
Liming Xiong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1484762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences, 2020, 63, 635-674.	4.9	689
2	LOWER TEMPERATURE 1 Enhances ABA Responses and Plant Drought Tolerance by Modulating the Stability and Localization of C2-Domain ABA-Related Proteins in Arabidopsis. Molecular Plant, 2019, 12, 1243-1258.	8.3	28
3	Subcellular Localization and Functions of Plant IncRNAs in Drought and Salt Stress Tolerance. Methods in Molecular Biology, 2019, 1933, 173-186.	0.9	13
4	Arabidopsis proteome and the mass spectral assay library. Scientific Data, 2019, 6, 278.	5.3	39
5	Spliceosomal protein U1A is involved in alternative splicing and salt stress tolerance in Arabidopsis thaliana. Nucleic Acids Research, 2018, 46, 1777-1792.	14.5	57
6	The caseinolytic protease complex component CLPC1 in Arabidopsis maintains proteome and RNA homeostasis in chloroplasts. BMC Plant Biology, 2018, 18, 192.	3.6	9
7	A Nucleus-Localized Long Non-Coding RNA Enhances Drought and Salt Stress Tolerance. Plant Physiology, 2017, 175, 1321-1336.	4.8	251
8	AtLSG1-2 Regulates Leaf Growth by Affecting Cell Proliferation and the Onset of Endoreduplication and Synergistically Interacts with AtNMD3 during Cell Proliferation Process. Frontiers in Plant Science, 2017, 8, 337.	3.6	2
9	Arabidopsis <scp>YAK</scp> 1 regulates abscisic acid response and drought resistance. FEBS Letters, 2016, 590, 2201-2209.	2.8	28
10	The RNA Polymerase II C-Terminal Domain Phosphatase-Like Protein FIERY2/CPL1 Interacts with eIF4AIII and Is Essential for Nonsense-Mediated mRNA Decay in Arabidopsis. Plant Cell, 2016, 28, 770-785.	6.6	21
11	Two domain-disrupted hda6 alleles have opposite epigenetic effects on transgenes and some endogenous targets. Scientific Reports, 2015, 5, 17832.	3.3	8
12	Arabidopsis Yak1 protein (AtYak1) is a dual specificity protein kinase. FEBS Letters, 2015, 589, 3321-3327.	2.8	18
13	Arabidopsis flower specific defense gene expression patterns affect resistance to pathogens. Frontiers in Plant Science, 2015, 6, 79.	3.6	17
14	The RNA-binding protein HOS5 and serine/arginine-rich proteins RS40 and RS41 participate in miRNA biogenesis in Arabidopsis. Nucleic Acids Research, 2015, 43, 8283-8298.	14.5	67
15	Environmental Stress and Pre-mRNA Splicing. Molecular Plant, 2015, 8, 1302-1303.	8.3	21
16	Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis. Scientific Reports, 2015, 5, 8625.	3.3	41
17	TheArabidopsisgeneDIG6encodes a large 60S subunit nuclear export GTPase 1 that is involved in ribosome biogenesis and affects multiple auxin-regulated development processes. Journal of Experimental Botany, 2015, 66, 6863-6875.	4.8	21
18	<scp>AtM</scp> yb7, a subgroup 4 <scp>R</scp> 2 <scp>R</scp> 3 <scp>M</scp> yb, negatively regulates <scp>ABA</scp> â€induced inhibition of seed germination by blocking the expression of the <scp>bZIP</scp> transcription factor <scp>ABI</scp> 5. Plant, Cell and Environment, 2015, 38, 559-571.	5.7	66

#	Article	IF	CITATIONS
19	The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis Â. Plant Physiology, 2014, 167, 137-152.	4.8	41
20	Dynamic regulation of genome-wide pre-mRNA splicing and stress tolerance by the Sm-like protein LSm5 in Arabidopsis. Genome Biology, 2014, 15, R1.	9.6	1,501
21	Genome-wide analysis of alternative splicing of pre-mRNA under salt stress in Arabidopsis. BMC Genomics, 2014, 15, 431.	2.8	234
22	The Putative E3 Ubiquitin Ligase ECERIFERUM9 Regulates Abscisic Acid Biosynthesis and Response during Seed Germination and Postgermination Growth in Arabidopsis Â. Plant Physiology, 2014, 165, 1255-1268.	4.8	42
23	<scp>GSA</scp> â€1/ <scp>ARG</scp> 1 protects root gravitropism in <i>Arabidopsis</i> under ammonium stress. New Phytologist, 2013, 200, 97-111.	7.3	35
24	Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses. Plant Physiology and Biochemistry, 2013, 67, 189-198.	5.8	57
