
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1485280/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Climateâ€driven, but dynamic and complex? A reconciliation of competing hypotheses for species' distributions. Ecology Letters, 2022, 25, 38-51.	6.4	20
2	Joint effects of climate, tree size, and year on annual tree growth derived from treeâ€ring records of ten globally distributed forests. Global Change Biology, 2022, 28, 245-266.	9.5	46
3	Interannual temperature variability is a principal driver of low-frequency fluctuations in marine fish populations. Communications Biology, 2022, 5, 28.	4.4	9
4	Tropical tree growth driven by dry-season climate variability. Nature Geoscience, 2022, 15, 269-276.	12.9	38
5	Seeing the forest through the trees: how treeâ€level measurements can help understand forest dynamics. New Phytologist, 2022, 234, 1544-1546.	7.3	6
6	The role of demographic compensation in stabilising marginal tree populations in North America. Ecology Letters, 2022, 25, 1676-1689.	6.4	11
7	Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO ₂ . New Phytologist, 2021, 229, 2413-2445.	7.3	286
8	Diversity Bears Fruit: Evaluating the Economic Potential of Undervalued Fruits for an Agroecological Restoration Approach in the Peruvian Amazon. Sustainability, 2021, 13, 4582.	3.2	2
9	Ring width and vessel features of the mangrove Excoecaria agallocha L. depend on salinity in the Sundarbans, Bangladesh. Dendrochronologia, 2021, 68, 125857.	2.2	3
10	Detecting forest response to droughts with global observations of vegetation water content. Global Change Biology, 2021, 27, 6005-6024.	9.5	73
11	Longâ€ŧerm physiological and growth responses of Himalayan fir to environmental change are mediated by mean climate. Global Change Biology, 2020, 26, 1778-1794.	9.5	49
12	The life cycle carbon balance of selective logging in tropical forests of Costa Rica. Journal of Industrial Ecology, 2020, 24, 534-547.	5.5	4
13	Tree mode of death and mortality risk factors across Amazon forests. Nature Communications, 2020, 11, 5515.	12.8	62
14	Salinity drives growth dynamics of the mangrove tree Sonneratia apetala BuchHam. in the Sundarbans, Bangladesh. Dendrochronologia, 2020, 62, 125711.	2.2	24
15	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	12.6	198
16	Recent CO ₂ rise has modified the sensitivity of tropical tree growth to rainfall and temperature. Global Change Biology, 2020, 26, 4028-4041.	9.5	30
17	Frankincense in peril. Nature Sustainability, 2019, 2, 602-610.	23.7	39
18	Heritability of growth and leaf loss compensation in a long-lived tropical understorey palm. PLoS ONE, 2019, 14, e0209631.	2.5	3

#	Article	IF	CITATIONS
19	Compositional response of Amazon forests to climate change. Global Change Biology, 2019, 25, 39-56.	9.5	265
20	Developing forensic tools for an African timber: Regional origin is revealed by genetic characteristics, but not by isotopic signature. Biological Conservation, 2018, 220, 262-271.	4.1	36
21	Towards smarter harvesting from natural palm populations by sparing the individuals that contribute most to population growth or productivity. Journal of Applied Ecology, 2018, 55, 1682-1691.	4.0	9
22	A Wood Biology Agenda to Support Global Vegetation Modelling. Trends in Plant Science, 2018, 23, 1006-1015.	8.8	42
23	Tropical timber tracing and stable isotopes: A response to Horacek et al Biological Conservation, 2018, 226, 335-336.	4.1	3
24	Chemical differentiation of Bolivian Cedrela species as a tool to trace illegal timber trade. Forestry, 2018, 91, 603-613.	2.3	17
25	Matrix population models indicate that bark harvest of two medicinal plants in Uganda's Bwindi Impenetrable National Park is sustainable. African Journal of Ecology, 2017, 55, 30-36.	0.9	0
26	Stable isotopes in tropical tree rings: theory, methods and applications. Functional Ecology, 2017, 31, 1674-1689.	3.6	55
