemistry, 2002, 45, 2090-2100.	6.4	62
205	A2B Adenosine Receptor and Cancer. International Journal of Molecular Sciences, 2019, 20, 5139.	4.1	62
206	Role of adenosine A3 receptors on CA1 hippocampal neurotransmission during oxygen–glucose deprivation episodes of different duration. Biochemical Pharmacology, 2007, 74, 768-779.	4.4	61
207	Functionally biased modulation of A3 adenosine receptor agonist efficacy and potency by imidazoquinolinamine allosteric enhancers. Biochemical Pharmacology, 2011, 82, 658-668.	4.4	61
208	Structureâ^'Activity Relationships of Bisphosphate Nucleotide Derivatives as P2Y1Receptor Antagonists and Partial Agonists. Journal of Medicinal Chemistry, 1999, 42, 1625-1638.	6.4	60
209	Hypothermia in mouse is caused by adenosine A1 and A3 receptor agonists and AMP via three distinct mechanisms. Neuropharmacology, 2017, 114, 101-113.	4.1	60
210	Characterization of the locomotor depression produced by an A2 -selective adenosine agonist. FEBS Letters, 1990, 261, 67-70.	2.8	59
211	Comparative studies on the affinities of ATP derivatives for P _{2X} â€purinoceptors in rat urinary bladder. British Journal of Pharmacology, 1994, 112, 1151-1159.	5.4	59
212	Flavonoid Derivatives as Adenosine Receptor Antagonists:Â A Comparison of the Hypothetical Receptor Binding Site Based on a Comparative Molecular Field Analysis Model. Journal of Medicinal Chemistry, 1998, 41, 46-52.	6.4	59
213	Tumor necrosis factor \hat{l} ±-induced apoptosis in astrocytes is prevented by the activation of P2Y6, but not P2Y4 nucleotide receptors. Biochemical Pharmacology, 2003, 65, 923-931.	4.4	59
214	Keynote review: Allosterism in membrane receptors. Drug Discovery Today, 2006, 11, 191-202.	6.4	59
215	Recent developments in selective agonists and antagonists acting at purine and pyrimidine receptors. Drug Development Research, 1996, 39, 289-300.	2.9	58
216	Chronic administration of adenosine A3 receptor agonist and cerebral ischemia: neuronal and glial effects. European Journal of Pharmacology, 1999, 367, 157-163.	3.5	58

#	Article	IF	CITATIONS
217	p53-Independent induction of Fas and apoptosis in leukemic cells by an adenosine derivative, Cl-IB-MECA. Biochemical Pharmacology, 2002, 63, 871-880.	4.4	58
218	UDP Is a Competitive Antagonist at the Human P2Y ₁₄ Receptor. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 588-594.	2.5	58
219	A1 Receptor Antagonist 8-Cyclopentyl-1,3-dipropylxanthine Selectively Activates Chloride Efflux from Human Epithelial and Mouse Fibroblast Cell Lines Expressing the Cystic Fibrosis Transmembrane Regulator .DELTA.F508 Mutation. Biochemistry, 1995, 34, 9079-9087.	2.5	57
220	2-Substituted adenosine derivatives: affinity and efficacy at four subtypes of human adenosine receptors. Biochemical Pharmacology, 2004, 68, 1985-1993.	4.4	57
221	Protective roles of adenosine A1, A2A, and A3receptors in skeletal muscle ischemia and reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H3685-H3691.	3.2	57
222	Optimization of Adenosine $5\hat{a}\in^2$ -Carboxamide Derivatives as Adenosine Receptor Agonists Using Structure-Based Ligand Design and Fragment Screening. Journal of Medicinal Chemistry, 2012, 55, 4297-4308.	6.4	57
223	Chiral Resolution and Stereospecificity of 6-Phenyl-4-phenylethynyl- 1,4-dihydropyridines as Selective A3 Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 1999, 42, 3055-3065.	6.4	56
224	Involvement of uracil nucleotides in protection of cardiomyocytes from hypoxic stress. Biochemical Pharmacology, 2005, 69, 1215-1223.	4.4	56
225	Exploring distal regions of the A3 adenosine receptor binding site: sterically constrained N6-(2-phenylethyl)adenosine derivatives as potent ligands. Bioorganic and Medicinal Chemistry, 2004, 12, 2021-2034.	3.0	55
226	Identification of A ₃ adenosine receptor agonists as novel nonâ€narcotic analgesics. British Journal of Pharmacology, 2016, 173, 1253-1267.	5.4	55
227	Differential allosteric modulation by amiloride analogues of agonist and antagonist binding at A1 and A3 adenosine receptors. Biochemical Pharmacology, 2003, 65, 525-534.	4.4	54
228	A Conformationally Locked Analogue of the Anti-HIV Agent Stavudine. An Important Correlation between Pseudorotation and Maximum Amplitude. Journal of Medicinal Chemistry, 2003, 46, 3292-3299.	6.4	54
229	Uridine-5′-triphosphate (UTP) reduces infarct size and improves rat heart function after myocardial infarct. Biochemical Pharmacology, 2006, 72, 949-955.	4.4	54
230	Neuroprotective and neuro-rehabilitative effects of acute purinergic receptor P2X4 (P2X4R) blockade after ischemic stroke. Experimental Neurology, 2020, 329, 113308.	4.1	54
231	A Novel Pharmacological Approach to Treating Cardiac Ischemia. Journal of Biological Chemistry, 2000, 275, 30272-30279.	3.4	53
232	Molecular determinants of A _{2A} R–D ₂ R allosterism: role of the intracellular loop 3 of the D ₂ R. Journal of Neurochemistry, 2012, 123, 373-384.	3.9	53
233	Structure–Activity Relationship of Purine and Pyrimidine Nucleotides as Ecto-5′-Nucleotidase (CD73) Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 3677-3695.	6.4	53
234	Postischemic administration of adenosine amine congener (ADAC): analysis of recovery in gerbils. European Journal of Pharmacology, 1996, 316, 171-179.	3.5	52

#	Article	IF	Citations
235	Ring-Constrained (N)-Methanocarba nucleosides as adenosine receptor agonists: independent 5′-Uronamide and 2′-deoxy modifications. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1333-1337	7 <mark>.2.2</mark>	52
236	P2Y6 nucleotide receptor activates PKC to protect 1321N1 astrocytoma cells against tumor necrosis factor-induced apoptosis. Cellular and Molecular Neurobiology, 2003, 23, 401-418.	3.3	52
237	Pyrimidine Nucleotides with 4-Alkyloxyimino and Terminal Tetraphosphate \hat{l} -Ester Modifications as Selective Agonists of the P2Y ₄ Receptor. Journal of Medicinal Chemistry, 2011, 54, 4018-4033.	6.4	52
238	Molecular Modeling Studies of Human A3Adenosine Antagonists:  Structural Homology and Receptor Docking. Journal of Chemical Information and Computer Sciences, 1998, 38, 1239-1248.	2.8	51
239	2-Phenylimidazo[2,1-i]purin-5-ones Structure–Activity relationships and characterization of potent and selective inverse agonists at Human A3 adenosine receptors. Bioorganic and Medicinal Chemistry, 2003, 11, 347-356.	3.0	51
240	Role of direct RhoAâ€phospholipase D interaction in mediating adenosineâ€induced protection from cardiac ischemia. FASEB Journal, 2004, 18, 1-13.	0.5	51
241	Structureâ^'Activity Relationships of New 1H-Imidazo[4,5-c]quinolin-4-amine Derivatives as Allosteric Enhancers of the A3Adenosine Receptor. Journal of Medicinal Chemistry, 2006, 49, 3354-3361.	6.4	51
242	Effect of trifluoromethyl and other substituents on activity of xanthines at adenosine receptors. Journal of Medicinal Chemistry, 1993, 36, 2639-2644.	6.4	50
243	ldentification of potent P _{2Y} â€purinoceptor agonists that are derivatives of adenosine 5′â€monophosphate. British Journal of Pharmacology, 1996, 118, 1959-1964.	5.4	50
244	Protection against ischemic damage by adenosine amine congener, a potent and selective adenosine A1 receptor agonist. European Journal of Pharmacology, 1999, 369, 313-317.	3.5	50
245	A3 adenosine receptors and mitogen-activated protein kinases in lung injury following in vivo reperfusion. Critical Care, 2006, 10, R65.	5.8	50
246	Rapid identification of functionally critical amino acids in a G protein–coupled receptor. Nature Methods, 2007, 4, 169-174.	19.0	50
247	Limits of Ligand Selectivity from Docking to Models: In Silico Screening for A1 Adenosine Receptor Antagonists. PLoS ONE, 2012, 7, e49910.	2.5	50
248	Structure activity and molecular modeling analyses of ribose- and base-modified uridine 5′-triphosphate analogues at the human P2Y2 and P2Y4 receptors. Biochemical Pharmacology, 2006, 71, 540-549.	4.4	49
249	Dexamethasone Enhances ATP-Induced Inflammatory Responses in Endothelial Cells. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 693-702.	2.5	49
250	Treatment of chronic neuropathic pain: purine receptor modulation. Pain, 2020, 161, 1425-1441.	4.2	49
251	NovelN6-(Substituted-phenylcarbamoyl)adenosine-5â€~-uronamides as Potent Agonists for A3Adenosine Receptors. Journal of Medicinal Chemistry, 1996, 39, 802-806.	6.4	48
252	A Functional Screening of Adenosine Analogues at the Adenosine A2BReceptor: A Search for Potent Agonists. Nucleosides & Nucleotides, 1998, 17, 969-985.	0.5	48

#	Article	IF	Citations
253	Molecular Recognition at Purine and Pyrimidine Nucleotide (P2) Receptors. Current Topics in Medicinal Chemistry, 2004, 4, 805-819.	2.1	48
254	Regulation of death and survival in astrocytes by ADP activating P2Y1 and P2Y12 receptors. Biochemical Pharmacology, 2006, 72, 1031-1041.	4.4	48
255	In Vivo Phenotypic Screening for Treating Chronic Neuropathic Pain: Modification of <i>C</i> 2-Arylethynyl Group of Conformationally Constrained A ₃ Adenosine Receptor Agonists. Journal of Medicinal Chemistry, 2014, 57, 9901-9914.	6.4	48
256	Adenosine A _{2A} receptor antagonists: from caffeine to selective nonâ€xanthines. British Journal of Pharmacology, 2022, 179, 3496-3511.	5.4	48
257	Conjugates of catecholamines. 1. N-Alkyl-functionalized carboxylic acid congeners and amides related to isoproterenol. Journal of Medicinal Chemistry, 1983, 26, 492-499.	6.4	47
258	Synthesis and biological activity of N6-(p-sulfophenyl)alkyl and N6-sulfoalkyl derivatives of adenosine: water-soluble and peripherally selective adenosine agonists Journal of Medicinal Chemistry, 1992, 35, 4143-4149.	6.4	47
259	Reduction of postischemic brain damage and memory deficits following treatment with the selective adenosine A1 receptor agonist. European Journal of Pharmacology, 1996, 302, 43-48.	3.5	47
260	Synthesis Using Ring Closure Metathesis and Effect on Nucleoside Transport of a (N)-MethanocarbaS-(4-Nitrobenzyl)thioinosine Derivative. Organic Letters, 2001, 3, 597-599.	4.6	47
261	The A3 adenosine receptor attenuates the calcium rise triggered by NMDA receptors in retinal ganglion cells. Neurochemistry International, 2010, 56, 35-41.	3.8	47
262	Allosteric modulation and functional selectivity of G protein-coupled receptors. Drug Discovery Today: Technologies, 2013, 10, e237-e243.	4.0	47
263	Potential for Developing Purinergic Drugs for Gastrointestinal Diseases. Inflammatory Bowel Diseases, 2014, 20, 1259-1287.	1.9	47
264	UDP-glucose promotes neutrophil recruitment in the lung. Purinergic Signalling, 2016, 12, 627-635.	2.2	47
265	Medicinal Chemistry of the A3 Adenosine Receptor: Agonists, Antagonists, and Receptor Engineering. Handbook of Experimental Pharmacology, 2009, , 123-159.	1.8	47
266	Modulation of adenosine receptor affinity and intrinsic efficacy in adenine nucleosides substituted at the 2-position. Bioorganic and Medicinal Chemistry, 2004, 12, 2995-3007.	3.0	46
267	The recently deorphanized GPR80 (GPR99) proposed to be the P2Y15 receptor is not a genuine P2Y receptor. Trends in Pharmacological Sciences, 2005, 26, 8-9.	8.7	46
268	A Missense Mutation in the Seven-transmembrane Domain of the Human Ca2+ Receptor Converts a Negative Allosteric Modulator into a Positive Allosteric Modulator. Journal of Biological Chemistry, 2006, 281, 21558-21565.	3.4	46
269	Functionalized Congener Approach to the Design of Ligands for G Protein-Coupled Receptors (GPCRs). Bioconjugate Chemistry, 2009, 20, 1816-1835.	3.6	46
270	Novel Alexa Fluor-488 labeled antagonist of the A2A adenosine receptor: Application to a fluorescence polarization-based receptor binding assay. Biochemical Pharmacology, 2010, 80, 506-511.	4.4	46