25	A KH-Domain RNA-Binding Protein Interacts with FIERY2/CTD Phosphatase-Like 1 and Splicing Factors and Is Important for Pre-mRNA Splicing in Arabidopsis. PLoS Genetics, 2013, 9, e1003875.	3.5	88
26	Arabidopsis Plastid AMOS1/EGY1 Integrates Abscisic Acid Signaling to Regulate Global Gene Expression Response to Ammonium Stress. Plant Physiology, 2012, 160, 2040-2051.	4.8	92
27	Genome-Wide Transcriptional Reprogramming Under Drought Stress. , 2012, , 273-289.		3
28	A plant microRNA regulates the adaptation of roots to drought stress. FEBS Letters, 2012, 586, 1742-1747.	2.8	118
29	A Nucleotide Metabolite Controls Stress-Responsive Gene Expression and Plant Development. PLoS ONE, 2011, 6, e26661.	2.5	45
30	Shootâ€supplied ammonium targets the root auxin influx carrier AUX1 and inhibits lateral root emergence in <i>Arabidopsis</i> . Plant, Cell and Environment, 2011, 34, 933-946.	5.7	90
31	Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation. Plant Signaling and Behavior, 2011, 6, 123-125.	2.4	19
32	The Plant Cuticle Is Required for Osmotic Stress Regulation of Abscisic Acid Biosynthesis and Osmotic Stress Tolerance in <i>Arabidopsis</i> Â. Plant Cell, 2011, 23, 1971-1984.	6.6	147
33	The bifunctional abiotic stress signalling regulator and endogenous RNA silencing suppressor FIERY1 is required for lateral root formation. Plant, Cell and Environment, 2010, 33, 2180-2190.	5.7	41
34	Genetic analysis of pathway regulation for enhancing branched hain amino acid biosynthesis in plants. Plant Journal, 2010, 63, 573-583.	5.7	57
35	myo-Inositol-1-phosphate Synthase Is Required for Polar Auxin Transport and Organ Development. Journal of Biological Chemistry, 2010, 285, 24238-24247.	3.4	62
36	Alternative splicing of anciently exonized 5S rRNA regulates plant transcription factor TFIIIA. Genome Research, 2009, 19, 913-921.	5.5	34

#	Article	IF	CITATIONS
37	Localized auxin biosynthesis and postembryonic root development in Arabidopsis. Plant Signaling and Behavior, 2009, 4, 752-754.	2.4	8
38	The short-rooted vitamin B6-deficient mutant pdx1 has impaired local auxin biosynthesis. Planta, 2009, 229, 1303-1310.	3.2	22
39	Enhancement of vitamin B ₆ levels in seeds through metabolic engineering. Plant Biotechnology Journal, 2009, 7, 673-681.	8.3	30
40	Plants, endosymbionts and parasites. Communicative and Integrative Biology, 2008, 1, 62-65.	1.4	20
41	Role of HY5 in abscisic acid response in seeds and seedlings. Plant Signaling and Behavior, 2008, 3, 986-988.	2.4	20
42	Integration of light and abscisic acid signaling during seed germination and early seedling development. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4495-4500.	7.1	251
43	Abscisic Acid In Plant Response And Adaptation To Drought And Salt Stress. , 2007, , 193-221.		13
44	Stress Signal Transduction: components, pathways and network integration. , 2006, , 3-29.		11
45	Identification of Drought Tolerance Determinants by Genetic Analysis of Root Response to Drought Stress and Abscisic Acid. Plant Physiology, 2006, 142, 1065-1074.	4.8	366
46	Pyridoxine is required for post-embryonic root development and tolerance to osmotic and oxidative stresses. Plant Journal, 2005, 44, 396-408.	5.7	163
47	A DEAD Box RNA Helicase Is Essential for mRNA Export and Important for Development and Stress Responses in Arabidopsis. Plant Cell, 2005, 17, 256-267.	6.6	322
48	A single amino acid substitution in the Arabidopsis FIERY1/HOS2 protein confers cold signaling specificity and lithium tolerance. Plant Journal, 2004, 40, 536-545.	5.7	58
49	Regulation of Abscisic Acid Biosynthesis. Plant Physiology, 2003, 133, 29-36.	4.8	708
50	The Arabidopsis salt overly sensitive 4 Mutants Uncover a Critical Role for Vitamin B6 in Plant Salt Tolerance. Plant Cell, 2002, 14, 575-588.	6.6	191
51	Regulation of Osmotic Stress-responsive Gene Expression by theLOS6/ABA1 Locus inArabidopsis. Journal of Biological Chemistry, 2002, 277, 8588-8596.	3.4	382
52	RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11507-11512.	7.1	275
53	Salt Tolerance. The Arabidopsis Book, 2002, 1, e0048.	0.5	63