27	Revisiting the â€~cornerstone of Amazonian conservation': a socioecological assessment of Brazil nut exploitation. Biodiversity and Conservation, 2017, 26, 2007-2027.	2.6	48
28	Using tree-ring data to improve timber-yield projections for African wet tropical forest tree species. Forest Ecology and Management, 2017, 400, 396-407.	3.2	16
29	Explaining long-term inter-individual growth variation in plant populations: persistence of abiotic factors matters. Oecologia, 2017, 185, 663-674.	2.0	3
30	Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses. Functional Ecology, 2017, 31, 568-581.	3.6	48
31	Trends in tropical tree growth: reâ€analyses confirm earlier findings. Global Change Biology, 2017, 23, 1761-1762.	9.5	10
32	Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming. Frontiers in Plant Science, 2016, 7, 607.	3.6	11
33	Demography and sustainable management of two fiberâ€producing <i>Astrocaryum</i> palms in Colombia. Biotropica, 2016, 48, 598-607.	1.6	7
34	Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 230-235.	7.1	290
35	No second chances: demography from the forest floor to the canopy and back again. Journal of Ecology, 2015, 103, 1498-1508.	4.0	3
36	Long-term growth patterns of juvenile trees from a Bolivian tropical moist forest: shifting investments in diameter growth and height growth. Journal of Tropical Ecology, 2015, 31, 519-529.	1.1	11

#	Article	IF	CITATIONS
37	Mobile dune fixation by a fast-growing clonal plant: a full life-cycle analysis. Scientific Reports, 2015, 5, 8935.	3.3	12
38	Resilience of palm populations to disturbance is determined by interactive effects of fire, herbivory and harvest. Journal of Ecology, 2015, 103, 1032-1043.	4.0	35
39	Tree-ring δ180 in African mahogany (Entandrophragma utile) records regional precipitation and can be used for climate reconstructions. Global and Planetary Change, 2015, 127, 58-66.	3.5	20
40	Tree growth variation in the tropical forest: understanding effects of temperature, rainfall and <scp>CO</scp> ₂ . Global Change Biology, 2015, 21, 2749-2761.	9.5	50
41	Sapwood allocation in tropical trees: a test of hypotheses. Functional Plant Biology, 2015, 42, 697.	2.1	13
42	Explaining biomass growth of tropical canopy trees: the importance of sapwood. Oecologia, 2015, 177, 1145-1155.	2.0	30
43	What drives the vital rates of secondary hemiepiphytes? A first assessment for three species of <i>Heteropsis</i> (Araceae) in the Colombian Amazon. Journal of Tropical Ecology, 2015, 31, 251-265.	1.1	11
44	No evidence for consistent longâ€ŧerm growth stimulation of 13 tropical tree species: results from treeâ€ring analysis. Global Change Biology, 2015, 21, 3762-3776.	9.5	47
45	15N in tree rings as a bio-indicator of changing nitrogen cycling in tropical forests: an evaluation at three sites using two sampling methods. Frontiers in Plant Science, 2015, 6, 229.	3.6	16
46	No growth stimulation of tropical trees by 150Âyears of CO2 fertilization but water-use efficiencyÂincreased. Nature Geoscience, 2015, 8, 24-28.	12.9	348
47	Detecting longâ€ŧerm growth trends using tree rings: a critical evaluation of methods. Global Change Biology, 2015, 21, 2040-2054.	9.5	136
48	Loss of animal seed dispersal increases extinction risk in a tropical tree species due to pervasive negative density dependence across life stages. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142095.	2.6	93
49	A More Realistic Portrayal of Tropical Forestry: Response to Kormos and Zimmerman. Conservation Letters, 2014, 7, 145-146.	5.7	1
50	Understanding recruitment failure in tropical tree species: Insights from a tree-ring study. Forest Ecology and Management, 2014, 312, 108-116.	3.2	37
51	Potential of tree-ring analysis in a wet tropical forest: A case study on 22 commercial tree species in Central Africa. Forest Ecology and Management, 2014, 323, 65-78.	3.2	89
52	Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees. Oecologia, 2014, 174, 1449-1461.	2.0	122