#	Article	IF	CITATIONS
271	The role of P2Y14 and other P2Y receptors in degranulation of human LAD2 mast cells. Purinergic Signalling, 2013, 9, 31-40.	2.2	46
272	Physiology and effects of nucleosides in mice lacking all four adenosine receptors. PLoS Biology, 2019, 17, e3000161.	5.6	46
273	Sulfur-containing 1,3-dialkylxanthine derivatives as selective antagonists at A1-adenosine receptors. Journal of Medicinal Chemistry, 1989, 32, 1873-1879.	6.4	45
274	Identification of an Agonist-induced Conformational Change Occurring Adjacent to the Ligand-binding Pocket of the M3 Muscarinic Acetylcholine Receptor. Journal of Biological Chemistry, 2005, 280, 34849-34858.	3.4	45
275	Role of adenosine A1 and A3 receptors in regulation of cardiomyocyte homeostasis after mitochondrial respiratory chain injury. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2792-H2801.	3.2	45
276	Adenine nucleotide control of coronary blood flow during exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1981-H1989.	3.2	45
277	Structural Sweet Spot for A $<$ sub $>$ 1 $<$ /sub $>$ Adenosine Receptor Activation by Truncated (N)-Methanocarba Nucleosides: Receptor Docking and Potent Anticonvulsant Activity. Journal of Medicinal Chemistry, 2012, 55, 8075-8090.	6.4	45
278	Efficient, large-scale synthesis and preclinical studies of MRS5698, a highly selective A3 adenosine receptor agonist that protects against chronic neuropathic pain. Purinergic Signalling, 2015, 11, 371-387.	2.2	45
279	A [3 H]amine congener of 1,3-dipropyl-8-phenylxanthine. FEBS Letters, 1986, 199, 269-274.	2.8	44
280	Electrophilic derivatives of purines as irreversible inhibitors of A1 adenosine receptors. Journal of Medicinal Chemistry, 1989, 32, 1043-1051.	6.4	44
281	Molecular modeling of adenosine receptors. The ligand binding site on the rat adenosine A2A receptor. European Journal of Pharmacology, 1994, 268, 95-104.	2.6	44
282	[32 P]2-iodo-N 6 -methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-bisphosphate ([32 P]MRS2500), a radioligand for quantification of native P2Y1 receptors. British Journal of Pharmacology, 2006, 147, 459-467.	novel 5.4	44
283	Distinct Structural Changes in a G Protein-coupled Receptor Caused by Different Classes of Agonist Ligands. Journal of Biological Chemistry, 2007, 282, 26284-26293.	3.4	44
284	Structureâ^'Activity Relationships of 2,N6,5 -Substituted Adenosine Derivatives with Potent Activity at the A2BAdenosine Receptor. Journal of Medicinal Chemistry, 2007, 50, 1810-1827.	6.4	44
285	Toward Multivalent Signaling across G Protein-Coupled Receptors from Poly(amidoamine) Dendrimers. Bioconjugate Chemistry, 2008, 19, 406-411.	3.6	44
286	Pharmacochemistry of the platelet purinergic receptors. Purinergic Signalling, 2011, 7, 305-324.	2.2	44
287	Small Molecule Positive Allosteric Modulation of TRPV1 Activation by Vanilloids and Acidic pH. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 152-160.	2.5	44
288	Rational Design of Sulfonated A ₃ Adenosine Receptor-Selective Nucleosides as Pharmacological Tools To Study Chronic Neuropathic Pain. Journal of Medicinal Chemistry, 2013, 56, 5949-5963.	6.4	44

#	Article	IF	Citations
289	Photomodulation of G Protein-Coupled Adenosine Receptors by a Novel Light-Switchable Ligand. Bioconjugate Chemistry, 2014, 25, 1847-1854.	3.6	44
290	Ocular Purine Receptors as Drug Targets in the Eye. Journal of Ocular Pharmacology and Therapeutics, 2016, 32, 534-547.	1.4	44
291	Fragment optimization for GPCRs by molecular dynamics free energy calculations: Probing druggable subpockets of the A 2A adenosine receptor binding site. Scientific Reports, 2017, 7, 6398.	3.3	44
292	Adenosine A3 agonists reverse neuropathic pain via T cell–mediated production of IL-10. Journal of Clinical Investigation, 2021, 131, .	8.2	44
293	Agonist derived molecular probes for A2 adenosine receptors. Journal of Molecular Recognition, 1989, 2, 170-178.	2.1	43
294	Adenosine A1Receptor Agonists as Clinically Viable Agents for Treatment of Ischemic Brain Disorders. Annals of the New York Academy of Sciences, 1997, 825, 23-29.	3.8	43
295	Adenosine A3 receptors and viability of astrocytes. , 1998, 45, 379-386.		43
296	Design of (N)-methanocarba adenosine 5′-uronamides as species-independent A3 receptor-selective agonists. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2813-2819.	2.2	43
297	Polyamidoamine (PAMAM) Dendrimer Conjugates of "Clickable―Agonists of the A ₃ Adenosine Receptor and Coactivation of the P2Y ₁₄ Receptor by a Tethered Nucleotide. Bioconjugate Chemistry, 2010, 21, 372-384.	3.6	43
298	Adenosine A3 receptor activation inhibits pronociceptive N-type Ca2+ currents and cell excitability in dorsal root ganglion neurons. Pain, 2019, 160, 1103-1118.	4.2	43
299	Constitutive Activation of A3 Adenosine Receptors by Site-Directed Mutagenesis. Biochemical and Biophysical Research Communications, 2001, 284, 596-601.	2.1	42
300	A Neoceptor Approach to Unraveling Microscopic Interactions between the Human A2A Adenosine Receptor and Its Agonists. Chemistry and Biology, 2005, 12, 237-247.	6.0	42
301	Orthogonal Activation of the Reengineered A3 Adenosine Receptor (Neoceptor) Using Tailored Nucleoside Agonists. Journal of Medicinal Chemistry, 2006, 49, 2689-2702.	6.4	42
302	Docking studies of agonists and antagonists suggest an activation pathway of the A3 adenosine receptor. Journal of Molecular Graphics and Modelling, 2006, 25, 562-577.	2.4	42
303	Molecular Modeling of the Human P2Y2 Receptor and Design of a Selective Agonist, 2â€~Amino-2â€~-deoxy-2-thiouridine 5â€~-Triphosphate. Journal of Medicinal Chemistry, 2007, 50, 1166-1176.	6.4	42
304	Role of P2X purinergic receptors in the rescue of ischemic heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H1191-H1197.	3.2	42
305	Functionalized Congeners of A3Adenosine Receptor-Selective Nucleosides Containing a Bicyclo[3.1.0]hexane Ring Systemâ€. Journal of Medicinal Chemistry, 2009, 52, 7580-7592.	6.4	42
306	Human P2Y ₁₄ Receptor Agonists: Truncation of the Hexose Moiety of Uridine-5′-Diphosphoglucose and Its Replacement with Alkyl and Aryl Groups. Journal of Medicinal Chemistry, 2010, 53, 471-480.	6.4	42

#	Article	IF	Citations
307	Modeling ligand recognition at the P2Y12 receptor in light of X-ray structural information. Journal of Computer-Aided Molecular Design, 2015, 29, 737-756.	2.9	42
308	Adenosine A3 receptor agonist-induced neurotoxicity in rat cerebellar granule neurons., 1997, 40, 267-273.		41
309	2,2′-Pyridylisatogen tosylate antagonizes P2Y1 receptor signaling without affecting nucleotide binding. Biochemical Pharmacology, 2004, 68, 231-237.	4.4	41
310	Translocation of arrestin induced by human A3 adenosine receptor ligands in an engineered cell line: Comparison with G protein-dependent pathways. Pharmacological Research, 2008, 57, 303-311.	7.1	41
311	South (S)- and North (N)-Methanocarba-7-Deazaadenosine Analogues as Inhibitors of Human Adenosine Kinase. Journal of Medicinal Chemistry, 2016, 59, 6860-6877.	6.4	41
312	Extrinsic Tryptophans as NMR Probes of Allosteric Coupling in Membrane Proteins: Application to the A _{2A} Adenosine Receptor. Journal of the American Chemical Society, 2018, 140, 8228-8235.	13.7	41
313	Characterization of Human Striatal A2-Adenosine Receptors Using Radioligand Binding and Photoaffinity Labeling. Journal of Receptors and Signal Transduction, 1992, 12, 149-169.	1.2	40
314	Stimulation by Alkylxanthines of Chloride Efflux in CFPAC-1 Cells Does Not Involve A1 Adenosine Receptors. Biochemistry, 1995, 34, 9088-9094.	2.5	40
315	Adenosine: a Prototherapeutic Concept in Neurodegeneration. Annals of the New York Academy of Sciences, 1995, 765, 163-178.	3.8	40
316	Roles of BCL-2 and Caspase 3 in the Adenosine A3. Journal of Molecular Neuroscience, 2001, 17, 285-292.	2.3	40
317	Design and synthesis of new bicyclic diketopiperazines as scaffolds for receptor probes of structurally diverse functionality. Organic and Biomolecular Chemistry, 2005, 3, 2016.	2.8	40
318	Conversion of A3 adenosine receptor agonists into selective antagonists by modification of the $5\hat{a}\in^2$ -ribofuran-uronamide moiety. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 596-601.	2.2	40
319	On the selectivity of the $\widehat{Gl}\pm q$ inhibitor UBO-QIC: A comparison with the $\widehat{Gl}\pm i$ inhibitor pertussis toxin. Biochemical Pharmacology, 2016, 107, 59-66.	4.4	40
320	Synthesis of Novel Apio Carbocyclic Nucleoside Analogues as Selective A3Adenosine Receptor Agonists. Journal of Organic Chemistry, 2005, 70, 5006-5013.	3.2	39
321	Flexible modulation of agonist efficacy at the human A3 adenosine receptor by the imidazoquinoline allosteric enhancer LUF6000. BMC Pharmacology, 2008, 8, 20.	0.4	39
322	Activation of the P2Y1 receptor induces apoptosis and inhibits proliferation of prostate cancer cells. Biochemical Pharmacology, 2011, 82, 418-425.	4.4	39
323	Emerging adenosine receptor agonists – an update. Expert Opinion on Emerging Drugs, 2011, 16, 597-602.	2.4	39
324	Agonists and Antagonists for P2 Receptors. Novartis Foundation Symposium, 2006, 276, 58-72.	1.1	39

#	Article	IF	CITATIONS
325	Effects of a Calcimimetic Compound and Naturally Activating Mutations on the Human Ca2+ Receptor and on Ca2+ Receptor/Metabotropic Glutamate Chimeric Receptors. Endocrinology, 2000, 141, 4156-4163.	2.8	39
326	8-substituted xanthines as antagonists at A1- and A2-adenosine receptors. Biochemical Pharmacology, 1988, 37, 3653-3661.	4.4	38
327	Selective Ligands for Rat A3 Adenosine Receptors: Structure-Activity Relationships of 1,3-Dialkylxanthine 7-Riboside Derivatives. Journal of Medicinal Chemistry, 1994, 37, 4020-4030.	6.4	38
328	Demystifying the three dimensional structure of G protein-coupled receptors (GPCRs) with the aid of molecular modeling. Chemical Communications, 2003, , 2949.	4.1	38
329	Structure–Activity Relationships of Truncated C2- or C8-Substituted Adenosine Derivatives as Dual Acting A _{2A} and A ₃ Adenosine Receptor Ligands. Journal of Medicinal Chemistry, 2012, 55, 342-356.	6.4	38
330	Exploring a 2-Naphthoic Acid Template for the Structure-Based Design of P2Y ₁₄ Receptor Antagonist Molecular Probes. ACS Chemical Biology, 2014, 9, 2833-2842.	3.4	38
331	Structure-Based Design of 3-(4-Aryl- $1H-1,2,3$ -triazol- 1 -yl)-Biphenyl Derivatives as P2Y _{$14<$sub>Receptor Antagonists. Journal of Medicinal Chemistry, 2016, 59, 6149-6168.}	6.4	38
332	Fluorosulfonyl- and Bis-(β-chloroethyl)amino-phenylamino Functionalized Pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine Derivatives:  Irreversible Antagonists at the Human A3 Adenosine Receptor and Molecular Modeling Studies. Journal of Medicinal Chemistry, 2001, 44, 2735-2742.	6.4	37
333	Novel 2- and 4-Substituted 1 <i>H</i> Imidazo[4,5- <i>C</i>]quinolin-4-amine Derivatives as Allosteric Modulators of the A ₃ Adenosine Receptor. Journal of Medicinal Chemistry, 2009, 52, 2098-2108.	6.4	37
334	Enhancement of Glucose Uptake in Mouse Skeletal Muscle Cells and Adipocytes by P2Y6 Receptor Agonists. PLoS ONE, 2014, 9, e116203.	2.5	37
335	Uncovering Caffeine's Adenosine A _{2A} Receptor Inverse Agonism in Experimental Parkinsonism. ACS Chemical Biology, 2014, 9, 2496-2501.	3.4	37
336	Structure-Activity Analysis of Biased Agonism at the Human Adenosine A ₃ Receptor. Molecular Pharmacology, 2016, 90, 12-22.	2.3	37
337	Site-directed mutagenesis of the human adenosine A2A receptor. Critical involvement of Glu13 in agonist recognition. European Journal of Pharmacology, 1996, 310, 269-272.	3 . 5	36
338	Molecular modeling of a PAMAM-CGS21680 dendrimer bound to an A2A adenosine receptor homodimer. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4312-4315.	2.2	36
339	Evaluation of Molecular Modeling of Agonist Binding in Light of the Crystallographic Structure of an Agonist-Bound A2A Adenosine Receptor. Journal of Medicinal Chemistry, 2012, 55, 538-552.	6.4	36
340	Identification of a new dysfunctional platelet P2Y12 receptor variant associated with bleeding diathesis. Blood, 2015, 125, 1006-1013.	1.4	36
341	On the G protein-coupling selectivity of the native A2B adenosine receptor. Biochemical Pharmacology, 2018, 151, 201-213.	4.4	36
342	"Mediator methodology" for the synthesis of peptides in a two-polymeric system. Journal of the American Chemical Society, 1985, 107, 4249-4252.	13.7	35

