
Nancy Ratner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/14852/publications.pdf Version: 2024-02-01

NANCY PATNED

#	Article	IF	CITATIONS
1	P2RY14 cAMP signaling regulates Schwann cell precursor self-renewal, proliferation, and nerve tumor initiation in a mouse model of neurofibromatosis. ELife, 2022, 11, .	6.0	5
2	The Need for New Treatments Targeting MPNST: The Potential of Strategies Combining MEK Inhibitors with Antiangiogenic Agents. Clinical Cancer Research, 2022, 28, 3185-3195.	7.0	5
3	MicroRNA-155 contributes to plexiform neurofibroma growth downstream of MEK. Oncogene, 2021, 40, 951-963.	5.9	12
4	Purinergic signaling in peripheral nervous system glial cells. Glia, 2021, 69, 1837-1851.	4.9	19
5	Neurofibromatosis in the Era of Precision Medicine: Development of MEK Inhibitors and Recent Successes with Selumetinib. Current Oncology Reports, 2021, 23, 45.	4.0	15
6	Transposon Mutagenesis-Guided CRISPR/Cas9 Screening Strongly Implicates Dysregulation of Hippo/YAP Signaling in Malignant Peripheral Nerve Sheath Tumor Development. Cancers, 2021, 13, 1584.	3.7	7
7	NF106: A Neurofibromatosis Clinical Trials Consortium Phase II Trial of the MEK Inhibitor Mirdametinib (PD-0325901) in Adolescents and Adults With NF1-Related Plexiform Neurofibromas. Journal of Clinical Oncology, 2021, 39, 797-806.	1.6	54
8	WNT5A inhibition alters the malignant peripheral nerve sheath tumor microenvironment and enhances tumor growth. Oncogene, 2021, 40, 4229-4241.	5.9	7
9	Cdc42 activity in Sertoli cells is essential for maintenance of spermatogenesis. Cell Reports, 2021, 37, 109885.	6.4	18
10	NF1 patient missense variants predict a role for ATM in modifying neurofibroma initiation. Acta Neuropathologica, 2020, 139, 157-174.	7.7	13
11	After Nf1 loss in Schwann cells, inflammation drives neurofibroma formation. Neuro-Oncology Advances, 2020, 2, i23-i32.	0.7	15
12	Brain-wide structural and functional disruption in mice with oligodendrocyte-specific <i>Nf1</i> deletion is rescued by inhibition of nitric oxide synthase. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22506-22513.	7.1	11
13	<i>Cdkn2a</i> Loss in a Model of Neurofibroma Demonstrates Stepwise Tumor Progression to Atypical Neurofibroma and MPNST. Cancer Research, 2020, 80, 4720-4730.	0.9	25
14	A molecular basis for neurofibroma-associated skeletal manifestations in NF1. Genetics in Medicine, 2020, 22, 1786-1793.	2.4	12
15	Distinct Roles for Rac1 in Sertoli Cell Function during Testicular Development and Spermatogenesis. Cell Reports, 2020, 31, 107513.	6.4	29
16	HuR/ELAVL1 drives malignant peripheral nerve sheath tumor growth and metastasis. Journal of Clinical Investigation, 2020, 130, 3848-3864.	8.2	38
17	Polo-like kinase 1 as a therapeutic target for malignant peripheral nerve sheath tumors (MPNST) and schwannomas. American Journal of Cancer Research, 2020, 10, 856-869.	1.4	2
18	Correction: Co-targeting the MAPK and PI3K/AKT/mTOR pathways in two genetically engineered mouse models of schwann cell tumors reduces tumor grade and multiplicity. Oncotarget, 2020, 11, 3618-3620.	1.8	0

#	Article	IF	CITATIONS
19	The evolution and multi-molecular properties of NF1 cutaneous neurofibromas originating from C-fiber sensory endings and terminal Schwann cells at normal sites of sensory terminations in the skin. PLoS ONE, 2019, 14, e0216527.	2.5	15