53	Understanding causes of tree growth response to gap formation: â^†13C-values in tree rings reveal a predominant effect of light. Trees - Structure and Function, 2014, 28, 439-448.	1.9	21
54	The fate of populations of Euterpe oleracea harvested for palm heart in Colombia. Forest Ecology and Management, 2014, 318, 274-284.	3.2	20

#	Article	IF	CITATIONS
55	Time-dependent effects of climate and drought on tree growth in a Neotropical dry forest: Short-term tolerance vs. long-term sensitivity. Agricultural and Forest Meteorology, 2014, 188, 13-23.	4.8	65
56	Diverse local regulatory responses to a new forestry regime in forest communities in the Bolivian Amazon. Land Use Policy, 2014, 39, 224-232.	5.6	11
57	Learning from the past: Trends and dynamics in livelihoods of Bolivian forest communities. Environmental Science and Policy, 2014, 40, 36-48.	4.9	17
58	The New Face of Debt-Peonage in the Bolivian Amazon: Social Networks and Bargaining Instruments. Human Ecology, 2014, 42, 541-549.	1.4	4
59	Disturbance History of a Seasonal Tropical Forest in Western Thailand: A Spatial Dendroecological Analysis. Biotropica, 2013, 45, 578-586.	1.6	24
60	Tropical forests and global change: filling knowledge gaps. Trends in Plant Science, 2013, 18, 413-419.	8.8	130
61	Understanding the effects of a new grazing policy: the impact of seasonal grazing on shrub demography in the <scp>I</scp> nner <scp>M</scp> ongolian steppe. Journal of Applied Ecology, 2013, 50, 1377-1386.	4.0	37
62	Livelihood strategies and forest dependence: New insights from Bolivian forest communities. Forest Policy and Economics, 2013, 26, 12-21.	3.4	85
63	Variation in ploidy level and phenology can result in large and unexpected differences in demography and climatic sensitivity between closely related ferns. American Journal of Botany, 2012, 99, 1375-1387.	1.7	8
64	Tropical forest warming: looking backwards for more insights. Trends in Ecology and Evolution, 2012, 27, 193-194.	8.7	46
65	Making conservation research more relevant for conservation practitioners. Biological Conservation, 2012, 153, 164-168.	4.1	111
66	Sustaining conservation values in selectively logged tropical forests: the attained and the attainable. Conservation Letters, 2012, 5, 296-303.	5.7	439
67	Limitations to sustainable frankincense production: blocked regeneration, high adult mortality and declining populations. Journal of Applied Ecology, 2012, 49, 164-173.	4.0	62
68	The Quest for a Suitable Host: Size Distributions of Host Trees and Secondary Hemiepiphytes Search Strategy. Biotropica, 2012, 44, 19-26.	1.6	10
69	Driving factors of forest growth: a reply to Ferry <i>etÂal.</i> (2012). Journal of Ecology, 2012, 100, 1069-1073.	4.0	3
70	Strong persistent growth differences govern individual performance and population dynamics in a tropical forest understorey palm. Journal of Ecology, 2012, 100, 1224-1232.	4.0	25
71	Diameter Growth of Juvenile Trees after Gap Formation in a Bolivian Rain Forest: Responses are Strongly Speciesâ€specific and Sizeâ€dependent. Biotropica, 2012, 44, 312-320.	1.6	8
72	Climate is a stronger driver of tree and forest growth rates than soil and disturbance. Journal of Ecology, 2011, 99, 254-264.	4.0	202

#	Article	IF	CITATIONS
73	Strict mast fruiting for a tropical dipterocarp tree: a demographic cost-benefit analysis of delayed reproduction and seed predation. Journal of Ecology, 2011, 99, 1033-1044.	4.0	50
74	Evaluating the annual nature of juvenile rings in Bolivian tropical rainforest trees. Trees - Structure and Function, 2011, 25, 17-27.	1.9	54
75	Dendroecology in the tropics: a review. Trees - Structure and Function, 2011, 25, 3-16.	1.9	198
76	Attaining the canopy in dry and moist tropical forests: strong differences in tree growth trajectories reflect variation in growing conditions. Oecologia, 2010, 163, 485-496.	2.0	67