#	Article	IF	Citations
343	Synthesis and structure-activity relationships of pyridoxal-6-arylazo-5?-phosphate and phosphonate derivatives as P2 receptor antagonists., 1998, 45, 52-66.		35
344	(N)-methanocarba-2MeSADP (MRS2365) is a subtype-specific agonist that induces rapid desensitization of the P2Y1 receptor of human platelets. Journal of Thrombosis and Haemostasis, 2006, 4, 861-868.	3.8	35
345	P2Y1 Antagonists:  Combining Receptor-Based Modeling and QSAR for a Quantitative Prediction of the Biological Activity Based on Consensus Scoring. Journal of Medicinal Chemistry, 2007, 50, 3229-3241.	6.4	35
346	Selective A3 adenosine receptor antagonists derived from nucleosides containing a bicyclo[3.1.0]hexane ring system. Bioorganic and Medicinal Chemistry, 2008, 16, 8546-8556.	3.0	35
347	Attenuation of apoptosis in vitro and ischemia/reperfusion injury in vivo in mouse skeletal muscle by P2Y6 receptor activation. Pharmacological Research, 2008, 58, 232-239.	7.1	35
348	Structureâ^'Activity Relationships of Truncated <scp>d</scp> - and <scp>l</scp> -4′-Thioadenosine Derivatives as Species-Independent A ₃ Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2008, 51, 6609-6613.	6.4	35
349	P2Y13 receptor is responsible for ADP-mediated degranulation in RBL-2H3 rat mast cells. Pharmacological Research, 2010, 62, 500-505.	7.1	35
350	Purinergic signaling in diabetes and metabolism. Biochemical Pharmacology, 2021, 187, 114393.	4.4	35
351	A3 adenosine receptors: Protective vs. damaging effects identified using novel agonists and antagonists., 1998, 45, 113-124.		34
352	Structural determinants of efficacy at A3 adenosine receptors: modification of the ribose moiety. Biochemical Pharmacology, 2004, 67, 893-901.	4.4	34
353	Pronounced Conformational Changes following Agonist Activation of the M3 Muscarinic Acetylcholine Receptor. Journal of Biological Chemistry, 2005, 280, 24870-24879.	3.4	34
354	Molecular recognition in the P2Y14 receptor: Probing the structurally permissive terminal sugar moiety of uridine-5′-diphosphoglucose. Bioorganic and Medicinal Chemistry, 2009, 17, 5298-5311.	3.0	34
355	Activation of distinct P2Y receptor subtypes stimulates insulin secretion in MIN6 mouse pancreatic \hat{l}^2 cells. Biochemical Pharmacology, 2010, 79, 1317-1326.	4.4	34
356	Nucleoside-derived antagonists to A3 adenosine receptors lower mouse intraocular pressure and act across species. Experimental Eye Research, 2010, 90, 146-154.	2.6	34
357	P2Y2 receptor agonist with enhanced stability protects the heart from ischemic damage in vitro and in vivo. Purinergic Signalling, 2013, 9, 633-642.	2.2	34
358	Probing biased/partial agonism at the G protein-coupled A2B adenosine receptor. Biochemical Pharmacology, 2014, 90, 297-306.	4.4	34
359	Ligand design by targeting a binding site water. Chemical Science, 2021, 12, 960-968.	7.4	34
360	Lack of adipocyte purinergic P2Y ₆ receptor greatly improves whole body glucose homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30763-30774.	7.1	34

#	Article	IF	CITATIONS
361	Interaction of Dihydropyridine Calcium Channel Agonists and Antagonists with Adenosine Receptors. Basic and Clinical Pharmacology and Toxicology, 1987, 61, 121-125.	0.0	33
362	Acyl-hydrazide derivatives of a xanthine carboxylic congener (XCC) as selective antagonists at human A2B adenosine receptors. Drug Development Research, 1999, 47, 178-188.	2.9	33
363	Quinazolines as adenosine receptor antagonists: SAR and selectivity for A2B receptors. Bioorganic and Medicinal Chemistry, 2003, 11 , 77-85.	3.0	33
364	Nucleotide analogues containing 2-oxa-bicyclo[2.2.1]heptane and l-î±-threofuranosyl ring systems: interactions with P2Y receptors. Bioorganic and Medicinal Chemistry, 2004, 12, 5619-5630.	3.0	33
365	Semirational Design of (North)-Methanocarba Nucleosides as Dual Acting A1 and A3 Adenosine Receptor Agonists:  Novel Prototypes for Cardioprotection. Journal of Medicinal Chemistry, 2005, 48, 8103-8107.	6.4	33
366	Structure–activity relationships of 1,4-dihydropyridines that act as enhancers of the vanilloid receptor 1 (TRPV1). Bioorganic and Medicinal Chemistry, 2008, 16, 9349-9358.	3.0	33
367	PEGylated Dendritic Unimolecular Micelles as Versatile Carriers for Ligands of G Protein-Coupled Receptors. Bioconjugate Chemistry, 2009, 20, 1888-1898.	3.6	33
368	Comparison of three GPCR structural templates for modeling of the P2Y12 nucleotide receptor. Journal of Computer-Aided Molecular Design, 2011, 25, 329-338.	2.9	33
369	Novel fluorescent antagonist as a molecular probe in A3 adenosine receptor binding assays using flow cytometry. Biochemical Pharmacology, 2012, 83, 1552-1561.	4.4	33
370	Potent agonist action of 2â€thioether derivatives of adenine nucleotides at adenylyl cyclaseâ€linked P _{2y} â€purinoceptors. British Journal of Pharmacology, 1995, 116, 2611-2616.	5.4	32
371	Quantification of recombinant and platelet P2Y1 receptors utilizing a [1251]-labeled high-affinity antagonist 2-iodo-N6-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-bisphosphate ([1251]MRS2500). Pharmacological Research, 2010, 62, 344-351.	7.1	32
372	Structure-Guided Modification of Heterocyclic Antagonists of the P2Y ₁₄ Receptor. Journal of Medicinal Chemistry, 2018, 61, 4860-4882.	6.4	32
373	Functionalized congener approach to muscarinic antagonists: analogs of pirenzepine. Journal of Medicinal Chemistry, 1991, 34, 2133-2145.	6.4	31
374	Comparative molecular field analysis of selective A3 adenosine receptor agonists. Bioorganic and Medicinal Chemistry, 1995, 3, 1331-1343.	3.0	31
375	Random Mutagenesis of the M3 Muscarinic Acetylcholine Receptor Expressed in Yeast. Journal of Biological Chemistry, 2005, 280, 5664-5675.	3.4	31
376	Defining the nucleotide binding sites of P2Y receptors using rhodopsin-based homology modeling. Journal of Computer-Aided Molecular Design, 2006, 20, 417-426.	2.9	31
377	Development of Selective High Affinity Antagonists, Agonists, and Radioligands for the P2Y1 Receptor. Combinatorial Chemistry and High Throughput Screening, 2008, 11, 410-419.	1.1	31
378	Pyrimidine Ribonucleotides with Enhanced Selectivity as P2Y ₆ Receptor Agonists: Novel 4-Alkyloxyimino, (S)-Methanocarba, and $5\hat{a} \in \mathbb{C}^2$ -Triphosphate \hat{I}^3 -Ester Modifications. Journal of Medicinal Chemistry, 2010, 53, 4488-4501.	6.4	31

#	Article	IF	Citations
379	Allosteric Modulation of Purine and Pyrimidine Receptors. Advances in Pharmacology, 2011, 61, 187-220.	2.0	31
380	Structure-Based Approaches to Ligands for G-Protein-Coupled Adenosine and P2Y Receptors, from Small Molecules to Nanoconjugates. Journal of Medicinal Chemistry, 2013, 56, 3749-3767.	6.4	31
381	Novel Protective Role of Endogenous Cardiac Myocyte P2X4 Receptors in Heart Failure. Circulation: Heart Failure, 2014, 7, 510-518.	3.9	31
382	Remote control of movement disorders using a photoactive adenosine A2A receptor antagonist. Journal of Controlled Release, 2018, 283, 135-142.	9.9	31
383	The utilization of a unified pharmacophore query in the discovery of new antagonists of the adenosine receptor family. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 31-34.	2.2	30
384	Synthesis of a Novel Conformationally Locked Carbocyclic Nucleoside Ring System. Organic Letters, 2003, 5, 1665-1668.	4.6	30
385	Synthesis and Biological Evaluation of a New Series of 1,2,4-Triazolo[1,5- <i>a</i>]-1,3,5-triazines as Human A _{2A} Adenosine Receptor Antagonists with Improved Water Solubility. Journal of Medicinal Chemistry, 2011, 54, 877-889.	6.4	30
386	Predicted structures of agonist and antagonist bound complexes of adenosine A ₃ receptor. Proteins: Structure, Function and Bioinformatics, 2011, 79, 1878-1897.	2.6	30
387	Portraying G Protein-Coupled Receptors with Fluorescent Ligands. ACS Chemical Biology, 2014, 9, 1918-1928.	3.4	30
388	The role of activated adenosine receptors in degranulation of human LAD2 mast cells. Purinergic Signalling, 2014, 10, 465-475.	2.2	30
389	Structural Probing and Molecular Modeling of the A3 Adenosine Receptor: A Focus on Agonist Binding. Molecules, 2017, 22, 449.	3.8	30
390	Chronic Morphine-Induced Changes in Signaling at the A ₃ Adenosine Receptor Contribute to Morphine-Induced Hyperalgesia, Tolerance, and Withdrawal. Journal of Pharmacology and Experimental Therapeutics, 2020, 374, 331-341.	2.5	30
391	Characterization of adenosine receptors in intact cultured heart cells. Biochemical Pharmacology, 1994, 48, 727-735.	4.4	29
392	Survey of Nonxanthine Derivatives as Adenosine Receptor Ligands. Nucleosides & Nucleotides, 1996, 15, 693-717.	0.5	29
393	Acyclic Analogues of Deoxyadenosine 3â€~,5â€~-Bisphosphates as P2Y1 Receptor Antagonists. Journal of Medicinal Chemistry, 2000, 43, 746-755.	6.4	29
394	The A ₃ Adenosine Receptor Induces Cytoskeleton Rearrangement in Human Astrocytoma Cells via a Specific Action on Rho Proteins. Annals of the New York Academy of Sciences, 2001, 939, 63-73.	3.8	29
395	P2X purinergic receptor-mediated ionic current in cardiac myocytes of calsequestrin model of cardiomyopathy: implications for the treatment of heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H1077-H1084.	3.2	29
396	Adenosine A2A receptor dynamics studied with the novel fluorescent agonist Alexa488-APEC. European Journal of Pharmacology, 2008, 590, 36-42.	3.5	29

#	Article	IF	CITATIONS
397	Synthesis and pharmacological characterization of a new series of 5,7-disubstituted-[1,2,4]triazolo[1,5-a][1,3,5]triazine derivatives as adenosine receptor antagonists: A preliminary inspection of ligand–receptor recognition process. Bioorganic and Medicinal Chemistry, 2010, 18, 2524-2536.	3.0	29
398	Striatal adenosine A2A receptor-mediated positron emission tomographic imaging in 6-hydroxydopamine-lesioned rats using [18F]-MRS5425. Nuclear Medicine and Biology, 2011, 38, 897-906.	0.6	29
399	Protection from Myocardial Ischemia/Reperfusion Injury by a Positive Allosteric Modulator of the A ₃ Adenosine Receptor. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 210-217.	2.5	29
400	Computational studies to predict or explain G protein coupled receptor polypharmacology. Trends in Pharmacological Sciences, 2014, 35, 658-663.	8.7	29
401	Polypharmacology of <i>N</i> ⁶ -(3-lodobenzyl)adenosine-5′- <i>N</i> <methyluronamide (ib-meca)="" a<sub="" and="" related="">3 Adenosine Receptor Ligands: Peroxisome Proliferator Activated Receptor (PPAR) î³ Partial Agonist and PPARî´ Antagonist Activity Suggests Their Antidiabetic Potential. lournal of Medicinal Chemistry, 2017, 60, 7459-7475.</methyluronamide>	6.4	29
402	Medicinal chemistry of P2 and adenosine receptors: Common scaffolds adapted for multiple targets. Biochemical Pharmacology, 2021, 187, 114311.	4.4	29
403	Probing the adenosine receptor with adenosine and xanthine biotin conjugates. FEBS Letters, 1985, 184, 30-35.	2.8	28
404	A prosthetic group for the rapid introduction of fluorine into peptides and functionalized drugs. Journal of Fluorine Chemistry, 1988, 39, 339-347.	1.7	28
405	Activation of A 3 Adenosine Receptor Induces Calcium Entry and Chloride Secretion in A 6 Cells. Journal of Membrane Biology, 2000, 178, 103-113.	2.1	28
406	Evidence for the recognition of non-nucleotide antagonists within the transmembrane domains of the human P2Y1receptor. Drug Development Research, 2002, 57, 173-181.	2.9	28
407	Computational prediction of homodimerization of the A3 adenosine receptor. Journal of Molecular Graphics and Modelling, 2006, 25, 549-561.	2.4	28
408	Neoceptors: reengineering GPCRs to recognize tailored ligands. Trends in Pharmacological Sciences, 2007, 28, 111-116.	8.7	28
409	Synthesis and characterization of [76Br]-labeled high-affinity A3 adenosine receptor ligands for positron emission tomography. Nuclear Medicine and Biology, 2009, 36, 3-10.	0.6	28
410	GPCR Ligand Dendrimer (GLiDe) Conjugates: Adenosine Receptor Interactions of a Series of Multivalent Xanthine Antagonists. Bioconjugate Chemistry, 2011, 22, 1115-1127.	3.6	28
411	Fluorescent ligands for adenosine receptors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 26-36.	2.2	28
412	Structure-Based Screening of Uncharted Chemical Space for Atypical Adenosine Receptor Agonists. ACS Chemical Biology, 2016, 11, 2763-2772.	3.4	28
413	Simultaneous determination of histamine and NÏ,,-methylhistamine with high-performance liquid chromatography using electrochemical detection. Analytical Biochemistry, 1986, 152, 127-135.	2.4	27
414	Purification and characterization of bovine cerebral cortex A1 adenosine receptor1. Archives of Biochemistry and Biophysics, 1990, 283, 440-446.	3.0	27