20	Editor's Note: Genomic and Molecular Characterization of Malignant Peripheral Nerve Sheath Tumor Identifies the IGF1R Pathway as a Primary Target for Treatment. Clinical Cancer Research, 2019, 25, 3195-3195.	7.0	0
21	Proximity biotinylation identifies a set of conformation-specific interactions between Merlin and cell junction proteins. Science Signaling, 2019, 12, .	3.6	17
22	RUNX represses <i>Pmp22</i> to drive neurofibromagenesis. Science Advances, 2019, 5, eaau8389.	10.3	11
23	iGEAK: an interactive gene expression analysis kit for seamless workflow using the R/shiny platform. BMC Genomics, 2019, 20, 177.	2.8	37
24	Targeted Inhibition of the Dual Specificity Phosphatases DUSP1 and DUSP6 Suppress MPNST Growth via JNK. Clinical Cancer Research, 2019, 25, 4117-4127.	7.0	53
25	Prevalence of the Hippo Effectors YAP1/TAZ in Tumors of Soft Tissue and Bone. Scientific Reports, 2019, 9, 19704.	3.3	18
26	Malignant peripheral nerve sheath tumor: Transformation in a patient with neurofibromatosis type 2. Pediatric Blood and Cancer, 2019, 66, e27520.	1.5	4
27	STAT3 inhibition reduces macrophage number and tumor growth in neurofibroma. Oncogene, 2019, 38, 2876-2884.	5.9	44
28	Cxcr3-expressing leukocytes are necessary for neurofibroma formation in mice. JCl Insight, 2019, 4, .	5.0	21
29	Programming of Schwann Cells by Lats1/2-TAZ/YAP Signaling Drives Malignant Peripheral Nerve Sheath Tumorigenesis. Cancer Cell, 2018, 33, 292-308.e7.	16.8	83
30	Tonic ATP-mediated growth suppression in peripheral nerve glia requires arrestin-PP2 and is evaded in NF1. Acta Neuropathologica Communications, 2018, 6, 127.	5.2	9
31	Defective transcription elongation in a subset of cancers confers immunotherapy resistance. Nature Communications, 2018, 9, 4410.	12.8	17
32	Genetically engineered minipigs model the major clinical features of human neurofibromatosis type 1. Communications Biology, 2018, 1, 158.	4.4	49
33	AMP kinase promotes glioblastoma bioenergetics and tumour growth. Nature Cell Biology, 2018, 20, 823-835.	10.3	106
34	Exploiting mitochondrial and metabolic homeostasis as a vulnerability in NF1 deficient cells. Oncotarget, 2018, 9, 15860-15875.	1.8	4
35	An inflammatory gene signature distinguishes neurofibroma Schwann cells and macrophages from cells in the normal peripheral nervous system. Scientific Reports, 2017, 7, 43315.	3.3	38
36	Oligodendrocyte Nf1 Controls Aberrant Notch Activation and Regulates Myelin Structure and Behavior. Cell Reports, 2017, 19, 545-557.	6.4	42

#	Article	lF	CITATIONS
37	A Collaborative Model for Accelerating the Discovery and Translation of Cancer Therapies. Cancer Research, 2017, 77, 5706-5711.	0.9	22
38	Oligodendrocyte RasG12V expressed in its endogenous locus disrupts myelin structure through increased MAPK, nitric oxide, and notch signaling. Glia, 2017, 65, 1990-2002.	4.9	14
39	Neurofibromatosis Type 1–Associated MPNST State of the Science: Outlining a Research Agenda for the Future. Journal of the National Cancer Institute, 2017, 109, .	6.3	80
40	Aurora A kinase inhibition enhances oncolytic herpes virotherapy through cytotoxic synergy and innate cellular immune modulation. Oncotarget, 2017, 8, 17412-17427.	1.8	24
41	Immune profiling of NF1-associated tumors reveals histologic subtype distinctions and heterogeneity: implications for immunotherapy. Oncotarget, 2017, 8, 82037-82048.	1.8	41