77	Seedlings of the semi-shrub Artemisia ordosica are resistant to moderate wind denudation and sand burial in Mu Us sandland, China. Trees - Structure and Function, 2010, 24, 515-521.	1.9	37
78	Effects of denudation and burial on growth and reproduction of <i>Artemisia ordosica</i> in Mu Us sandland. Ecological Research, 2010, 25, 655-661.	1.5	39
79	Tropical tree rings reveal preferential survival of fastâ€growing juveniles and increased juvenile growth rates over time. New Phytologist, 2010, 185, 759-769.	7.3	63
80	Climateâ€growth analysis for a Mexican dry forest tree shows strong impact of sea surface temperatures and predicts future growth declines. Global Change Biology, 2010, 16, 2001-2012.	9.5	86
81	Integral Projection Models for trees: a new parameterization method and a validation of model output. Journal of Ecology, 2010, 98, 345-355.	4.0	94
82	Recruitment subsidies support tree subpopulations in nonâ€preferred tropical forest habitats. Journal of Ecology, 2010, 98, 636-644.	4.0	8
83	Timber yield projections for tropical tree species: The influence of fast juvenile growth on timber volume recovery. Forest Ecology and Management, 2010, 259, 2292-2300.	3.2	21
84	Do Persistently Fastâ€Growing Juveniles Contribute Disproportionately to Population Growth? A New Analysis Tool for Matrix Models and Its Application to Rainforest Trees. American Naturalist, 2009, 174, 709-719.	2.1	61
85	Conservation prospects for threatened Vietnamese tree species: results from a demographic study. Population Ecology, 2008, 50, 227-237.	1.2	37
86	Improved Tropical Forest Management for Carbon Retention. PLoS Biology, 2008, 6, e166.	5.6	174
87	Tree bark as a non-timber forest product: The effect of bark collection on population structure and dynamics of Garcinia lucida Vesque. Forest Ecology and Management, 2007, 240, 1-12.	3.2	50
88	TESTING SUSTAINABILITY BY PROSPECTIVE AND RETROSPECTIVE DEMOGRAPHIC ANALYSES: EVALUATION FOR PALM LEAF HARVEST. , 2007, 17, 118-128.		67
89	Incorporating persistent tree growth differences increases estimates of tropical timber yield. Frontiers in Ecology and the Environment, 2007, 5, 302-306.	4.0	47
90	Strong habitat preference of a tropical rain forest tree does not imply large differences in population dynamics across habitats. Journal of Ecology, 2007, 95, 332-342.	4.0	51

#	Article	IF	CITATIONS
91	The use of tree rings in tropical forest management: Projecting timber yields of four Bolivian tree species. Forest Ecology and Management, 2006, 226, 256-267.	3.2	101
92	Autocorrelated growth of tropical forest trees: Unraveling patterns and quantifying consequences. Forest Ecology and Management, 2006, 237, 179-190.	3.2	66
93	A monocarpic tree species in a polycarpic world: how can Tachigali vasquezii maintain itself so successfully in a tropical rain forest community?. Journal of Ecology, 2005, 93, 268-278.	4.0	28
94	Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia, 2005, 146, 1-12.	2.0	229
95	Combining dendrochronology and matrix modelling in demographic studies: An evaluation for Juniperus procera in Ethiopia. Forest Ecology and Management, 2005, 216, 317-330.	3.2	39
96	A physiological production model for cocoa (Theobroma cacao): model presentation, validation and application. Agricultural Systems, 2005, 84, 195-225.	6.1	155
97	Demographic Threats to the Sustainability of Brazil Nut Exploitation. Science, 2003, 302, 2112-2114.	12.6	237
98	Demography of the Brazil nut tree (<i>Bertholletia excelsa</i>) in the Bolivian Amazon: impact of seed extraction on recruitment and population dynamics. Journal of Tropical Ecology, 2002, 18, 1-31.	1.1	181
99	Integrating vital rate variability into perturbation analysis: an evaluation for matrix population models of six plant species. Journal of Ecology, 2001, 89, 995-1005.	4.0	52
100	Forest fragmentation and biodiversity: the case for intermediate-sized conservation areas. Environmental Conservation, 1996, 23, 290-297.	1.3	125