#	Article	IF	CITATIONS
415	A Selective Agonist Affinity Label for A3 Adenosine Receptors. Biochemical and Biophysical Research Communications, 1994, 203, 570-576.	2.1	27
416	Nucleotide coronary vasodilation in guinea pig hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1040-H1047.	3.2	27
417	A3Adenosine Receptor Allosteric Modulator Induces an Anti-Inflammatory Effect:In VivoStudies and Molecular Mechanism of Action. Mediators of Inflammation, 2014, 2014, 1-8.	3.0	27
418	Purinergic drug targets for gastrointestinal disorders. Current Opinion in Pharmacology, 2017, 37, 131-141.	3.5	27
419	Xanthine functionalized congeners as potent ligands at A2-adenosine receptors. Journal of Medicinal Chemistry, 1987, 30, 211-214.	6.4	26
420	2-[2-[4-[2-[1,3-Dihydro-1,1-bis(4-hydroxyphenyl)-3-oxo-5-isobenzofuranthioureidyl]ethylaminocarbonyl]ethyl]plethylamino]-5?-N-ethylcarboxamidoadenosine (FITC-APEC): A fluorescent ligand for A2a-adenosine receptors. Journal of Fluorescence, 1992, 2, 217-223.	henyl] 2.5	26
421	Tetrahydrobenzothiophenone Derivatives as a Novel Class of Adenosine Receptor Antagonistsâ€. Journal of Medicinal Chemistry, 1996, 39, 398-406.	6.4	26
422	Persistent Activation by and Receptor Reserve for an Irreversible A1-Adenosine Receptor Agonist in DDT1 MF-2 Cells and in Guinea Pig Heart. Molecular Pharmacology, 1997, 52, 491-498.	2.3	26
423	A New Synthetic Route to (North)-Methanocarba Nucleosides Designed as A3Adenosine Receptor Agonists. Journal of Organic Chemistry, 2005, 70, 439-447.	3.2	26
424	Evidence for the possible involvement of the P2Y6 receptor in Ca2+ mobilization and insulin secretion in mouse pancreatic islets. Purinergic Signalling, 2008, 4, 365-375.	2.2	26
425	Ligand and structure-based methodologies for the prediction of the activity of G protein-coupled receptor ligands. Journal of Computer-Aided Molecular Design, 2009, 23, 747-754.	2.9	26
426	Molecular probes for the A2A adenosine receptor based on a pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine scaffold. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2740-2745.	2.2	26
427	Characterization of polyamidoamino (PAMAM) dendrimers using in-line reversed phase LC electrospray ionization mass spectrometry. Analytical Methods, 2016, 8, 263-269.	2.7	26
428	Adenosine A1-A2A Receptor-Receptor Interaction: Contribution to Guanosine-Mediated Effects. Cells, 2019, 8, 1630.	4.1	26
429	Assessment of biased agonism at the A3 adenosine receptor using \hat{l}^2 -arrestin and miniG \hat{l} ±i recruitment assays. Biochemical Pharmacology, 2020, 177, 113934.	4.4	26
430	Growth, Texture, and Surface Morphology of SiC Layers. Journal of the Electrochemical Society, 1971, 118, 1001.	2.9	25
431	Effects of the allosteric modulator SCH-202676 on adenosine and P2Y receptors. Life Sciences, 2004, 74, 3173-3180.	4.3	25
432	2-Dialkynyl derivatives of (N)-methanocarba nucleosides: â€ [~] Clickableâ€ [™] A3 adenosine receptor-selective agonists. Bioorganic and Medicinal Chemistry, 2010, 18, 508-517.	3.0	25

#	Article	IF	Citations
433	Programmable Nanoscaffolds That Control Ligand Display to a G-Protein-Coupled Receptor in Membranes To Allow Dissection of Multivalent Effects. Journal of the American Chemical Society, 2014, 136, 12296-12303.	13.7	25
434	Accelerating the Throughput of Affinity Mass Spectrometry-Based Ligand Screening toward a G Protein-Coupled Receptor. Analytical Chemistry, 2019, 91, 8162-8169.	6.5	25
435	Sexually dimorphic therapeutic response in bortezomib-induced neuropathic pain reveals altered pain physiology in female rodents. Pain, 2020, 161, 177-184.	4.2	25
436	Adenosine Receptor Prodrugs: Synthesis and Biological Activity of Derivatives of Potent, ArSelective Agonists. Journal of Pharmaceutical Sciences, 1994, 83, 46-53.	3.3	24
437	"Cleavable Trifunctional" Approach to Receptor Affinity Labeling: Regeneration of Binding to A1-Adenosine Receptors. Bioconjugate Chemistry, 1995, 6, 255-263.	3.6	24
438	Chapter 10 Molecular recognition in P2 receptors: Ligand development aided by molecular modeling and mutagenesis. Progress in Brain Research, 1999, 120, 119-132.	1.4	24
439	Actions of a series of PPADS analogs at P2X1 and P2X3 receptors. Drug Development Research, 2001, 53, 281-291.	2.9	24
440	Design, synthesis and binding affinity of 3′-fluoro analogues of Cl-IB-MECA as adenosine A3 receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 817-820.	2.2	24
441	Ligand-Specific Changes in M ₃ Muscarinic Acetylcholine Receptor Structure Detected by a Disulfide Scanning Strategy. Biochemistry, 2008, 47, 2776-2788.	2.5	24
442	Virtual screening leads to the discovery of novel non-nucleotide P2Y1 receptor antagonists. Bioorganic and Medicinal Chemistry, 2012, 20, 5254-5261.	3.0	24
443	Dopamine D2 receptor-mediated modulation of adenosine A2A receptor agonist binding within the A2AR/D2R oligomer framework. Neurochemistry International, 2013, 63, 42-46.	3.8	24
444	Molecular modeling of the human P2Y14 receptor: A template for structure-based design of selective agonist ligands. Bioorganic and Medicinal Chemistry, 2015, 23, 4056-4064.	3.0	24
445	Distinct Signaling Patterns of Allosteric Antagonism at the P2Y ₁ Receptor. Molecular Pharmacology, 2017, 92, 613-626.	2.3	24
446	Potent convulsant actions of the adenosine receptor antagonist, xanthine amine congener (XAC). Life Sciences, 1989, 45, 719-728.	4.3	23
447	Effect of Adenosine on Na + and Cl â^' Currents in A 6 Monolayers. Receptor Localization and Messenger Involvement. Journal of Membrane Biology, 1996, 151, 237-245.	2.1	23
448	Potent P2X7 receptor antagonists: Tyrosyl derivatives synthesized using a sequential parallel synthetic approach. Drug Development Research, 2001, 54, 75-87.	2.9	23
449	Molecular dynamics simulation of the P2Y14 receptor. Ligand docking and identification of a putative binding site of the distal hexose moiety. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 761-766.	2.2	23
450	Synthesis and evaluation of 1,2,4-triazolo[1,5-c]pyrimidine derivatives as A2A receptor-selective antagonists. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5690-5694.	2.2	23

#	Article	IF	CITATIONS
451	Molecular structure of P2Y receptors: mutagenesis, modeling, and chemical probes. Environmental Sciences Europe, 2012, 1, 815-827.	5.5	23
452	Trifunctional agents as a design strategy for tailoring ligand properties: irreversible inhibitors of A1 adenosine receptors. Bioconjugate Chemistry, 1991, 2, 77-88.	3.6	22
453	Adenosine A1 receptor and ligand molecular modeling. Drug Development Research, 1993, 28, 237-243.	2.9	22
454	Amphiphilic pyridinium salts block TNFα/NFκB signaling and constitutive hypersecretion of interleukin-8 (IL-8) from cystic fibrosis lung epithelial cells. Biochemical Pharmacology, 2005, 70, 381-393.	4.4	22
455	Synthesis of Ethyl (1S,2R,3S,4S,5S)-2,3-O-(Isopropylidene)-4-Hydroxy-Bicyclo[3.1.0]Hexane-Carboxylate from L-Ribose: A Versatile Chiral Synthon for Preparation of Adenosine and P2 Receptor Ligands. Nucleosides, Nucleotides and Nucleic Acids, 2008, 27, 279-291.	1.1	22
456	Enhanced Potency of Nucleotideâ^'Dendrimer Conjugates as Agonists of the P2Y14 Receptor: Multivalent Effect in G Protein-Coupled Receptor Recognition. Bioconjugate Chemistry, 2009, 20, 1650-1659.	3.6	22
457	Synthesis and Anti-Renal Fibrosis Activity of Conformationally Locked Truncated 2-Hexynyl- <i>N</i> ⁶ -Substituted-(<i>N</i>)-Methanocarba-nucleosides as A ₃ Adenosine Receptor Antagonists and Partial Agonists. Journal of Medicinal Chemistry, 2014, 57, 1344-1354.	6.4	22
458	Design, synthesis, pharmacological characterization of a fluorescent agonist of the P2Y 14 receptor. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4733-4739.	2.2	22
459	Peripheral Adenosine A3 Receptor Activation Causes Regulated Hypothermia in Mice That Is Dependent on Central Histamine H1 Receptors. Journal of Pharmacology and Experimental Therapeutics, 2016, 356, 475-483.	2.5	22
460	<i>N</i> ⁶ -Substituted 5′- <i>N</i> -Methylcarbamoyl-4′-selenoadenosines as Potent and Selective A ₃ Adenosine Receptor Agonists with Unusual Sugar Puckering and Nucleobase Orientation. Journal of Medicinal Chemistry, 2017, 60, 3422-3437.	6.4	22
461	Design and in Vivo Characterization of A ₁ Adenosine Receptor Agonists in the Native Ribose and Conformationally Constrained (N)-Methanocarba Series. Journal of Medicinal Chemistry, 2019, 62, 1502-1522.	6.4	22
462	P2Y ₁₄ Receptor Antagonists Reverse Chronic Neuropathic Pain in a Mouse Model. ACS Medicinal Chemistry Letters, 2020, 11, 1281-1286.	2.8	22
463	The role of adenosine receptors in the central action of caffeine. Pharmacopsychoecologia, 1994, 7, 201-213.	0.0	22
464	Targeting the A3 adenosine receptor to prevent and reverse chemotherapy-induced neurotoxicities in mice. Acta Neuropathologica Communications, 2022, 10, 11.	5.2	22
465	Liquid chromatographic assay for cerebrospinal fluid serotonin. Life Sciences, 1986, 38, 687-694.	4.3	21
466	Covalent binding of a selective agonist irreversibly activates guinea pig coronary artery A2 adenosine receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 1993, 347, 521-526.	3.0	21
467	Molecular Modeling as a Tool to Investigate Molecular Recognition in P2Y Receptors. Current Pharmaceutical Design, 2002, 8, 2401-2413.	1.9	21
468	2-Chloro-N6-cyclopentyladenosine, adenosine A1 receptor agonist, antagonizes the adenosine A3 receptor. European Journal of Pharmacology, 2002, 443, 39-42.	3.5	21

