
Giorgio Vacchiano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1485256/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Resprouting in European beech confers resilience to high-frequency fire. Forestry, 2023, 96, 372-386.	2.3	4
2	Meta-analysis Reveals Different Competition Effects on Tree Growth Resistance and Resilience to Drought. Ecosystems, 2022, 25, 30-43.	3.4	40
3	MASTREE+: Timeâ€series of plant reproductive effort from six continents. Global Change Biology, 2022, 28, 3066-3082.	9.5	19
4	Contrasting responses of forest growth and carbon sequestration to heat and drought in the Alps. Environmental Research Letters, 2022, 17, 045015.	5.2	6
5	Globally, tree fecundity exceeds productivity gradients. Ecology Letters, 2022, 25, 1471-1482.	6.4	11
6	Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery. Nature Communications, 2022, 13, 2381.	12.8	21
7	Effects of tree spacing and thinning on root reinforcement in mountain forests of the European Southern Alps. Forest Ecology and Management, 2021, 482, 118873.	3.2	16
8	Tackling unresolved questions in forest ecology: The past and future role of simulation models. Ecology and Evolution, 2021, 11, 3746-3770.	1.9	37
9	Temporal Dynamics of Root Reinforcement in European Spruce Forests. Forests, 2021, 12, 815.	2.1	8
10	Precision restoration: a necessary approach to foster forest recovery in the 21st century. Restoration Ecology, 2021, 29, e13421.	2.9	45
11	Is there tree senescence? The fecundity evidence. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	42
12	The ecology and evolution of synchronized reproduction in long-lived plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200369.	4.0	36
13	Natural disturbances and masting: from mechanisms to fitness consequences. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200384.	4.0	14
14	The 63-year changes in annual streamflow volumes across Europe with a focus on the Mediterranean basin. Hydrology and Earth System Sciences, 2021, 25, 5589-5601.	4.9	20
15	Modes of climate variability bridge proximate and evolutionary mechanisms of masting. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200380.	4.0	14
16	Integrating Remote and In-Situ Data to Assess the Hydrological Response of a Post-Fire Watershed. Hydrology, 2021, 8, 169.	3.0	6
17	Climate teleconnections synchronize <i>Picea glauca</i> masting and fire disturbance: Evidence for a fireâ€related form of environmental prediction. Journal of Ecology, 2020, 108, 1186-1198.	4.0	35
18	Douglas-fir climate sensitivity at two contrasting sites along the southern limit of the European planting range. Journal of Forestry Research, 2020, 31, 2193-2204.	3.6	14

#	Article	IF	CITATIONS
19	Available and missing data to model impact of climate change on European forests. Ecological Modelling, 2020, 416, 108870.	2.5	58
20	From theory to experiments for testing the proximate mechanisms of mast seeding: an agenda for an experimental ecology. Ecology Letters, 2020, 23, 210-220.	6.4	64
21	How robust are future projections of forest landscape dynamics? Insights from a systematic comparison of four forest landscape models. Environmental Modelling and Software, 2020, 134, 104844.	4.5	34
22	Reply to: Nutrient scarcity cannot cause mast seeding. Nature Plants, 2020, 6, 763-765.	9.3	6
23	Effects of Twenty Years of Ungulate Browsing on Forest Regeneration at Paneveggio Reserve, Italy. Forests, 2020, 11, 612.	2.1	12
24	No polarization–Expected Values of Climate Change Impacts among European Forest Professionals and Scientists. Sustainability, 2020, 12, 2659.	3.2	9
25	The role of beliefs, expectations and values in decision-making favoring climate change adaptation—implications for communications with European forest professionals. Environmental Research Letters, 2020, 15, 114061.	5.2	14
26	Harmonized dataset of surface fuels under Alpine, temperate and Mediterranean conditions in Italy. A synthesis supporting fire management. IForest, 2020, 13, 513-522.	1.4	16
27	An integrated approach to assess carbon credit from improved forest management. Journal of Sustainable Forestry, 2019, 38, 31-45.	1.4	17
28	Inconsistent recognition of uncertainty in studies of climate change impacts on forests. Environmental Research Letters, 2019, 14, 113003.	5.2	8
29	Application of vegetation index time series to value fire effect on primary production in a Southern European rare wetland. Ecological Engineering, 2019, 134, 9-17.	3.6	14
30	Tree mortality submodels drive simulated longâ€ŧerm forest dynamics: assessing 15 models from the stand to global scale. Ecosphere, 2019, 10, e02616.	2.2	93
31	Temperature and masting control Norway spruce growth, but with high individual tree variability. Forest Ecology and Management, 2019, 438, 142-150.	3.2	34
32	Forest carbon allocation modelling under climate change. Tree Physiology, 2019, 39, 1937-1960.	3.1	70
33	Nutrient scarcity as a selective pressure for mast seeding. Nature Plants, 2019, 5, 1222-1228.	9.3	53
34	Geographical adaptation prevails over speciesâ€specific determinism in trees' vulnerability to climate change at Mediterranean rearâ€edge forests. Global Change Biology, 2019, 25, 1296-1314.	9.5	55
35	Interactions between climate, growth and seed production in Spanish black pine (Pinus nigra Arn. ssp.) Tj ETQq1	1 0.78431 1.7	4 rgBT /Ovel 26
36	Species-specific, pan-European diameter increment models based on data of 2.3 million trees. Forest	3.1	27