54	An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7786-7791.	7.1	144

#	Article	IF	CITATIONS
55	A Mitochondrial Complex I Defect Impairs Cold-Regulated Nuclear Gene Expression. Plant Cell, 2002, 14, 1235-1251.	6.6	233
56	C-terminal domain phosphatase-like family members (AtCPLs) differentially regulate Arabidopsis thaliana abiotic stress signaling, growth, and development. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10893-10898.	7.1	146
57	Cell Signaling during Cold, Drought, and Salt Stress. Plant Cell, 2002, 14, S165-S183.	6.6	1,874
58	A Calcium Sensor and Its Interacting Protein Kinase Are Global Regulators of Abscisic Acid Signaling in Arabidopsis. Developmental Cell, 2002, 3, 233-244.	7.0	278
59	Repression of stress-responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10899-10904.	7.1	137
60	Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell and Environment, 2002, 25, 131-139.	5.7	702
61	Title is missing!. Nutrient Cycling in Agroecosystems, 2002, 63, 91-98.	2.2	4
62	LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO Journal, 2002, 21, 2692-2702.	7.8	303
63	Modulation of Abscisic Acid Signal Transduction and Biosynthesis by an Sm-like Protein in Arabidopsis. Developmental Cell, 2001, 1, 771-781.	7.0	311
64	The Arabidopsis LOS5/ABA3 Locus Encodes a Molybdenum Cofactor Sulfurase and Modulates Cold Stress- and Osmotic Stress-Responsive Gene Expression. Plant Cell, 2001, 13, 2063.	6.6	11
65	Abiotic stress signal transduction in plants: Molecular and genetic perspectives. Physiologia Plantarum, 2001, 112, 152-166.	5.2	219
66	The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes and Development, 2001, 15, 912-924.	5.9	392
67	The Arabidopsis LOS5/ABA3 Locus Encodes a Molybdenum Cofactor Sulfurase and Modulates Cold Stress– and Osmotic Stress–Responsive Gene Expression. Plant Cell, 2001, 13, 2063-2083.	6.6	492
68	FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes and Development, 2001, 15, 1971-1984.	5.9	343
69	The Arabidopsis LOS5/ABA3 Locus Encodes a Molybdenum Cofactor Sulfurase and Modulates Cold Stress- and Osmotic Stress-Responsive Gene Expression. Plant Cell, 2001, 13, 2063-2083.	6.6	440
70	Interaction of Osmotic Stress, Temperature, and Abscisic Acid in the Regulation of Gene Expression in Arabidopsis. Plant Physiology, 1999, 119, 205-212.	4.8	172
71	Cold-regulated gene expression and freezing tolerance in an Arabidopsis thaliana mutant. Plant Journal, 1999, 17, 301-308.	5.7	93
72	HOS5-a negative regulator of osmotic stress-induced gene expression in Arabidopsis thaliana. Plant Journal, 1999, 19, 569-578.	5.7	72

#	Article	IF	CITATIONS
73	High Throughput Screening of Signal Transduction Mutants With Luciferase Imaging. Plant Molecular Biology Reporter, 1999, 17, 159-170.	1.8	20
74	Genetic Analysis of Salt Tolerance in Arabidopsis: Evidence for a Critical Role of Potassium Nutrition. Plant Cell, 1998, 10, 1181-1191.	6.6	607
75	HOS1, a Genetic Locus Involved in Cold-Responsive Gene Expression in Arabidopsis. Plant Cell, 1998, 10, 1151-1161.	6.6	276
76	HOS1, a Genetic Locus Involved in Cold-Responsive Gene Expression in Arabidopsis. Plant Cell, 1998, 10, 1151.	6.6	20
77	Genetic Analysis of Osmotic and Cold Stress Signal Transduction in Arabidopsis: Interactions and Convergence of Abscisic Acid-Dependent and Abscisic Acid-Independent Pathways. Plant Cell, 1997, 9, 1935.	6.6	85
78	Enhanced plant growth by uniform placement of superphosphate with rock phosphate in acidic soils. Communications in Soil Science and Plant Analysis, 1996, 27, 2837-2850.	1.4	11
79	Influence of phosphate on cadmium adsorption by soils. Fertilizer Research, 1995, 40, 31-40.	0.5	7
80	Magnesium influence on plant uptake of phosphorus in a calcareous soil. Journal of Plant Nutrition, 1995, 18, 1251-1261.	1.9	4
81	An evaluation of the agronomic potential of partially acidulated rock phosphates in calcareous soil. Fertilizer Research, 1994, 38, 205-212.	0.5	8