#	Article	IF	CITATIONS
469	Design, synthesis, and biological activity of N6-substituted-4′-thioadenosines at the human A3 adenosine receptor. Bioorganic and Medicinal Chemistry, 2006, 14, 4718-4730.	3.0	21
470	Synthesis and pharmacological characterization of [1251]MRS5127, a high affinity, selective agonist radioligand for the A3 adenosine receptor. Biochemical Pharmacology, 2010, 79, 967-973.	4.4	21
471	Treatment of Heart Failure by a Methanocarba Derivative of Adenosine Monophosphate: Implication for a Role of Cardiac Purinergic P2X Receptors. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 920-928.	2.5	21
472	Preclinical Evaluation of the First Adenosine A ₁ Receptor Partial Agonist Radioligand for Positron Emission Tomography Imaging. Journal of Medicinal Chemistry, 2018, 61, 9966-9975.	6.4	21
473	Acute visceral pain relief mediated by A3AR agonists in rats: involvement of N-type voltage-gated calcium channels. Pain, 2020, 161, 2179-2190.	4.2	21
474	UDP-glucose and P2Y14 receptor amplify allergen-induced airway eosinophilia. Journal of Clinical Investigation, 2021, 131, .	8.2	21
475	Additive Effects of Late Preconditioning Produced By Monophosphoryl Lipid A and the Early Preconditioning Mediated By Adenosine Receptors and K _{ATP} Channel. Circulation, 1999, 99, 3300-3307.	1.6	20
476	Characterization of "Mini-Nucleotides―as P2X Receptor Agonists in Rat Cardiomyocyte Cultures. An Integrated Synthetic, Biochemical, and Theoretical Study. Journal of Medicinal Chemistry, 1999, 42, 2685-2696.	6.4	20
477	Adenosine protects against angiotensin II-induced apoptosis in rat cardiocyte cultures. Molecular and Cellular Biochemistry, 2003, 252, 133-139.	3.1	20
478	Coronary artery reperfusion: The ADP receptor P2Y1 mediates early reactive hyperemia in vivo in pigs. Purinergic Signalling, 2004, 1, 59-65.	2.2	20
479	Synthesis and P2Y receptor activity of nucleoside 5′-phosphonate derivatives. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3002-3005.	2.2	20
480	Functionalized Congeners of P2Y ₁ Receptor Antagonists: 2-Alkynyl ($\langle i \rangle N < i \rangle$)-Methanocarba $2 \hat{a} \in \mathbb{C}^2$ -Deoxyadenosine $3 \hat{a} \in \mathbb{C}^2$ -Bisphosphate Analogues and Conjugation to a Polyamidoamine (PAMAM) Dendrimer Carrier. Bioconjugate Chemistry, 2010, 21, 1190-1205.	3.6	20
481	Polyamidoamine (PAMAM) dendrimer conjugate specifically activates the A3 adenosine receptor to improve post-ischemic/reperfusion function in isolated mouse hearts. BMC Pharmacology, 2011, 11, 11.	0.4	20
482	Structural Probing of Off-Target G Protein-Coupled Receptor Activities within a Series of Adenosine/Adenine Congeners. PLoS ONE, 2014, 9, e97858.	2.5	20
483	Lighting up G protein-coupled purinergic receptors with engineered fluorescent ligands. Neuropharmacology, 2015, 98, 58-67.	4.1	20
484	Demystifying P2Y ₁ Receptor Ligand Recognition through Docking and Molecular Dynamics Analyses. Journal of Chemical Information and Modeling, 2017, 57, 3104-3123.	5.4	20
485	Activation of adenosine A2A or A2B receptors causes hypothermia in mice. Neuropharmacology, 2018, 139, 268-278.	4.1	20
486	Salvianolic acids from antithrombotic Traditional Chinese Medicine Danshen are antagonists of human P2Y1 and P2Y12 receptors. Scientific Reports, 2018, 8, 8084.	3.3	20

#	Article	IF	Citations
487	Exploration of Alternative Scaffolds for P2Y ₁₄ Receptor Antagonists Containing a Biaryl Core. Journal of Medicinal Chemistry, 2020, 63, 9563-9589.	6.4	20
488	Adenosine Receptors:Selective Agonists and Antagonists. , 1995, , 157-166.		20
489	In search of selective P2 receptor ligands: interaction of dihydropyridine derivatives at recombinant rat P2X2 receptors. Journal of the Autonomic Nervous System, 2000, 81, 152-157.	1.9	19
490	Exploring human adenosine A3 receptor complementarity and activity for adenosine analogues modified in the ribose and purine moiety. Bioorganic and Medicinal Chemistry, 2005, 13, 973-983.	3.0	19
491	Anti-ischemic effects of multivalent dendrimeric A3 adenosine receptor agonists in cultured cardiomyocytes and in the isolated rat heart. Pharmacological Research, 2012, 65, 338-346.	7.1	19
492	Rigidified A3 Adenosine Receptor Agonists: 1-Deazaadenine Modification Maintains High in Vivo Efficacy. ACS Medicinal Chemistry Letters, 2015, 6, 804-808.	2.8	19
493	Activation of phosphoinositide breakdown and elevation of intracellular calcium in a rat RBL-2H3 mast cell line by adenosine analogs: Involvement of A3-adenosine receptors?., 1996, 39, 36-46.		18
494	Avian and human homologues of the P2Y1 receptor: Pharmacological, signaling, and molecular properties. Drug Development Research, 1996, 39, 253-261.	2.9	18
495	Synthesis and purine receptor affinity of 6-oxopurine nucleosides and nucleotides containing (N)-methanocarba-pseudoribose rings. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2295-2300.	2.2	18
496	Stimulation of Xenopus P2Y1 receptor activates CFTR in A6 cells. Pflugers Archiv European Journal of Physiology, 2004, 449, 66-75.	2.8	18
497	Purine Derivatives as Ligands for A3 Adenosine Receptors. Current Topics in Medicinal Chemistry, 2005, 5, 1275-1295.	2.1	18
498	Three-Dimensional Quantitative StructureⰒActivity Relationship of Nucleosides Acting at the A3 Adenosine Receptor:  Analysis of Binding and Relative Efficacy. Journal of Chemical Information and Modeling, 2007, 47, 1225-1233.	5.4	18
499	Enhanced A3 adenosine receptor selectivity of multivalent nucleoside-dendrimer conjugates. Journal of Nanobiotechnology, 2008, 6, 12.	9.1	18
500	Structure–activity relationships of 2-chloro-N6-substituted-4′-thioadenosine-5′-N,N-dialkyluronamides as human A3 adenosine receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1612-1616.	2.2	18
501	Structure–activity relationships of truncated adenosine derivatives as highly potent and selective human A3 adenosine receptor antagonists. Bioorganic and Medicinal Chemistry, 2009, 17, 3733-3738.	3.0	18
502	Truncated Nucleosides as A ₃ Adenosine Receptor Ligands: Combined 2-Arylethynyl and Bicyclohexane Substitutions. ACS Medicinal Chemistry Letters, 2012, 3, 596-601.	2.8	18
503	P2X4 receptor–eNOS signaling pathway in cardiac myocytes as a novel protective mechanism in heart failure. Computational and Structural Biotechnology Journal, 2015, 13, 1-7.	4.1	18
504	Structure-based design, synthesis by click chemistry and <i>in vivo</i> activity of highly selective A ₃ adenosine receptor agonists. MedChemComm, 2015, 6, 555-563.	3.4	18

#	Article	IF	CITATIONS
505	Structure-Based Scaffold Repurposing for G Protein-Coupled Receptors: Transformation of Adenosine Derivatives into 5HT _{2B} /5HT _{2C} Serotonin Receptor Antagonists. Journal of Medicinal Chemistry, 2016, 59, 11006-11026.	6.4	18
506	Scaffold Repurposing of Nucleosides (Adenosine Receptor Agonists): Enhanced Activity at the Human Dopamine and Norepinephrine Sodium Symporters. Journal of Medicinal Chemistry, 2017, 60, 3109-3123.	6.4	18
507	Thermostabilization and purification of the human dopamine transporter (hDAT) in an inhibitor and allosteric ligand bound conformation. PLoS ONE, 2018, 13, e0200085.	2.5	18
508	Uncovering the Mechanisms of Adenosine Receptor-Mediated Pain Control: Focus on the A3 Receptor Subtype. International Journal of Molecular Sciences, 2021, 22, 7952.	4.1	18
509	A _{2A} Adenosine Receptor Antagonists in Neurodegenerative Diseases. Current Medicinal Chemistry, 2022, 29, 4138-4151.	2.4	18
510	Autoradiographic localization of mouse brain adenosine receptors with an antagonist ([3H]xanthine) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
511	Functionalized congener approach for the design of novel muscarinic agents. Synthesis and pharmacological evaluation of N-methyl-N-[4-(1-pyrrolidinyl)-2-butynyl] amides. Journal of Medicinal Chemistry, 1990, 33, 741-748.	6.4	17
512	Differential effects of flavonoids on testosterone-metabolizing cytochrome P450s. Life Sciences, 1997, 61, PL75-PL80.	4.3	17
513	Activation and desensitization of rat A3-adenosine receptors by selective adenosine derivatives and xanthine-7-ribosides., 1998, 44, 97-105.		17
514	Extracellular Adenine Nucleotides Regulate Na+/H+ Exchanger NHE3 Activity in A6-NHE3 Transfectants by a cAMP/PKA-dependent Mechanism. Journal of Membrane Biology, 2002, 188, 249-259.	2.1	17
515	The Anti-Cancer Effect of A3 Adenosine Receptor Agonists: A Novel, Targeted Therapy. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2007, 7, 298-303.	0.5	17
516	Synthesis and structure–activity relationship studies of tyrosine-based antagonists at the human P2X7 receptor. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 571-575.	2.2	17
517	Involvement of UTP in protection of cardiomyocytes from hypoxic stressThis article is one of a selection of papers from the NATO Advanced Research Workshop on Translational Knowledge for Heart Health (published in part 2 of a 2-part Special Issue) Canadian Journal of Physiology and Pharmacology, 2009, 87, 287-299.	1.4	17
518	GPCR ligand–dendrimer (GLiDe) conjugates: future smart drugs?. Trends in Pharmacological Sciences, 2010, 31, 575-579.	8.7	17
519	Structure–Activity Relationships and Molecular Modeling of 1,2,4-Triazoles as Adenosine Receptor Antagonists. ACS Medicinal Chemistry Letters, 2012, 3, 715-720.	2.8	17
520	Characterization by flow cytometry of fluorescent, selective agonist probes of the A3 adenosine receptor. Biochemical Pharmacology, 2013, 85, 1171-1181.	4.4	17
521	4-Alkyloxyimino Derivatives of Uridine-5′-triphosphate: Distal Modification of Potent Agonists as a Strategy for Molecular Probes of P2Y ₂ , P2Y ₄ , and P2Y ₆ Receptors. Journal of Medicinal Chemistry, 2014, 57, 3874-3883.	6.4	17
522	John Daly Lecture: Structure-guided Drug Design for Adenosine and P2Y Receptors. Computational and Structural Biotechnology Journal, 2015, 13, 286-298.	4.1	17

#	Article	IF	CITATIONS
523	Species differences and mechanism of action of A3 adenosine receptor allosteric modulators. Purinergic Signalling, 2018, 14, 59-71.	2.2	17
524	Nucleotide P2Y1 receptor agonists are in vitro and in vivo prodrugs of A1/A3 adenosine receptor agonists: implications for roles of P2Y1 and A1/A3 receptors in physiology and pathology. Purinergic Signalling, 2020, 16, 543-559.	2.2	17
525	In Silico Drug Design for Purinergic GPCRs: Overview on Molecular Dynamics Applied to Adenosine and P2Y Receptors. Biomolecules, 2020, 10, 812.	4.0	17
526	Direct Comparison of (N)-Methanocarba and Ribose-Containing 2-Arylalkynyladenosine Derivatives as A ₃ Receptor Agonists. ACS Medicinal Chemistry Letters, 2020, 11, 1935-1941.	2.8	17
527	Truncated (N)-Methanocarba Nucleosides as Partial Agonists at Mouse and Human A ₃ Adenosine Receptors: Affinity Enhancement by <i>N</i> 6-(2-Phenylethyl) Substitution. Journal of Medicinal Chemistry, 2020, 63, 4334-4348.	6.4	17
528	Purinergic Signaling in Liver Pathophysiology. Frontiers in Endocrinology, 2021, 12, 718429.	3.5	17
529	Pathophysiological Role and Medicinal Chemistry of A2A Adenosine Receptor Antagonists in Alzheimer's Disease. Molecules, 2022, 27, 2680.	3.8	17
530	Binary drugs: conjugates of purines and a peptide that bind to both adenosine and substance P receptors. Journal of Medicinal Chemistry, 1987, 30, 1529-1532.	6.4	16
531	Molecular probes for muscarinic receptors: derivatives of the M1-antagonist telenzepine. Bioconjugate Chemistry, 1992, 3, 234-240.	3.6	16
532	Molecular probes for muscarinic receptors: Functionalized congeners of selective muscarinic antagonists. Life Sciences, 1995, 56, 823-830.	4.3	16
533	Molecular Recognition at Adenine Nucleotide (P2) Receptors in Platelets. Seminars in Thrombosis and Hemostasis, 2005, 31, 205-216.	2.7	16
534	Design and synthesis of N6-substituted- $4\hat{a}\in^2$ -thioadenosine- $5\hat{a}\in^2$ -uronamides as potent and selective human A3 adenosine receptor agonists. Bioorganic and Medicinal Chemistry, 2009, 17, 8003-8011.	3.0	16
535	Pyrimidine nucleotides containing a (S)-methanocarba ring as P2Y ₆ receptor agonists. MedChemComm, 2017, 8, 1897-1908.	3.4	16
536	Polypharmacology of conformationally locked methanocarba nucleosides. Drug Discovery Today, 2017, 22, 1782-1791.	6.4	16
537	Breakthrough in GPCR Crystallography and Its Impact on Computer-Aided Drug Design. Methods in Molecular Biology, 2018, 1705, 45-72.	0.9	16
538	Purinergic Signaling: Impact of GPCR Structures on Rational Drug Design. ChemMedChem, 2020, 15, 1958-1973.	3.2	16
539	Affinity chromatography of the bovine cerebral cortex A1 adenosine receptor. FEBS Letters, 1989, 257, 292-296.	2.8	15
540	Purine Functionalized Congeners as Molecular Probes for Adenosine Receptors. Nucleosides & Nucleotides, 1991, 10, 1029-1038.	0.5	15