42	The "neuro―of neuroblastoma: <scp>N</scp> euroblastoma as a neurodevelopmental disorder. Annals of Neurology, 2016, 80, 13-23.	5.3	54
43	Activity of Selumetinib in Neurofibromatosis Type 1–Related Plexiform Neurofibromas. New England Journal of Medicine, 2016, 375, 2550-2560.	27.0	486
44	HR23b expression is a potential predictive biomarker for HDAC inhibitor treatment in mesenchymal tumours and is associated with response to vorinostat. Journal of Pathology: Clinical Research, 2016, 2, 59-71.	3.0	9
45	Insertional Mutagenesis Identifies a STAT3/Arid1b/β-catenin Pathway Driving Neurofibroma Initiation. Cell Reports, 2016, 14, 1979-1990.	6.4	55
46	An ShRNA Screen Identifies MEIS1 as a Driver of Malignant Peripheral Nerve Sheath Tumors. EBioMedicine, 2016, 9, 110-119.	6.1	24
47	Leveraging a Sturge-Weber Gene Discovery: An Agenda for FutureÂResearch. Pediatric Neurology, 2016, 58, 12-24.	2.1	19
48	CK2 blockade causes MPNST cell apoptosis and promotes degradation of β-catenin. Oncotarget, 2016, 7, 53191-53203.	1.8	15
49	Preclinical assessments of the MEK inhibitor PD-0325901 in a mouse model of neurofibromatosis type 1. Pediatric Blood and Cancer, 2015, 62, 1709-1716.	1.5	59
50	Fatty acid synthase is a metabolic oncogene targetable in malignant peripheral nerve sheath tumors. Neuro-Oncology, 2015, 17, 1599-1608.	1.2	19
51	A RASopathy gene commonly mutated in cancer: the neurofibromatosis type 1 tumour suppressor. Nature Reviews Cancer, 2015, 15, 290-301.	28.4	348
52	Placenta growth factor augments airway hyperresponsiveness via leukotrienes and IL-13. Journal of Clinical Investigation, 2015, 126, 571-584.	8.2	33
53	Runx1: a new driver in neurofibromagenesis. Oncoscience, 2015, 2, 904-905.	2.2	10
54	The Protein Tyrosine Phosphatase Shp2 Is Required for the Generation of Oligodendrocyte Progenitor Cells and Myelination in the Mouse Telencephalon. Journal of Neuroscience, 2014, 34, 3767-3778.	3.6	40

#	Article	IF	CITATIONS
55	Genome-wide Twist1 occupancy in endocardial cushion cells, embryonic limb buds, and peripheral nerve sheath tumor cells. BMC Genomics, 2014, 15, 821.	2.8	12
56	Trp53 Haploinsufficiency Modifies EGFR-Driven Peripheral Nerve Sheath Tumorigenesis. American Journal of Pathology, 2014, 184, 2082-2098.	3.8	26
57	The tumour suppressor LKB1 regulates myelination through mitochondrial metabolism. Nature Communications, 2014, 5, 4993.	12.8	61
58	Co-targeting the MAPK and PI3K/AKT/mTOR pathways in two genetically engineered mouse models of schwann cell tumors reduces tumor grade and multiplicity. Oncotarget, 2014, 5, 1502-1514.	1.8	68
59	Abstract IA10: Signaling through individual Ras proteins in the absence of the Nf1-RASCAP. , 2014, , .		0
60	Nf1 Loss and Ras Hyperactivation in Oligodendrocytes Induce NOS-Driven Defects in Myelin and Vasculature. Cell Reports, 2013, 4, 1197-1212.	6.4	51
61	Canonical Wnt/β-catenin Signaling Drives Human Schwann Cell Transformation, Progression, and Tumor Maintenance. Cancer Discovery, 2013, 3, 674-689.	9.4	87
62	Neurofibroma-associated macrophages play roles in tumor growth and response to pharmacological inhibition. Acta Neuropathologica, 2013, 125, 159-168.	7.7	104
63	Corrigendum to "The Learning Disabilities Network (LeaDNet): Using Neurofibromatosis Type 1 [NF1] as a Paradigm for Translational Researchâ€, , 2013, 161, 236-236.		0