Ecosystems, 2018, 5, .

3.127

#	Article	IF	CITATIONS
37	Reproducing reproduction: How to simulate mast seeding in forest models. Ecological Modelling, 2018, 376, 40-53.	2.5	53
38	Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecology Letters, 2018, 21, 1833-1844.	6.4	92
39	Modeling anthropogenic and natural fire ignitions in an inner-alpine valley. Natural Hazards and Earth System Sciences, 2018, 18, 935-948.	3.6	35
40	Voluntary carbon credits from improved forest management: policy guidelines and case study. IForest, 2018, 11, 1-10.	1.4	14
41	A Study Of Coppicing In Beech Trees. , 2018, , .		0
42	Assessing the availability of forest biomass for bioenergy by publicly available satellite imagery. IForest, 2018, 11, 459-468.	1.4	7
43	Effects of the lack of forest management on spatiotemporal dynamics of a subalpine <i>Pinus cembra</i> forest. Scandinavian Journal of Forest Research, 2017, 32, 142-153.	1.4	8
44	Two centuries of masting data for <scp>E</scp> uropean beech and <scp>N</scp> orway spruce across the <scp>E</scp> uropean continent. Ecology, 2017, 98, 1473-1473.	3.2	47
45	Alternative stable states in mountain forest ecosystems: the case of European larch (Larix decidua) forests in the western Alps. Journal of Mountain Science, 2017, 14, 811-822.	2.0	8
46	Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. Forest Ecology and Management, 2017, 396, 160-175.	3.2	219
47	Spatial patterns and broadâ€scale weather cues of beech mast seeding in Europe. New Phytologist, 2017, 215, 595-608.	7.3	86
48	Forest disturbances under climate change. Nature Climate Change, 2017, 7, 395-402.	18.8	1,561
49	Large-scale atmospheric circulation enhances the Mediterranean East-West tree growth contrast at rear-edge deciduous forests. Agricultural and Forest Meteorology, 2017, 239, 86-95.	4.8	27
50	Predicting the spatial and temporal dynamics of species interactions in Fagus sylvatica and Pinus sylvestris forests across Europe. Forest Ecology and Management, 2017, 405, 112-133.	3.2	40
51	The effect of forest management on endangered insects assessed by radio-tracking: The case of the ground beetle Carabus olympiae in European beech Fagus sylvatica stands. Forest Ecology and Management, 2017, 406, 125-137.	3.2	10
52	Resilience of European larch (Larix decidua Mill.) forests to wildfires in the western Alps. New Forests, 2017, 48, 663-683.	1.7	16
53	Vegetative regeneration of beech coppices for biomass in Piedmont, NW Italy. Biomass and Bioenergy, 2017, 107, 271-278.	5.7	6
54	Forest dynamics and disturbance regimes in the Italian Apennines. Forest Ecology and Management, 2017, 388, 57-66.	3.2	50