#	Article	IF	Citations
541	Molecular characterization of A1 and A2a adenosine receptors. Drug Development Research, 1993, 28, 226-231.	2.9	15
542	Functionalized Congeners of 1,4-Dihydropyridines as Antagonist Molecular Probes for A3Adenosine Receptors. Bioconjugate Chemistry, 1999, 10, 667-677.	3.6	15
543	Selective A3 Adenosine Receptor Antagonists:  Water-Soluble 3,5-Diacyl-1,2,4-trialkylpyridinium Salts and Their Oxidative Generation from Dihydropyridine Precursors. Journal of Medicinal Chemistry, 1999, 42, 4232-4238.	6.4	15
544	Functionalized Congeners of Tyrosine-Based P2X7Receptor Antagonists:Â Probing Multiple Sites for Linking and Dimerization. Bioconjugate Chemistry, 2002, 13, 1100-1111.	3.6	15
545	Partial Agonists for A3 Adenosine Receptors. Current Topics in Medicinal Chemistry, 2004, 4, 855-862.	2.1	15
546	New 8-substituted xanthiene derivatives as potent bronchodilators. Il Farmaco, 2005, 60, 974-980.	0.9	15
547	Truncated (N)-Methanocarba Nucleosides as A1 Adenosine Receptor Agonists and Partial Agonists: Overcoming Lack of a Recognition Element. ACS Medicinal Chemistry Letters, 2011, 2, 626-631.	2.8	15
548	Structure-Based Design of Reactive Nucleosides for Site-Specific Modification of the A _{2A} Adenosine Receptor. ACS Medicinal Chemistry Letters, 2014, 5, 1043-1048.	2.8	15
549	Inherited dysfunctional platelet P2Y12 receptor mutations associated with bleeding disorders. Hamostaseologie, 2016, 36, 279-283.	1.9	15
550	Exploring the Role of $\langle i \rangle N \langle i \rangle \langle sup \rangle 6 \langle sup \rangle - Substituents in Potent Dual Acting 5 \hat{a} \in \mathbb{C}^2 - \langle i \rangle C \langle i \rangle - Ethyltetrazolyladenosine Derivatives: Synthesis, Binding, Functional Assays, and Antinociceptive Effects in Mice. Journal of Medicinal Chemistry, 2017, 60, 4327-4341.$	6.4	15
551	Bitopic fluorescent antagonists of the A _{2A} adenosine receptor based on pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine functionalized congeners. MedChemComm, 2017, 8, 1659-1667.	3.4	15
552	Identification of a New Heterocyclic Scaffold for Inhibitors of the Polo-Box Domain of Polo-like Kinase 1. Journal of Medicinal Chemistry, 2020, 63, 14087-14117.	6.4	15
553	Discovery and Structure–Activity Relationships of Novel Template, Truncated 1′-Homologated Adenosine Derivatives as Pure Dual PPARγ∫Î′ Modulators. Journal of Medicinal Chemistry, 2020, 63, 16012-16027.	6.4	15
554	Adenosine-Related Mechanisms in Non-Adenosine Receptor Drugs. Cells, 2020, 9, 956.	4.1	15
555	Adipocyte P2Y14 receptors play a key role in regulating whole-body glucose and lipid homeostasis. JCI Insight, 2021, 6, .	5.0	15
556	Adenosine analogs with covalently attached lipids have enhanced potency at A1 -adenosine receptors. FEBS Letters, 1987, 225, 97-102.	2.8	14
557	[3H]XAC (xanthine amine congener) is a radioligand for A2-adenosine receptors in rabbit striatum. Neurochemistry International, 1991, 18, 207-213.	3.8	14
558	Muscarinic receptor binding and activation of second messengers by substituted N-methyl-N-[4-(1-azacycloalkyl)-2-butynyl]acetamides. Journal of Medicinal Chemistry, 1991, 34, 1073-1079.	6.4	14

#	Article	IF	CITATIONS
559	Effects of combinations of methylxanthines and adenosine analogs on locomotor activity in control and chronic caffeine-treated mice. Drug Development Research, 1993, 30, 104-110.	2.9	14
560	Chronic NMDA receptor stimulation: therapeutic implications of its effect on adenosine A1 receptors. European Journal of Pharmacology, 1995, 283, 185-192.	3.5	14
561	Design and synthesis of 3′-ureidoadenosine-5′-uronamides: effects of the 3′-ureido group on binding to the A3 adenosine receptor. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4851-4854.	2.2	14
562	Nucleoside Modification and Concerted Mutagenesis of the Human A3 Adenosine Receptor to Probe Interactions Between the 2-Position of Adenosine Analogs and Gln167 in the Second Extracellular Loop. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 1507-1517.	1.1	14
563	Synthesis of hypermodified adenosine derivatives as selective adenosine A3 receptor ligands. Bioorganic and Medicinal Chemistry, 2006, 14, 1403-1412.	3.0	14
564	Probing the Binding Site of the A1 Adenosine Receptor Reengineered for Orthogonal Recognition by Tailored Nucleosides. Biochemistry, 2007, 46, 7437-7448.	2.5	14
565	Synthesis of Enantiomerically Pure (<i>S</i>)-Methanocarbaribo Uracil Nucleoside Derivatives for Use as Antiviral Agents and P2Y Receptor Ligands. Journal of Organic Chemistry, 2008, 73, 8085-8088.	3.2	14
566	Probing Distal Regions of the A _{2B} Adenosine Receptor by Quantitative Structureâ^'Activity Relationship Modeling of Known and Novel Agonists. Journal of Medicinal Chemistry, 2008, 51, 2088-2099.	6.4	14
567	Synthesis and pharmacological characterization of [1251]MRS1898, a high-affinity, selective radioligand for the rat A3 adenosine receptor. Purinergic Signalling, 2009, 5, 31-37.	2.2	14
568	Nucleoside conjugates of quantum dots for characterization of G protein-coupled receptors: strategies for immobilizing A2A adenosine receptor agonists. Journal of Nanobiotechnology, 2010, 8, 11.	9.1	14
569	Discovery of A New Human A _{2A} Adenosine Receptor Agonist, Truncated 2-Hexynyl-4′-thioadenosine. ACS Medicinal Chemistry Letters, 2010, 1, 516-520.	2.8	14
570	Synthesis and P2Y2 receptor agonist activities of uridine 5′-phosphonate analogues. Bioorganic and Medicinal Chemistry, 2012, 20, 2304-2315.	3.0	14
571	AMP-activated protein kinase as regulator of P2Y6 receptor-induced insulin secretion in mouse pancreatic \hat{l}^2 -cells. Biochemical Pharmacology, 2013, 85, 991-998.	4.4	14
572	Purine (N)-Methanocarba Nucleoside Derivatives Lacking an Exocyclic Amine as Selective A3 Adenosine Receptor Agonists. Journal of Medicinal Chemistry, 2016, 59, 3249-3263.	6.4	14
573	A1 Adenosine Receptor Agonists, Antagonists, and Allosteric Modulators. , 2018, , 59-89.		14
574	Presence of Both A1 and A2a Adenosine Receptors in Human Cells and Their Interaction. Biochemical and Biophysical Research Communications, 1995, 208, 871-878.	2.1	13
575	Effects of Soil Sample Grinding Intensity on Carbon Determination by Highâ€Temperature Combustion. Communications in Soil Science and Plant Analysis, 2007, 38, 1733-1739.	1.4	13
576	Application of the functionalized congener approach to dendrimer-based signaling agents acting through A2A adenosine receptors. Purinergic Signalling, 2009, 5, 39-50.	2.2	13

#	Article	lF	Citations
577	Design, synthesis, and binding of homologated truncated 4′-thioadenosine derivatives at the human A3 adenosine receptors. Bioorganic and Medicinal Chemistry, 2010, 18, 7015-7021.	3.0	13
578	Multivalent dendrimeric and monomeric adenosine agonists attenuate cell death in HL-1 mouse cardiomyocytes expressing the A3 receptor. Biochemical Pharmacology, 2010, 80, 188-196.	4.4	13
579	Metabolic mapping of A3 adenosine receptor agonist MRS5980. Biochemical Pharmacology, 2015, 97, 215-223.	4.4	13
580	Rigid Adenine Nucleoside Derivatives as Novel Modulators of the Human Sodium Symporters for Dopamine and Norepinephrine. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 24-35.	2.5	13
581	Probing structure-activity relationship in \hat{l}^2 -arrestin2 recruitment of diversely substituted adenosine derivatives. Biochemical Pharmacology, 2018, 158, 103-113.	4.4	13
582	Repurposing of a Nucleoside Scaffold from Adenosine Receptor Agonists to Opioid Receptor Antagonists. ACS Omega, 2018, 3, 12658-12678.	3.5	13
583	Design and in vivo activity of A3 adenosine receptor agonist prodrugs. Purinergic Signalling, 2020, 16, 367-377.	2.2	13
584	Lung Injury after <i>In Vivo</i> Â Reperfusion. Anesthesiology, 2008, 109, 269-278.	2.5	13
585	Electrochemical detection of biogenic amines following acylation by N-hydroxysuccinimide esters. FEBS Letters, 1985, 188, 307-311.	2.8	12
586	Autoradiographic localization of adenosine A1 receptors in rat brain using [3H]XCC, a functionalized congener of 1,3-dipropylxanthine. Neuroscience Letters, 1987, 81, 69-74.	2.1	12
587	Improvement of cold tolerance by selective A1 adenosine receptor antagonists in rats. Pharmacology Biochemistry and Behavior, 1990, 37, 107-112.	2.9	12
588	Allosteric Antagonism of the A2A Adenosine Receptor by a Series of Bitopic Ligands. Cells, 2020, 9, 1200.	4.1	12
589	Adenosine A2A Receptors Are Upregulated in Peripheral Blood Mononuclear Cells from Atrial Fibrillation Patients. International Journal of Molecular Sciences, 2021, 22, 3467.	4.1	12
590	N6-Functionalized congeners of adenosine with high potency at A2-adenosine receptors: Potential ligands for affinity chromatography. Biochemical and Biophysical Research Communications, 1986, 136, 1097-1102.	2.1	11
591	Adenosine A1 and A3 receptors: Distinct cardioprotection. Drug Development Research, 2001, 52, 366-378.	2.9	11
592	Shift in purine/pyrimidine base recognition upon exchanging extracellular domains in P2Y1/6 chimeric receptors. Biochemical Pharmacology, 2004, 68, 2075-2086.	4.4	11
593	Signaling of the human P2Y1 receptor measured by a yeast growth assay with comparisons to assays of phospholipase C and calcium mobilization in 1321N1 human astrocytoma cells. Purinergic Signalling, 2005, 1, 241-247.	2.2	11
594	Barrier qualities of the mouse eye to topically applied drugs. Experimental Eye Research, 2007, 85, 105-112.	2.6	11

#	Article	IF	CITATIONS
595	Caged agonist of P2Y1 and P2Y12 receptors for light-directed facilitation of platelet aggregation. Biochemical Pharmacology, 2008, 75, 1341-1347.	4.4	11
596	A binding kinetics study of human adenosine A3 receptor agonists. Biochemical Pharmacology, 2018, 153, 248-259.	4.4	11
597	Conjugable A3 adenosine receptor antagonists for the development of functionalized ligands and their use in fluorescent probes. European Journal of Medicinal Chemistry, 2020, 186, 111886.	5.5	11
598	Biological Evaluation of $5\hat{a}\in^2$ -(<i>N</i> -Ethylcarboxamido)adenosine Analogues as Grp94-Selective Inhibitors. ACS Medicinal Chemistry Letters, 2021, 12, 373-379.	2.8	11
599	Structure–Activity Relationship of Heterocyclic P2Y14 Receptor Antagonists: Removal of the Zwitterionic Character with Piperidine Bioisosteres. Journal of Medicinal Chemistry, 2021, 64, 5099-5122.	6.4	11
600	Subtle Chemical Changes Cross the Boundary between Agonist and Antagonist: New A ₃ Adenosine Receptor Homology Models and Structural Network Analysis Can Predict This Boundary. Journal of Medicinal Chemistry, 2021, 64, 12525-12536.	6.4	11
601	Adenosine A3 Receptors in Muscle Protection. , 2010, , 257-280.		11
602	PURINE RECEPTORS: GPCR STRUCTURE AND AGONIST DESIGN. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2004, 4, 337-347.	3.4	11
603	Fragment-based design of selective GPCR ligands guided by free energy simulations. Chemical Communications, 2021, 57, 12305-12308.	4.1	11
604	Apparent heterogeneity of cardiac A 1 adenosine receptors as revealed by radioligand binding experiments on N-ethylmaleimide-treated membranes. Naunyn-Schmiedeberg's Archives of Pharmacology, 1991, 344, 639-44.	3.0	10
605	Regulation of A1 adenosine receptors by amiodarone and electrical stimulation in rat myocardial cells in vitro. Biochemical Pharmacology, 1997, 54, 583-587.	4.4	10
606	Pyran template approach to the design of novel A3 adenosine receptor antagonists., 1999, 48, 171-177.		10
607	Versatile Synthesis of 6-Alkyl and Aryl Substituted Pyridoxal Derivatives. Synthesis, 2000, 2000, 119-122.	2.3	10
608	RIBOSE MODIFIED NUCLEOSIDES AND NUCLEOTIDES AS LIGANDS FOR PURINE RECEPTORS. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 333-341.	1.1	10
609	Farnesyl pyrophosphate is an endogenous antagonist to ADP-stimulated P2Y12 receptor-mediated platelet aggregation. Thrombosis and Haemostasis, 2012, 108, 119-132.	3.4	10
610	4-Alkyloxyimino-cytosine nucleotides: tethering approaches to molecular probes for the P2Y6 receptor. MedChemComm, 2013, 4, 1156.	3.4	10
611	Modulation of G protein-coupled adenosine receptors by strategically functionalized agonists and antagonists immobilized on gold nanoparticles. Purinergic Signalling, 2013, 9, 183-198.	2.2	10
612	Highly selective A3 adenosine receptor agonists relieve chronic neuropathic pain. Expert Opinion on Therapeutic Patents, 2017, 27, 967-967.	5.0	10