64	Interweaving the Strands: Î ² -Catenin, an HIV Co-Receptor, and Schwann Cell Tumors. Cancer Cell, 2013, 23, 269-271.	16.8	9
65	Forward genetic screen for malignant peripheral nerve sheath tumor formation identifies new genes and pathways driving tumorigenesis. Nature Genetics, 2013, 45, 756-766.	21.4	137
66	The Protein Kinase A Regulatory Subunit R1A (Prkar1a) Plays Critical Roles in Peripheral Nerve Development. Journal of Neuroscience, 2013, 33, 17967-17975.	3.6	17
67	Cdc42 regulates schwann cell radial sorting and myelin sheath folding through NF2/merlinâ€dependent and independent signaling. Glia, 2013, 61, 1906-1921.	4.9	25
68	MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. Journal of Clinical Investigation, 2013, 123, 340-347.	8.2	273
69	Increased Oxidative Stress In Sickle Cell Disease Activates The Renin-Angiotensin-TGF-β Pathway To Mediate Sickle Nephropathy. Blood, 2013, 122, 2211-2211.	1.4	8
70	Conditional Inactivation of <i>Pten</i> with <i>EGFR</i> Overexpression in Schwann Cells Models Sporadic MPNST. Sarcoma, 2012, 2012, 1-12.	1.3	33
71	Ras-Driven Transcriptome Analysis Identifies Aurora Kinase A as a Potential Malignant Peripheral Nerve Sheath Tumor Therapeutic Target. Clinical Cancer Research, 2012, 18, 5020-5030.	7.0	60
72	<i>PTEN</i> and <i>NF1</i> Inactivation in Schwann Cells Produces a Severe Phenotype in the Peripheral Nervous System That Promotes the Development and Malignant Progression of Peripheral Nerve Sheath Tumors. Cancer Research, 2012, 72, 3405-3413.	0.9	72

#	Article	IF	CITATIONS
73	<i>In Vivo</i> Regulation of TGF-β by R-Ras2 Revealed through Loss of the RasGAP Protein NF1. Cancer Research, 2012, 72, 5317-5327.	0.9	19
74	Neurofibromatosis Type 1: Modeling CNS Dysfunction. Journal of Neuroscience, 2012, 32, 14087-14093.	3.6	88
75	Rac1 Controls Schwann Cell Myelination through cAMP and NF2/merlin. Journal of Neuroscience, 2012, 32, 17251-17261.	3.6	52
76	Preclincial testing of Sorafenib and RAD001 in the <i>Nf</i> ^{<i>flox/flox</i>} <i>;DhhCre</i> mouse model of plexiform neurofibroma using magnetic resonance imaging. Pediatric Blood and Cancer, 2012, 58, 173-180.	1.5	60
77	The Learning Disabilities Network (LeaDNet): Using neurofibromatosis type 1 (NF1) as a paradigm for translational research. American Journal of Medical Genetics, Part A, 2012, 158A, 2225-2232.	1.2	29
78	Malignant Peripheral Nerve Sheath Tumors: Prognostic and Diagnostic Markers and Therapeutic Targets. , 2012, , 445-467.		10
79	Genomic and Molecular Characterization of Malignant Peripheral Nerve Sheath Tumor Identifies the IGF1R Pathway as a Primary Target for Treatment. Clinical Cancer Research, 2011, 17, 7563-7573.	7.0	63
80	Perinatal or Adult <i>Nf1</i> Inactivation Using Tamoxifen-Inducible <i>PlpCre</i> Each Cause Neurofibroma Formation. Cancer Research, 2011, 71, 4675-4685.	0.9	62
81	Discovery of a Small Molecule Targeting <i>IRA2</i> Deletion in Budding Yeast and Neurofibromin Loss in Malignant Peripheral Nerve Sheath Tumor Cells. Molecular Cancer Therapeutics, 2011, 10, 1740-1750.	4.1	10
82	R-Ras and Rac GTPase Cross-talk Regulates Hematopoietic Progenitor Cell Migration, Homing, and Mobilization. Journal of Biological Chemistry, 2011, 286, 24068-24078.	3.4	17
83	Pharmacological inhibition of EGFR signaling enhances G-CSF–induced hematopoietic stem cell mobilization. Nature Medicine, 2010, 16, 1141-1146.	30.7	61