#	Article	IF	CITATIONS
55	A walk on the wild side: Disturbance dynamics and the conservation and management of European mountain forest ecosystems. Forest Ecology and Management, 2017, 388, 120-131.	3.2	172
56	Inter-annual and decadal changes in teleconnections drive continental-scale synchronization of tree reproduction. Nature Communications, 2017, 8, 2205.	12.8	56
57	Projecting Nonnative Douglas Fir Plantations in Southern Europe with the Forest Vegetation Simulator. Forest Science, 2017, 63, 101-110.	1.0	10
58	Frequent coppicing deteriorates the conservation status of black alder forests in the Po plain (northern Italy). Forest Ecology and Management, 2016, 382, 31-38.	3.2	16
59	Assessing the Effect of Disturbances on the Functionality of Direct Protection Forests. Mountain Research and Development, 2016, 36, 41.	1.0	19
60	Repeated spring precipitation shortage alters individual growth patterns in Scots pine forests in the Western Alps. Trees - Structure and Function, 2015, 29, 1699-1712.	1.9	18
61	The synchronicity of masting and intermediate severity fire effects favors beech recruitment. Forest Ecology and Management, 2015, 353, 126-135.	3.2	30
62	Building Rothermel fire behaviour fuel models by genetic algorithm optimisation. International Journal of Wildland Fire, 2015, 24, 317.	2.4	22
63	Drivers ofPinus sylvestrisL. regeneration following small, high-severity fire in a dry, inner-alpine valley. Plant Biosystems, 2015, 149, 354-363.	1.6	12
64	Effect of avalanche frequency on forest ecosystem services in a spruce–fir mountain forest. Cold Regions Science and Technology, 2015, 115, 9-21.	3.5	21
65	An improved species distribution model for Scots pine and downy oak under future climate change in the NW Italian Alps. Annals of Forest Science, 2015, 72, 321-334.	2.0	20
66	An Implementation of the Rothermel Fire Spread Model in the R Programming Language. Fire Technology, 2015, 51, 523-535.	3.0	22
67	Development of old-growth characteristics in uneven-aged forests of the Italian Alps. European Journal of Forest Research, 2015, 134, 19-31.	2.5	39
68	Comparison of integrative nature conservation in forest policy in Europe: a qualitative pilot study of institutional determinants. Biodiversity and Conservation, 2014, 23, 3425-3450.	2.6	21
69	Fire severity, residuals and soil legacies affect regeneration of Scots pine in the Southern Alps. Science of the Total Environment, 2014, 472, 778-788.	8.0	35
70	A comprehensive framework of forest stand property–density relationships: perspectives for plant population ecology and forest management. Annals of Forest Science, 2014, 71, 325-335.	2.0	23
71	Effects of forest management on ground beetle diversity in alpine beech (Fagus sylvatica L.) stands. Forest Ecology and Management, 2014, 328, 300-309.	3.2	28
72	Calibrating and Testing the Forest Vegetation Simulator to Simulate Tree Encroachment and Control Measures for Heathland Restoration in Southern Europe. Forest Science, 2014, 60, 241-252.	1.0	11

#	Article	IF	CITATIONS
73	Effect of stand-replacing fires on Mediterranean plant species in their marginal alpine range. Alpine Botany, 2013, 123, 123-133.	2.4	9
74	Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Global Change Biology, 2013, 19, 229-240.	9.5	280
75	A density management diagram for Norway spruce in the temperate European montane region. European Journal of Forest Research, 2013, 132, 535-549.	2.5	20
76	Scaling issues in forest ecosystem management and how to address them with models. European Journal of Forest Research, 2013, 132, 653-666.	2.5	39
77	Monitoring and modeling the invasion of the fast spreading alien <i>Senecio inaequidens</i> DC. in an alpine region. Plant Biosystems, 2013, 147, 1139-1147.	1.6	12
78	Modeling Italian forests: state of the art and future challenges. IForest, 2012, 5, 113-120.	1.4	26
79	Evidences of drought stress as a predisposing factor to Scots pine decline in Valle d'Aosta (Italy). European Journal of Forest Research, 2012, 131, 989-1000.	2.5	54
80	Point pattern analysis of crown-to-crown interactions in mountain forests. Procedia Environmental Sciences, 2011, 7, 269-274.	1.4	5
81	Diachronic analysis of individual-tree mortality in a Norway spruce stand in the eastern Italian Alps. Annals of Forest Science, 2010, 67, 304-304.	2.0	26
82	Stand and coarse woody debris dynamics in subalpine Norway spruce forests withdrawn from regular management. Annals of Forest Science, 2010, 67, 803-803.	2.0	16
83	Analysis of intraspecific competition in two subalpine Norway spruce (Picea abies (L.) Karst.) stands in Paneveggio (Trento, Italy). Forest Ecology and Management, 2008, 255, 651-659.	3.2	48
84	A density management diagram for Scots pine (Pinus sylvestris L.): A tool for assessing the forest's protective effect. Forest Ecology and Management, 2008, 255, 2542-2554.	3.2	27
85	Calibrating Rothermel's fuel models by genetic algorithms. , 0, , 102-106.		2