#	Article	IF	Citations
613	Evidence for the Interaction of A ₃ Adenosine Receptor Agonists at the Drug-Binding Site(s) of Human P-glycoprotein (ABCB1). Molecular Pharmacology, 2019, 96, 180-192.	2.3	10
614	A3 adenosine receptor activation mechanisms: molecular dynamics analysis of inactive, active, and fully active states. Journal of Computer-Aided Molecular Design, 2019, 33, 983-996.	2.9	10
615	Adenosine Kinase Expression Determines DNA Methylation in Cancer Cell Lines. ACS Pharmacology and Translational Science, 2021, 4, 680-686.	4.9	10
616	Adenosine Metabotropic Receptors in Chronic Pain Management. Frontiers in Pharmacology, 2021, 12, 651038.	3.5	10
617	Synthesis and evaluation of adenosine derivatives as A1, A2A, A2B and A3 adenosine receptor ligands containing boron clusters as phenyl isosteres and selective A3 agonists. European Journal of Medicinal Chemistry, 2021, 223, 113607.	5.5	10
618	Inhibition of ecto-apyrase and ecto-ATPase by pyridoxal phosphate-related compounds. Drug Development Research, 2000, 51, 153-158.	2.9	9
619	Northern ring conformation of methanocarba-adenosine 5?-triphosphate required for activation of P2X receptors. Drug Development Research, 2004, 61, 227-232.	2.9	9
620	Adenosine Receptors: The Contributions by John W. Daly. Heterocycles, 2009, 79, 73.	0.7	9
621	Click Modification in the N6 Region of A3 Adenosine Receptor-Selective Carbocyclic Nucleosides for Dendrimeric Tethering that Preserves Pharmacophore Recognition. Bioconjugate Chemistry, 2012, 23, 232-247.	3.6	9
622	Pyrazolo $[4,3-\langle i\rangle e\langle i\rangle][1,2,4]$ triazolo $[1,5-\langle i\rangle c\langle i\rangle]$ pyrimidines to develop functionalized ligands to target adenosine receptors: fluorescent ligands as an example. MedChemComm, 2019, 10, 1094-1108.	3.4	9
623	Expanding the repertoire of methanocarba nucleosides from purinergic signaling to diverse targets. RSC Medicinal Chemistry, 2021, 12, 1808-1825.	3.9	9
624	Novel cyanothiouracil and cyanothiocytosine derivatives as concentration-dependent selective inhibitors of U87MG glioblastomas: Adenosine receptor binding and potent PDE4 inhibition. European Journal of Medicinal Chemistry, 2021, 212, 113125.	5.5	9
625	Radioligand Binding Assays for Adenosine Receptors. , 1990, , 17-55.		9
626	Synthesis and Binding Affinity of Homologated Adenosine Analogues as A3Adenosine Receptor Ligands. Bulletin of the Korean Chemical Society, 2011, 32, 1620-1624.	1.9	9
627	New high-performance liquid chromatographic procedure for the detection and quantification of \hat{l}^2 -phenylethylamine. Biomedical Applications, 1987, 415, 124-128.	1.7	8
628	8-(3-Isothiocyanatostyryl)caffeine is a selective, irreversible inhibitor of striatal A2-Adenosine receptors. Drug Development Research, 1993, 29, 292-298.	2.9	8
629	Section Review Central & Peripheral Nervous Systems: P2-Purinoceptors: Advances and therapeutic opportunities. Expert Opinion on Investigational Drugs, 1995, 4, 925-934.	4.1	8
630	New base-altered adenosine analogues: Synthesis and affinity at adenosine A1 and A2A receptors. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 3085-3090.	2.2	8

#	Article	IF	CITATIONS
631	The ADP receptor P2Y1 mediates t-PA release in pigs during cardiac ischemia. Journal of Thrombosis and Thrombolysis, 2007, 24, 115-122.	2.1	8
632	Crystal structures of the A2A adenosine receptor and their use in medicinal chemistry. In Silico Pharmacology, 2013, 1, 22.	3.3	8
633	Methanocarba ring as a ribose modification in ligands of G protein-coupled purine and pyrimidine receptors: synthetic approaches. MedChemComm, 2013, 4, 619.	3.4	8
634	Rapid Synthesis of Alkoxyamine Hydrochloride Derivatives from Alkyl Bromide and ⟨i>N,N⟨ i>′-Di-⟨i>tert⟨ i>-butoxycarbonylhydroxylamine [(Boc)⟨sub>2⟨ sub>NOH]. Synthetic Communications, 2014, 44, 2344-2347.	2.1	8
635	Activation of basal forebrain purinergic P2 receptors promotes wakefulness in mice. Scientific Reports, 2018, 8, 10730.	3.3	8
636	Structure activity relationship of 3-nitro-2-(trifluoromethyl)-2H-chromene derivatives as P2Y6 receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2021, 41, 128008.	2.2	8
637	P2 Receptor Modeling and Identification of Ligand Binding Sites. , 1998, , 135-166.		8
638	Molecular Biology and Pharmacology of Recombinant Adenosine Receptors. Developments in Cardiovascular Medicine, 1998, , 1-20.	0.1	8
639	Pharmacological characterization of DPTN and other selective A3 adenosine receptor antagonists. Purinergic Signalling, 2021, , 1.	2,2	8
640	Characterization of Dual-Acting A ₃ Adenosine Receptor Positive Allosteric Modulators That Preferentially Enhance Adenosine-Induced Gα _{i3} and Gα _{oA} Isoprotein Activation. ACS Pharmacology and Translational Science, 2022, 5, 625-641.	4.9	8
641	Acute treatment of mice with high doses of caffeine: An animal model for choreiform movement. Drug Development Research, 1993, 30, 121-128.	2.9	7
642	Action of Nucleosides and Nucleotides at 7 Transmembrane-Spanning Receptors. Nucleosides, Nucleotides and Nucleic Acids, 2006, 25, 1425-1436.	1.1	7
643	Regio- and stereoselective synthesis of truncated 3′-aminocarbanucleosides and their binding affinity at the A3 adenosine receptor. Organic and Biomolecular Chemistry, 2011, 9, 6955.	2.8	7
644	Extended N6 substitution of rigid C2-arylethynyl nucleosides for exploring the role of extracellular loops in ligand recognition at the A3 adenosine receptor. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3302-3306.	2.2	7
645	Medicinal Chemistry of the A3 Adenosine Receptor. , 2018, , 169-198.		7
646	Optical control of adenosine A3 receptor function in psoriasis. Pharmacological Research, 2021, 170, 105731.	7.1	7
647	Structure Activity Relationships of P2 Receptor Agonists and Antagonists. , 1998, , 81-107.		7
648	Behavioral Effects of Adenosine Receptor stimulation. , 1995, , 489-498.		7

#	Article	IF	CITATIONS
649	Nucleoside-based A3 adenosine receptor antagonists as drug candidates. Drugs of the Future, 2009, 34, 43.	0.1	7
650	[79] Probing adenosine receptors using biotinylated purine derivatives. Methods in Enzymology, 1990, 184, 668-671.	1.0	6
651	High affinity acylating antagonists for muscarinic receptors. Life Sciences, 1992, 51, 345-351.	4.3	6
652	Solubilized Rabbit Striatal A2a-Adenosine Receptors: Stability and Antagonist Binding. Archives of Biochemistry and Biophysics, 1993, 305, 611-617.	3.0	6
653	Probing adenosine and P2 receptors: Design of novel purines and nonpurines as selective ligands. Drug Development Research, 2001, 52, 178-186.	2.9	6
654	Engineering of A3 adenosine and P2Y nucleotide receptors and their ligands. Drug Development Research, 2003, 58, 330-339.	2.9	6
655	Structure activity relationship of 2-arylalkynyl-adenine derivatives as human A ₃ adenosine receptor antagonists. MedChemComm, 2018, 9, 1920-1932.	3.4	6
656	Editorial: Purinergic Pharmacology. Frontiers in Pharmacology, 2019, 10, 21.	3.5	6
657	Spinal A ₃ adenosine receptor activation acutely restores morphine antinociception in opioid tolerant male rats. Journal of Neuroscience Research, 2022, 100, 251-264.	2.9	6
658	Structure-activity relationships of pyrimidine nucleotides containing a 5′-α,β-methylene diphosphonate at the P2Y6 receptor. Bioorganic and Medicinal Chemistry Letters, 2021, 45, 128137.	2.2	6
659	P2Y receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	6
660	TRIFUNCTIONAL LIGANDS: A RADIOIODINATED HIGH AFFINITY ACYLATING ANTAGONIST FOR THE A ADENOSINE RECEPTOR. Pharmacology Communications, 1992, 1, 145-154.	0.2	6
661	Bridged Piperidine Analogues of a High Affinity Naphthalene-Based P2Y ₁₄ R Antagonist. Journal of Medicinal Chemistry, 2022, 65, 3434-3459.	6.4	6
662	Selective A ₃ Adenosine Receptor Antagonist Radioligand for Human and Rodent Species. ACS Medicinal Chemistry Letters, 2022, 13, 623-631.	2.8	6
663	Californium-252 plasma desorption mass spectrometry as an aid in the synthesis of a series of adenosine and xanthine conjugates. Journal of the Chemical Society Perkin Transactions 1, 1986, , 2143.	0.9	5
664	Radiolabeling and efficient synthesis of tritiated 2-chloro-N6-(3-iodobenzyl)adenosine-5′-N-methyluron-amide, a potent, selective A3 adenosine receptor agonist., 1996, 38, 547-560.		5
665	Synthesis AND Adenosine Receptor Affinity of $7 \cdot \hat{l}^2$ -D-Ribofuranosylxanthine. Nucleosides & Nucleotides, 1998, 17, 759-768.	0.5	5
666	Structurally related nucleotides as selective agonists and antagonists at P2Y1 receptors. Il Farmaco, 2001, 56, 71-75.	0.9	5

#	Article	IF	CITATIONS
667	Design and Synthesis of A3Adenosine Receptor Ligands, 2′-Fluoro Analogues of Cl-IB-MECA. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 927-930.	1.1	5
668	Chapter 13. A3 adenosine receptors. Annual Reports in Medicinal Chemistry, 2003, 38, 121-130.	0.9	5
669	Synthesis and evaluation of N6-substituted apioadenosines as potential adenosine A3 receptor modulators. Bioorganic and Medicinal Chemistry, 2014, 22, 4257-4268.	3.0	5
670	Peptide-Liganded G Protein-Coupled Receptors as Neurotherapeutics. ACS Pharmacology and Translational Science, 2020, 3, 190-202.	4.9	5
671	Adenosine receptors in GtoPdb v.2021.2. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	5
672	Prevention and rescue of cardiac dysfunction by methanocarba adenosine monophosphonate derivatives. Purinergic Signalling, 2020, 16, 61-72.	2.2	5
673	Nucleoside Prodrugs of A3 Adenosine Receptor Agonists and Antagonists. Collection of Czechoslovak Chemical Communications, 2006, 71, 912-928.	1.0	5
674	Activation of neuronal adenosine A1 receptors causes hypothermia through central and peripheral mechanisms. PLoS ONE, 2020, 15, e0243986.	2.5	5
675	Structure–Activity Relationship of 3-Methylcytidine-5′-α,β-methylenediphosphates as CD73 Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 2409-2433.	6.4	5
676	Adipocyte purinergic receptors activated by uracil nucleotides as obesity and type 2 diabetes targets. Current Opinion in Pharmacology, 2022, 63, 102190.	3.5	5
677	Characterization of catecholamine-polypeptide conjugates. European Polymer Journal, 1983, 19, 997-1004.	5.4	4
678	Visual methods for the nanomolar detection of electrophilic reagents. Journal of Proteomics, 1983, 8, 213-222.	2.4	4
679	Effects of Theophylline and Dibutyryl-cAMP on Adenosine Receptors and Heart Rate in Cultured Cardiocytes. Journal of Basic and Clinical Physiology and Pharmacology, 1996, 7, 347-62.	1.3	4
680	Uptake of Glucose Analogs Reflects the Rate of Contraction of Cultured Myocytes. Journal of Basic and Clinical Physiology and Pharmacology, 1999, 10, 287-303.	1.3	4
681	Purification and recognition of recombinant mouse P2X1 receptors expressed in a baculovirus system. Drug Development Research, 2000, 51, 7-19.	2.9	4
682	Two distinct P2Y receptors are involved in purine- and pyrimidine-evoked Ca2+ elevation in mammalian brain astrocytic cultures. Drug Development Research, 2001, 52, 122-132.	2.9	4
683	Probing GPCR Structure. Methods in Enzymology, 2013, 520, 199-217.	1.0	4
684	A2A Adenosine Receptor: Structures, Modeling, and Medicinal Chemistry., 2018,, 91-136.		4