84	Gene Expression Analysis Identifies Potential Biomarkers of Neurofibromatosis Type 1 Including Adrenomedullin. Clinical Cancer Research, 2010, 16, 5048-5057.	7.0	36
85	Integrative genomic analyses of neurofibromatosis tumours identify SOX9 as a biomarker and survival gene. EMBO Molecular Medicine, 2009, 1, 236-248.	6.9	112
86	Neuroblastoma Cell Lines Contain Pluripotent Tumor Initiating Cells That Are Susceptible to a Targeted Oncolytic Virus. PLoS ONE, 2009, 4, e4235.	2.5	116
87	How does the Schwann cell lineage form tumors in NF1?. Glia, 2008, 56, 1590-1605.	4.9	112
88	Plexiform and Dermal Neurofibromas and Pigmentation Are Caused by Nf1 Loss in Desert Hedgehog-Expressing Cells. Cancer Cell, 2008, 13, 105-116.	16.8	191
89	Nf1 Mutation Expands an EGFR-Dependent Peripheral Nerve Progenitor that Confers Neurofibroma Tumorigenic Potential. Cell Stem Cell, 2008, 3, 658-669.	11.1	43
90	Effective <i>in vivo</i> targeting of the mammalian target of rapamycin pathway in malignant peripheral nerve sheath tumors. Molecular Cancer Therapeutics, 2008, 7, 1237-1245.	4.1	130

#	Article	IF	CITATIONS
91	Oncolytic HSV and Erlotinib Inhibit Tumor Growth and Angiogenesis in a Novel Malignant Peripheral Nerve Sheath Tumor Xenograft Model. Molecular Therapy, 2007, 15, 279-286.	8.2	87
92	Mast cells can contribute to axon–glial dissociation and fibrosis in peripheral nerve. Neuron Glia Biology, 2007, 3, 233-244.	1.6	26
93	Perinatal Epidermal Growth Factor Receptor Blockade Prevents Peripheral Nerve Disruption in a Mouse Model Reminiscent of Benign World Health Organization Grade I Neurofibroma. American Journal of Pathology, 2006, 168, 1686-1696.	3.8	20
94	Model systems for neurofibroma and malignant peripheral nerve sheath tumor. Drug Discovery Today: Disease Models, 2006, 3, 175-182.	1.2	0
95	Malignant peripheral nerve sheath tumors with high and low Ras-GTP are permissive for oncolytic herpes simplex virus mutants. Pediatric Blood and Cancer, 2006, 46, 745-754.	1.5	39
96	Schwann Cell Preparation from Single Mouse Embryos: Analyses of Neurofibromin Function in Schwann Cells. Methods in Enzymology, 2006, 407, 22-33.	1.0	24
97	Temporal Control of Rac in Schwann Cell-Axon Interaction Is Disrupted in NF2-Mutant Schwannoma Cells. Journal of Neuroscience, 2006, 26, 3390-3395.	3.6	49
98	Large-Scale Molecular Comparison of Human Schwann Cells to Malignant Peripheral Nerve Sheath Tumor Cell Lines and Tissues. Cancer Research, 2006, 66, 2584-2591.	0.9	191
99	Role for the epidermal growth factor receptor in neurofibromatosis-related peripheral nerve tumorigenesis. Cancer Cell, 2005, 7, 65-75.	16.8	115
100	Overexpression of the Epidermal Growth Factor Receptor Confers Migratory Properties to Nonmigratory Postnatal Neural Progenitors. Journal of Neuroscience, 2005, 25, 11092-11106.	3.6	102
101	Activation of the Tumor Suppressor Merlin Modulates Its Interaction with Lipid Rafts. Cancer Research, 2004, 64, 2717-2724.	0.9	55
102	Role of TC21/R-Ras2 in enhanced migration of neurofibromin-deficient Schwann cells. Oncogene, 2004, 23, 368-378.	5.9	35
103	Mechanisms and Roles of Axon-Schwann Cell Interactions. Journal of Neuroscience, 2004, 24, 9250-9260.	3.6	167
104	Human blood genomics: distinct profiles for gender, age and neurofibromatosis type 1. Molecular Brain Research, 2004, 132, 155-167.	2.3	42
105	Magnetic cell sorting for enriching Schwann cells from adult mouse peripheral nerves. Journal of Neuroscience Methods, 2003, 123, 167-173.	2.5	56
106	Brain Lipid Binding Protein in Axon-Schwann Cell Interactions and Peripheral Nerve Tumorigenesis. Molecular and Cellular Biology, 2003, 23, 2213-2224.	2.3	37
107	Aberrant Growth and Differentiation of Oligodendrocyte Progenitors in Neurofibromatosis Type 1 Mutants. Journal of Neuroscience, 2003, 23, 7207-7217.	3.6	51
108	Neurofibromin-deficient Schwann cells secrete a potent migratory stimulus for Nf1+/– mast cells. Journal of Clinical Investigation, 2003, 112, 1851-1861.	8.2	181

#	Article	IF	CITATIONS
109	The Neurofibromatosis Type 2 Gene Product, merlin, Reverses the F-Actin Cytoskeletal Defects in Primary Human Schwannoma Cells. Molecular and Cellular Biology, 2002, 22, 1150-1157.	2.3	73
110	Gene-Targeted Deletion of Neurofibromin Enhances the Expression of a Transient Outward K+Current in Schwann Cells: A Protein Kinase A-Mediated Mechanism. Journal of Neuroscience, 2002, 22, 9194-9202.	3.6	22
111	Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO Journal, 2002, 21, 281-293.	7.8	358
112	A Novel Cytokine Pathway Suppresses Glial Cell Melanogenesis after Injury to Adult Nerve. Journal of Neuroscience, 2002, 22, 9831-9840.	3.6	68
113	The Nf2 Tumor Suppressor, Merlin, Functions in Rac-Dependent Signaling. Developmental Cell, 2001, 1, 63-72.	7.0	311
114	Schwann Cell Proliferative Responses to cAMP and <i>Nf1</i> Are Mediated by Cyclin D1. Journal of Neuroscience, 2001, 21, 1110-1116.	3.6	111
115	Immunocytochemical assay for Ras activity. Methods in Enzymology, 2001, 333, 348-356.	1.0	6
116	The angiogenic factor midkine is aberrantly expressed in NF1-deficient Schwann cells and is a mitogen for neurofibroma-derived cells. Oncogene, 2001, 20, 97-105.	5.9	117
117	Advances in Neurofibromatosis 2 (NF2): A Workshop Report. Journal of Neurogenetics, 2000, 14, 63-106.	1.4	33
118	Interaction between two isoforms of the NF2 tumor suppressor protein, merlin, and between merlin and ezrin, suggests modulation of ERM proteins by merlin. Journal of Neuroscience Research, 2000, 62, 491-502.	2.9	54
119	The Neurofibromatosis Type 1 (Nf1) Tumor Suppressor is a Modifier of Carcinogen-Induced Pigmentation and Papilloma Formation in C57BL/6 Mice. Journal of Investigative Dermatology, 2000, 114, 1093-1100.	0.7	20
120	Epidermal growth factor receptor expression in neurofibromatosis type 1–related tumors and NF1 animal models. Journal of Clinical Investigation, 2000, 105, 1233-1241.	8.2	152
121	Single Cell Ras-GTP Analysis Reveals Altered Ras Activity in a Subpopulation of Neurofibroma Schwann Cells but Not Fibroblasts. Journal of Biological Chemistry, 2000, 275, 30740-30745.	3.4	119
122	Cd44 Enhances Neuregulin Signaling by Schwann Cells. Journal of Cell Biology, 2000, 150, 1071-1084.	5.2	129
123	The Nf1 Tumor Suppressor Regulates Mouse Skin Wound Healing, Fibroblast Proliferation, and Collagen Deposited by Fibroblasts. Journal of Investigative Dermatology, 1999, 112, 835-842.	0.7	99
124	Neurofibromin, the Neurofibromatosis Type 1 Ras-GAP, Is Required for Appropriate POExpression and Myelination. Annals of the New York Academy of Sciences, 1999, 883, 203-214.	3.8	24
125	Overexpression of activated neu/erbB2 initiates immortalization and malignant transformation of immature Schwann cells in vitro. Oncogene, 1999, 18, 6692-6699.	5.9	16