#	Article	IF	Citations
685	Survey of ribose ring pucker of signaling nucleosides and nucleotides. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 322-341.	1.1	4
686	Structure activity relationship of novel antiviral nucleosides against Enterovirus A71. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127599.	2.2	4
687	Novel ATP Agonists Reveal Receptor Heterogeneity Within P2X and P2Y Subtypes., 1995,, 149-156.		4
688	Structure Activity Relationship of 4-Amino-2-thiopyrimidine Derivatives as Platelet Aggregation Inhibitors. Medicinal Chemistry, 2019, 15, 863-872.	1.5	4
689	A3 adenosine receptor agonists containing dopamine moieties for enhanced interspecies affinity. European Journal of Medicinal Chemistry, 2022, 228, 113983.	5.5	4
690	Dihydropyridines Potentiate ATP-Induced Currents Mediated by the Full-Length Human P2X5 Receptor. Molecules, 2022, 27, 1846.	3.8	4
691	Fluorescent A2A and A3 adenosine receptor antagonists as flow cytometry probes. Purinergic Signalling, 0, , .	2.2	4
692	Photochemically induced nuclear polarization probes for thiol groups in peptides and proteins. Journal of the Chemical Society Chemical Communications, 1983, , 1384.	2.0	3
693	APEC, An A ₂ -Selective Adenosine Agonist, is a More Potent Locomotor Depressant Than N ⁶ -Cyclohexyladenosine. Nucleosides & Nucleotides, 1991, 10, 1211-1212.	0.5	3
694	Muscarinic receptor probes based on amine congeners of pirenzepine and telenzepine. Bioorganic and Medicinal Chemistry Letters, 1992, 2, 845-850.	2.2	3
695	Induction of Apoptosis in HL-60 Human Promyelocytic Leukemia Cells by Adenosine A3Receptor Agonists. Biochemical and Biophysical Research Communications, 1996, 221, 849.	2.1	3
696	Riboflavin: Inhibitory effects on receptors, G-proteins, and adenylate cyclase., 1997, 42, 98-108.		3
697	Design and Synthesis of A3Adenosine Receptor Ligands, 3′-Fluoro Analogues of Cl-IB-MECA. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 923-925.	1.1	3
698	Synthesis ofN6-Substituted 3′-Ureidoadenosine Derivatives as Highly Potent Agonists at the Mutant A3Adenosine Receptor. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 717-719.	1.1	3
699	Design and Synthesis of 2,6-Disubstituted-4′-Selenoadenosine-5′-N,N-Dimethyluronamide Derivatives as Human A3 Adenosine Receptor Antagonists. Pharmaceuticals, 2021, 14, 363.	3.8	3
700	P2Y receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	3
701	Adenosine A1 receptor is dispensable for hepatocyte glucose metabolism and insulin sensitivity. Biochemical Pharmacology, 2021, 192, 114739.	4.4	3
702	Structure and Function of G Protein-Coupled Receptors Studied Using Sequence Analysis, Molecular Modeling and Receptor Engineeri., 2012,, 63-79.		3

#	Article	IF	CITATIONS
703	Adenosine receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	3
704	Purinergic GPCR transmembrane residues involved in ligand recognition and dimerization. Methods in Cell Biology, 2021, 166, 133-159.	1.1	3
705	Interaction of A3 adenosine receptor ligands with the human multidrug transporter ABCG2. European Journal of Medicinal Chemistry, 2022, 231, 114103.	5.5	3
706	Kinetic profiling and functional characterization of 8-phenylxanthine derivatives as A2B adenosine receptor antagonists. Biochemical Pharmacology, 2022, 200, 115027.	4.4	3
707	Machine Learning for Discovery of New ADORA Modulators. Frontiers in Pharmacology, 0, 13, .	3.5	3
708	Synthesis of tritiated functionalized congeners of 1.3-dipropylxanthine having high affinity at adenosine receptors. Journal of Labelled Compounds and Radiopharmaceuticals, 1986, 23, 519-526.	1.0	2
709	Adenosine receptor subtypes and cardioprotection. Drug Development Research, 1998, 45, 394-401.	2.9	2
710	SYNTHESIS OF 3′-UREIDOADENOSINE ANALOGUES AND THEIR BINDING AFFINITY TO THE A3 ADENOSINE RECEPTOR. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 1119-1121.	1.1	2
711	D-4′-THIOADENOSINE DERIVATIVES AS HIGHLY POTENT AND SELECTIVE AGONISTS AT THE HUMAN A3 ADENOSINE RECEPTOR. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 607-609.	1.1	2
712	Stereoselective Synthesis of $1\hat{a}\in^2$ -Functionalized- $4\hat{a}\in^2$ -Thionucleosides. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1011-1014.	1.1	2
713	Synthesis of 3′-Acetamidoadenosine Derivatives as Potential A3Adenosine Receptor Agonists. Nucleosides, Nucleotides and Nucleic Acids, 2008, 27, 408-420.	1.1	2
714	Design and Synthesis of Truncated 4'-Thioadenosine Derivatives as Potent and Selective A3 Adenosine Receptor Antagonists. Nucleic Acids Symposium Series, 2008, 52, 641-642.	0.3	2
715	Preface: special issue on medicinal chemistry of purines. Purinergic Signalling, 2009, 5, 1-1.	2.2	2
716	Preface. Advances in Pharmacology, 2011, 61, xv-xvi.	2.0	2
717	Tribute to Prof. Geoffrey Burnstock: transition of purinergicsignaling to drug discovery. Purinergic Signalling, 2021, 17, 3-8.	2.2	2
718	Discovery of Highly Potent Adenosine A1 Receptor Agonists: Targeting Positron Emission Tomography Probes. ACS Chemical Neuroscience, 2021, 12, 3410-3417.	3.5	2
719	Activity of novel adenine nucleotide derivatives as agonists and antagonists at recombinant rat P2X receptors. Drug Development Research, 2000, 49, 253-259.	2.9	2
720	A3 Adenosine Receptor Agonists: History and Future Perspectives. , 2010, , 93-120.		2

#	Article	IF	CITATIONS
721	John W. Daly – An Appreciation. Heterocycles, 2009, 79, 61.	0.7	2
722	New Synthetic Approach to the Bicyclo[3.1.0]hexane Ring System from (+)-(1R,4R)-4-(Benzyloxymethyl)-4-(hydroxymethyl)cyclopent-2-enol. Bulletin of the Korean Chemical Society, 2005, 26, 1503-1504.	1.9	2
723	P2Y14 Receptor., 2018,, 3713-3718.		2
724	Development of Bicyclo[3.1.0]hexane-Based A3 Receptor Ligands: Closing the Gaps in the Structure–Affinity Relationships. Molecules, 2022, 27, 2283.	3.8	2
725	Optical Control of Adenosine A3 Receptor Signaling: Towards a Multimodal Phototherapy in Psoriasis?. Frontiers in Immunology, 2022, 13, 904762.	4.8	2
726	Liquid chromatographic assay for cerebrospinal fluid normetanephrine. Life Sciences, 1987, 40, 1513-1521.	4.3	1
727	Chapter 22 An adenosine A3 receptor-selective agonist does not modulate calcium-activated potassium currents in hippocampal CA1 pyramidal neurons. Progress in Brain Research, 1999, 120, 275-285.	1.4	1
728	Molecular recognition in P2 nucleotide receptors. Nucleic Acids Symposium Series, 2003, 3, 3-4.	0.3	1
729	Design, Synthesis, and Anti-Tumor Activity of 4′-Thionucleosides as Potent and Selective Agonists at the Human A ₃ Adenosine Receptor. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1565-1568.	1.1	1
730	Synthesis of 2-Chloro-N6-Substituted-4'-thioadenosine-5'-N, N-dialkyluronamides as Potent and Selective A3 Adenosine Receptor Antagonists. Nucleic Acids Symposium Series, 2008, 52, 645-646.	0.3	1
731	Reply to: â€~The discovery of a new class of synaptic transmitters in smooth muscle fifty years ago and amelioration of coronary artery thrombosis'. Acta Physiologica, 2013, 208, 139-140.	3.8	1
732	(193) Contribution of IL-10 and T cells in beneficial effects exerted by A 3 adenosine receptor agonists in blocking and reversing neuropathic pain. Journal of Pain, 2017, 18, S24.	1.4	1
733	Convergent synthesis of 2-thioether-substituted (N)-methanocarba-adenosines as purine receptor agonists. RSC Advances, 2021, 11, 27369-27380.	3.6	1
734	Editorial: Geoffrey Burnstock - An Accidental Pharmacologist. Biochemical Pharmacology, 2021, 187, 114421.	4.4	1
735	Activation of phosphoinositide breakdown and elevation of intracellular calcium in a rat RBLâ€2H3 mast cell line by adenosine analogs: Involvement of A3â€adenosine receptors?. Drug Development Research, 1996, 39, 36-46.	2.9	1
736	280-LB: Role of A1 and A3 Adenosine Receptors in Whole Body Glucose Metabolism. Diabetes, 2019, 68, .	0.6	1
737	1705-P: Adipocyte Specific Ablation of P2Y14R Improves Glucose Metabolism in Mice with Diet-Induced Obesity. Diabetes, 2020, 69, .	0.6	1
738	A Functionalized Congener Approach to Muscarinic Ligands. Advances in Behavioral Biology, 1989, , 1-9.	0.2	1

#	Article	IF	CITATIONS
739	PHOTOLABILE A-ADENOSINE RECEPTOR AGONISTS AS "CAGED" ELECTROPHYSIOLOGICAL PROBES. Medicinal Chemistry Research, 1991, 1, 322-329.	2.4	1
740	History of Chemistry in the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Bulletin for the History of Chemistry, 2014, 39, 150-165.	0.0	1
741	Photogenerated reagents in biochemistry and molecular biology. Analytical Biochemistry, 1984, 140, 596.	2.4	0
742	Seizures induced by methylxanthines, potential cognitive enhancers in dementia syndromes. Journal of Neural Transmission Parkinson's Disease and Dementia Section, 1989, 1, 45-45.	1.2	0
743	Improving cold resistance by selective A1 adenosine receptor antagonist in rats. European Journal of Pharmacology, 1990, 183, 681.	3.5	0
744	Synthesis and biological activity of N6-(p-sulfophenyl)alkyl and N6-sulfoalkyl derivatives of adenosine: water-soluble and peripherally selective adenosine agonists. [Erratum to document cited in CA117(23):234413y]. Journal of Medicinal Chemistry, 1993, 36, 3218-3218.	6.4	0
745	PURINES 2000 meeting: Biochemical, pharmacological and clinical perspectives. Drug Development Research, 2001, 52, iv-iv.	2.9	O
746	Chapter 8. Purine and pyrimidine nucleotide (P2) receptors. Annual Reports in Medicinal Chemistry, 2002, 37, 75-84.	0.9	0
747	Partial Agonists for A3 Adenosine Receptors. ChemInform, 2004, 35, no.	0.0	0
748	Modified Nucleosides as Selective Modulators of Adenosine Receptors for Therapeutic Use. , 0, , 433-449.		0
749	Additions and corrections and MedChemWatch Issue 19. MedChemComm, 2013, 4, 1623.	3.4	0
750	The Therapeutic Effect of 2-Cyclohexylthio-AMP in Heart Failure. Journal of Cardiovascular Pharmacology, 2013, 61, 553-559.	1.9	0
751	Correction: Ford et al., Engagement of the GABA to KCC2 Signaling Pathway Contributes to the Analgesic Effects of A3AR Agonists in Neuropathic Pain. Journal of Neuroscience, 2015, 35, 8971-8971.	3.6	0
752	A Key Opinion Leader interview: insight into the research and career of Dr KA Jacobson. Expert Opinion on Therapeutic Patents, 2015, 25, 125-129.	5.0	0
753	(192) Targeting A3 adenosine receptor in HIV-1 gp120-induced neuropathic pain. Journal of Pain, 2017, 18, S24.	1.4	0
754	Adenosine \hat{a}^{-} 1., 2017, , .		0
755	Geoffrey Burnstock – An accidental pharmacologist. Biochemical Pharmacology, 2021, 187, 114300.	4.4	0
756	Allosteric Coupling of Drug Binding and Intracellular Signaling in the A2A Adenosine Receptor. , 2021, , 184-196.		0

#	Article	IF	CITATIONS
757	UDP is an antagonist at the hP2Y14 receptor. FASEB Journal, 2007, 21, A424.	0.5	O
758	Identification of distinct, ligandâ€specific structural changes in a G proteinâ€coupled receptor. FASEB Journal, 2007, 21, A425.	0.5	0
759	The glucose moiety of uridine 5′–diphosphoglucose is structurally permissive in activation of the human P2Y14 receptor. FASEB Journal, 2008, 22, 720.10.	0.5	0
760	Molecular Modeling and Reengineering of A3 Adenosine Receptors. , 2010, , 149-161.		0
761	Regulation of Adenosine Receptors in Cultured Heart Cells. Advances in Experimental Medicine and Biology, 1995, 382, 205-215.	1.6	0
762	P2Y14 Receptor., 2016,, 1-5.		0
763	Allosteric Coupling of Drug Binding and Intracellular Signaling in the A _{2A} Adenosine Receptor. SSRN Electronic Journal, 0, , .	0.4	0
764	Polymorphic Role of P2Y6 Receptor in Insulin Sensitive Organs—Adipose Tissue and Skeletal Muscle. Diabetes, 2018, 67, 1769-P.	0.6	0
765	Abstract WP143: Acute Treatment With Purinergic Receptor P2X4 Inhibitors Show Neuroprotective and Neuro-Rehabilitation Potential in Ischemic Stroke. Stroke, 2019, 50, .	2.0	0
766	Identification and Characterization of â€~Biased' A ₃ Adenosine Receptor Allosteric Modulators. FASEB Journal, 2020, 34, 1-1.	0.5	0
767	Adenosine Receptors., 2021,, 30-40.		0
768	Synthesis and Effect of Conformationally Locked Carbocyclic Guanine Nucleotides on Dynamin. Biomolecules, 2022, 12, 584.	4.0	0
769	Title is missing!. , 2020, 15, e0243986.		0
770	Title is missing!. , 2020, 15, e0243986.		0
771	Title is missing!. , 2020, 15, e0243986.		0
772	Title is missing!. , 2020, 15, e0243986.		0
773	Title is missing!. , 2020, 15, e0243986.		0
774	Title is missing!. , 2020, 15, e0243986.		0

#	Article	IF	CITATIONS
775	P2Y \cdot sub>14 \cdot /sub> receptor inhibition reverses mechanical sensitivity in a mouse model of chronic neuropathic pain. FASEB Journal, 2022, 36, .	0.5	O
776	Stereospecific antiseizure activity in mouse and rat epilepsy models by a pyridinium inhibitor of TNF \hat{l} ±/NF \hat{l} *B signaling. European Journal of Medicinal Chemistry Reports, 2022, 6, 100065.	1.4	0