126	Region-specific astrogliosis in brains of mice heterozygous for mutations in the neurofibromatosis type 1 (Nf1) tumor suppressor. Brain Research, 1999, 816, 111-123.	2.2	47

#	Article	IF	CITATIONS
127	Ruffling membrane, stress fiber, cell spreading and proliferation abnormalities in human Schwannoma cells. Oncogene, 1998, 17, 2195-2209.	5.9	121
128	A Role for Cyclin-Dependent Kinase(s) in the Modulation of Fast Anterograde Axonal Transport: Effects Defined by Olomoucine and the APC Tumor Suppressor Protein. Journal of Neuroscience, 1998, 18, 7717-7726.	3.6	68
129	Schwann Cells Express NDF and SMDF/n-ARIA mRNAs, Secrete Neuregulin, and Show Constitutive Activation of erbB3 Receptors: Evidence for a Neuregulin Autocrine Loop. Experimental Neurology, 1997, 148, 604-615.	4.1	73
130	cAMP-dependent protein kinase A is required for Schwann cell growth: Interactions between the cAMP and neuregulin/tyrosine kinase pathways. , 1997, 49, 236-247.		101
131	cAMPâ€dependent protein kinase A is required for Schwann cell growth: Interactions between the cAMP and neuregulin/tyrosine kinase pathways. Journal of Neuroscience Research, 1997, 49, 236-247.	2.9	1
132	A Procedure for Isolating Schwann Cells Developed for Analysis of the Mouse Embryonic Lethal Mutation NF1. , 1997, , 201-212.		1
133	Neurofibromin Expression and Astrogliosis in Neurofibromatosis (Type 1) Brains. Journal of Neuropathology and Experimental Neurology, 1995, 54, 588-600.	1.7	71
134	Effect of transforming growth factor-β1 and -β2 on Schwann cell proliferation on neurites. Glia, 1995, 13, 309-318.	4.9	38
135	Regulation of neurofibromin expression in rat sciatic nerve and cultured Schwann cells. Glia, 1995, 15, 22-32.	4.9	14
136	Localization of Neurofibromin to Keratinocytes and Melanocytes in Developing Rat and Human Skin. Journal of Investigative Dermatology, 1994, 102, 812-818.	0.7	39
137	The protein product of the neurofibromatosis type 1 gene is expressed at highest abundance in neurons, Schwann cells, and oligodendrocytes. Neuron, 1992, 8, 415-428.	8.1	293
138	Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell, 1992, 69, 265-273.	28.9	577
139	S100 is present in developing chicken neurons and schwann cell and promotes motor neuron survival <i>in vivo</i> . Journal of Neurobiology, 1992, 23, 451-466.	3.6	140
140	Schwann cells and cells in the oligodendrocyte lineage proliferate in response to a 50,000 dalton membrane-associated mitogen present in developing brain. Glia, 1992, 5, 182-192.	4.9	22
141	Development of olfactory nerve glia defined by a monoclonal antibody specific for schwann cells. Developmental Dynamics, 1992, 194, 231-238.	1.8	52
142	Neurofibromin, a predominantly neuronal GTPase activating protein in the adult, is ubiquitously expressed during development. Developmental Dynamics, 1992, 195, 216-226.	1.8	103
143	PO is an early marker of the schwann cell lineage in chickens. Neuron, 1991, 7, 831-844.	8.1	97
144	Mitogen accumulation in von Recklinghausen neurofibromatosis. Annals of Neurology, 1990, 27, 298-303.	5.3	39

#	Article	IF	CITATIONS
145	Further Characterization of the Neuronal Cell Surface Protein Mitogenic for Schwann Cells. , 1987, , 683-698.		6
146	Schwann Cell Proliferation In Vitro Annals of the New York Academy of Sciences, 1986, 486, 170-181.	3.8	31